ChipFind - документация

Электронный компонент: AD632T/883B

Скачать:  PDF   ZIP
REV. A
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties
which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of Analog Devices.
a
AD632
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 617/329-4700
World Wide Web Site: http://www.analog.com
Fax: 617/326-8703
Analog Devices, Inc., 1997
Internally Trimmed
Precision IC Multiplier
PIN CONFIGURATIONS
H-Package TO-100
D-Package TO-116
PRODUCT DESCRIPTION
The AD632 is an internally-trimmed monolithic four-quadrant
multiplier/divider. The AD632B has a maximum multiplying
error of
0.5% without external trims.
Excellent supply rejection, low temperature coefficients and
long term stability of the on-chip thin film resistors and buried
zener reference preserve accuracy even under adverse condi-
tions. The simplicity and flexibility of use provide an attractive
alternative approach to the solution of complex control func-
tions.
The AD632 is pin-for-pin compatible with the industry standard
AD532 with improved specifications and a fully differential high
impedance Z-input. The AD632 is capable of providing gains of
up to X10, frequently eliminating the need for separate instru-
mentation amplifiers to precondition the inputs. The AD632
can be effectively employed as a variable gain differential input
amplifier with high common-mode rejection. The effectiveness
of the variable gain capability is enhanced by the inherent low
noise of the AD632: 90
V rms.
FEATURES
Pretrimmed to
0.5% Max 4-Quadrant Error
All Inputs (X, Y and Z) Differential, High Impedance for
[(X
1
X
2
)(Y
1
Y
2
)/10] + Z
2
Transfer Function
Scale-Factor Adjustable to Provide up to X10 Gain
Low Noise Design: 90 V rms, 10 Hz10 kHz
Low Cost, Monolithic Construction
Excellent Long-Term Stability
APPLICATIONS
High Quality Analog Signal Processing
Differential Ratio and Percentage Computations
Algebraic and Trigonometric Function Synthesis
Accurate Voltage Controlled Oscillators and Filters
PRODUCT HIGHLIGHTS
Guaranteed Performance Over Temperature
The AD632A and AD632B are specified for maximum multi-
plying errors of
1.0% and
0.5% of full scale, respectively at
+25
C and are rated for operation from 25
C to +85
C.
Maximum multiplying errors of
2.0% (AD632S) and
1.0%
(AD632T) are guaranteed over the extended temperature range
of 55
C to +125
C.
High Reliability
The AD632S and AD632T series are also available with
MIL-STD-883 Level B screening and all devices are available in
either the hermetically-sealed TO-100 metal can or TO-116
ceramic DIP package.
2
REV. A
AD632SPECIFICATIONS
(@ +25 C, V
S
=
15 V, R
2 k
unless otherwise noted)
AD632A
AD632B
AD632S
AD632T
Model
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Units
MULTIPLIER PERFORMANCE
Transfer Function
( X
1
-
X
2
)(Y
1
-
Y
2
)
10V
+
Z
2
( X
1
-
X
2
)(Y
1
-
Y
2
)
10V
+
Z
2
( X
1
-
X
2
)(Y
1
-
Y
2
)
10V
+
Z
2
( X
1
-
X
2
)(Y
1
-
Y
2
)
10V
+
Z
2
Total Error
1
(10 V
X, Y
+10 V)
1.0
0.5
1.0
0.5
%
T
A
= Min to Max
1.5
1.0
2.0
1.0
%
Total Error vs. Temperature
0.022
0.015
0.02
0.01
%/
C
Scale Factor Error
(SF = 10.000 V Nominal)
2
0.25
0.1
0.25
0.1
%
Temperature-Coefficient of
Scaling-Voltage
0.02
0.01
0.2
0.005
%/
C
Supply Rejection (
15 V
1 V)
0.01
0.01
0.01
0.01
%
Nonlinearity, X (X = 20 V p-p, Y = 10 V)
0.4
0.2
0.3
0.4
0.2
0.3
%
Nonlinearity, Y (Y = 20 V p-p, X = 10 V)
0.2
0.1
0.1
0.2
0.1
0.1
%
Feedthrough
3
, X (Y Nulled,
X = 20 V p-p 50 Hz)
0.3
0.15
0.3
0.3
0.15
0.3
%
Feedthrough
3
, Y (X Nulled,
Y = 20 V p-p 50 Hz)
0.01
0.01
0.1
0.01
0.01
0.1
%
Output Offset Voltage
5
30
2
15
5
30
2
15
mV
Output Offset Voltage Drift
200
100
500
300
V/
C
DYNAMICS
Small Signal BW, (V
OUT
= 0.1 rms)
1
1
1
1
MHz
1% Amplitude Error (C
LOAD
= 1000 pF)
50
50
50
50
kHz
Slew Rate (V
OUT
20 p-p)
20
20
20
20
V/
s
Settling Time (to 1%,
V
OUT
= 20 V)
2
2
2
2
s
NOISE
Noise Spectral-Density SF = 10 V
0.8
0.8
0.8
0.8
V/
Hz
SF = 3 V
4
0.4
0.4
0.4
0.4
V/
Hz
Wideband Noise A = 10 Hz to 5 MHz
1.0
1 .0
1.0
1.0
mV rms
P = 10 Hz to 10 kHz
90
90
90
90
V/rms
OUTPUT
Output Voltage Swing
11
11
11
11
V
Output Impedance (f
1 kHz)
0.1
0.1
0.1
0.1
Output Short Circuit Current
(R
L
= 0, T
A
= Min to Max)
30
30
30
30
mA
Amplifier Open Loop Gain (f = 50 Hz)
70
70
70
70
dB
INPUT AMPLIFIERS (X, Y and Z)
5
Signal Voltage Range (Diff. or CM
10
10
10
10
V
Operating Diff.)
