ChipFind - документация

Электронный компонент: 5STP38Q4200

Скачать:  PDF   ZIP
ABB Semiconductors AG reserves the right to change specifications without notice.
V
DSM
=
4200 V
I
TAVM
=
4275 A
I
TRMS
=
6715 A
I
TSM
=
60000 A
V
T0
=
0.95 V
r
T
=
0.130 m
Doc. No. 5SYA1051-01 Sep.00
Patented free-floating silicon technology
Low on-state and switching losses
Designed for traction, energy and industrial applications
Optimum power handling capability
Interdigitated amplifying gate.
Blocking
Part Number
5STP 38Q4200
5STP 38Q4000
5STP 38Q3600
Conditions
V
DRM
V
RRM
4200 V
4000 V
3600 V
f = 50 Hz, t
p
= 10ms
V
RSM1
4600 V
4400 V
4000 V
t
p
= 5 ms, single pulse
I
DRM
400 mA
V
DRM
I
RRM
400 mA
V
RRM
T
j
= 125C
dV/dt
crit
2000 V/s
@ Exp. to 0.67xV
DRM
Mechanical data
F
M
Mounting force
nom.
90 kN
min.
81 kN
max.
108 kN
a
Acceleration
Device unclamped
Device clamped
50
100
m/s
2
m/s
2
m
Weight
2.1 kg
D
S
Surface creepage distance
36 mm
D
a
Air strike distance
15 mm
Phase Control Thyristor
5STP 38Q4200
5STP 38Q4200
ABB Semiconductors AG reserves the right to change specifications without notice.
2 of 6
Doc. No. 5SYA1051-01 Sep.00
On-state
I
TAVM
Max. average on-state current
4275 A
Half sine wave, T
C
= 70C
I
TRMS
Max. RMS on-state current
6715 A
I
TSM
Max. peak non-repetitive
60000 A
tp
=
10 ms
T
j
=
125C
surge current
65000 A
tp
=
8.3 ms
After surge:
I
2
t
Limiting load integral
18000 kA
2
s
tp
=
10 ms
V
D
= V
R
= 0V
17500 kA
2
s
tp
=
8.3 ms
V
T
On-state voltage
1.35 V
I
T
=
3000 A
V
T0
Threshold voltage
0.95 V
I
T
=
2500 - 7500 A
T
j
=
125C
r
T
Slope resistance
0.130 m
I
H
Holding current
40-100 mA
T
j
= 25C
20-75 mA
T
j
= 125C
I
L
Latching current
100-500 mA
T
j
= 25C
150-350 mA
T
j
= 125C
Switching
di/dt
crit
Critical rate of rise of on-state
250 A/s
Cont.
V
D
0.67
V
DRM
T
j
= 125C
current
500 A/s
60 sec.
I
TRM
=
5000 A f = 50 Hz
I
FG
=
2.0 A t
r
= 0.5 s
t
d
Delay time
3.0 s
V
D
= 0.4
V
DRM
I
FG
=
2.0 A t
r
= 0.5 s
600 s
V
D
0.67
V
DRM
I
TRM
=
5000 A T
j
= 125C
t
q
Turn-off time
dv
D
/dt = 20V/s V
R
>
200 V
Q
rr
Recovery charge
min
5000 As
di
T
/dt =
-5 A/s
max
10000 As
Triggering
V
GT
Gate trigger voltage
2.6 V
T
j
= 25C
I
GT
Gate trigger current
400 mA T
j
= 25C
V
GD
Gate non-trigger voltage
0.3 V
V
D
= 0.4
V
DRM
I
GD
Gate non-trigger current
10 mA
V
D
= 0.4
V
DRM
V
FGM
Peak forward gate voltage
12 V
I
FGM
Peak forward gate current
10 A
V
RGM
Peak reverse gate voltage
10 V
P
G
Maximum gate power loss
3 W
5STP 38Q4200
ABB Semiconductors AG reserves the right to change specifications without notice.
3 of 6
Doc. No. 5SYA1051-01 Sep.00
Thermal
T
j max
Max. junction temperature
125C
T
j stg
Storage temperature
range
-40...150C
R
thJC
Thermal resistance
10 K/kW
Anode side cooled
junction to case
10 K/kW
Cathode side cooled
5 K/kW
Double side cooled
R
thCH
Thermal resistance case to
2 K/kW
Single side cooled
heat sink
1 K/kW
Double side cooled
Analytical function for transient thermal impedance:
)
e
-
(1
R
=
(t)
Z
n
1
i
t/
-
i
thJC
i
=
i
1
2
3
4
R
i
(K/kW)
3.27
0.736
0.661
0.312
i
(s)
0.5237
0.1082
0.02
0.0075
Fig. 1
Transient thermal impedance junction to case.
On-state characteristic model:
T
T
T
T
I
D
i
C
i
B
A
V
+
+
+
+
=
)
1
ln(
Valid for i
T
= 500 14000 A
A
B
C
D
0.341725
0.00009
0.07628
0.00231
Fig 2. On-state characteristics.
Fig. 3 On state characteristics.
5STP 38Q4200
ABB Semiconductors AG reserves the right to change specifications without notice.
4 of 6
Doc. No. 5SYA1051-01 Sep.00
0
1000
2000
3000
4000
5000
6000
7000
I
TAV
(A)
70
75
80
85
90
95
100
105
110
115
120
125
130
T
case
(C)
DC
180
rectangular
180
sine
120
rectangular
5
S
T
P
3
8
Q
4
2
0
0
Double-sided
cooling
Fig. 4
On-state power dissipation vs. mean on-
state current. Turn-on losses excluded.
Fig. 5
Max. permissible case temperature vs. mean
on-state current.
Fig. 6
Surge on-state current vs. pulse length.
Half-sine wave.
Fig. 7
Surge on-state current vs. number of pulses.
Half-sine wave, 10 ms, 50Hz.
5STP 38Q4200
ABB Semiconductors AG reserves the right to change specifications without notice.
5 of 6
Doc. No. 5SYA1051-01 Sep.00
Fig. 8
Gate trigger characteristics.
Fig. 9
Max. peak gate power loss.
Fig. 10 Recovery charge vs. decay rate of on-state
current.
Fig. 11 Peak reverse recovery current vs. decay rate
of on-state current.
Turn off time, typical parameter relationship
.
Fig. 12 t
q
/t
q1
=
f
1
(
T
j
)
Fig. 13 t
q
/t
q1
=
f
2
(
-di/dt
)
Fig. 14
t
q
/t
q1
=
f
3
(
dv/dt
)
t
q
=
t
q1
t
q
/t
q1
f
1
(T
j
)
t
q
/t
q1
f
2
(-di/dt)
t
q
/t
q1
f
3
(dv/dt)
t
q1
:at normalized values (see page 2)
t
q
: at varying conditions