12
12
12
12
V
Offset Voltage X, Y
5
20
2
10
5
20
2
10
mV
Offset Voltage Drift X, Y
100
50
100
150
V/
C
Offset Voltage Z
5
30
2
15
5
30
2
15
mV
Offset Voltage Drift Z
200
100
500
300
V/
C
CMRR
60
80
70
90
60
80
70
90
dB
Bias Current
0.8
2.0
0.8
2.0
0.8
2.0
0.8
2.0
A
Offset Current
0.1
0. I
0.1
0.1
A
Differential Resistance
10
10
1 0
10
M
DIVIDER PERFORMANCE
Transfer Function (X
1
> X
2
)
10V
( Z
2
-
Z
1
)
( X
1
-
X
2
)
+
Y
1
10V
( Z
2
-
Z
1
)
( X
1
-
X
2
)
+
Y
1
10V
( Z
2
-
Z
1
)
( X
1
-
X
2
)
+
Y
1
10V
( Z
2
-
Z
1
)
( X
1
-
X
2
)
+
Y
1
Total Error
1
(X = 10 V, 10 V
Z
+10 V)
0.75
0.35
0.75
0.35
%
(X = 1 V, 1 V
Z
+1 V)
2.0
1.0
2.0
1.0
%
(0.1 V
X
10 V, 10 V
Z
10 V)
2.5
1.0
2.5
1.0
%
SQUARER PERFORMANCE
Transfer Function
( X
1
-
X
2
)
2
10V
+
Z
2
( X
1
-
X
2
)
2
10V
+
Z
2
( X
1
-
X
2
)
2
10V
+
Z
2
( X
1
-
X
2
)
2
10V
+
Z
2
Total Error (10 V
X
10 V)
0.6
0.3
0.6
0.3
%
S
QUARE-ROOTER PERFORMANCE
Transfer Function, (Z
1
Z
2
)
10V ( Z
2
-
Z
1
)
+
X
2
10V ( Z
2
-
Z
1
)
+
X
2
10V ( Z
2
-
Z
1
)
+
X
2
10V ( Z
2
-
Z
1
)
+
X
2
Total Error
1
(1 V
Z
10 V)
1.0
0.5
1.0
0.5
%
3
REV. A
AD632
AD632A
AD632B
AD632S
AD632T
Model
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Units
POWER SUPPLY SPECIFICATIONS
Supply Voltage
Rated Performance
15
15
15
15
V
Operating
8
18
8
18
8
22
8
22
V
Supply Current
Quiescent
4
6
4
6
4
6
4
6
mA
NOTES
1
Figures given are percent of full-scale,
l0 V (i.e., 0.01% = 1 mV).
2
May be reduced to 3 V using external resistor between V
S
and SF.
3
Irreducible component due to nonlinearity: excludes effect of offsets.
4
Using external resistor adjusted to give SF = 3 V.
5
See functional block diagram for definition of sections.
All min and max specifications are guaranteed.
Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels.
Specifications subject to change without notice.
CHIP DIMENSIONS AND PAD LAYOUT
Dimensions shown in inches and (mm).
(Contact factory for latest dimensions.)
For further information, consult factory.
ORDERING GUIDE
Temperature
Package
Package
Model
Range
Description
Option*
AD632AD
25
C to +85
C
Side Brazed Ceramic DIP
D-14
AD632BD
25
C to +85
C
Side Brazed Ceramic DIP
D-14
AD632AH
25
C to +85
C
Header
H-10A
AD632BH
25
C to +85
C
Header
H-10A
AD632SD
55
C to +125
C
Side Brazed Ceramic DIP
D-14
AD632SD/833B
55
C to +125
C
Side Brazed Ceramic DIP
D-14
AD632TD
55
C to +125
C
Side Brazed Ceramic DIP
D-14
AD632TD/883B
55
C to +125
C
Side Brazed Ceramic DIP
D-14
AD632SH
55
C to +125
C
Header
H-10A
AD632SH/883B
55
C to +125
C
Header
H-10A
AD632TH
55
C to +125
C
Header
H-10A
AD632TH/883B
55
C to +125
C
Header
H-10A
*For outline information see Package Information section.
Thermal Characteristics
Thermal Resistance
JC
= 25
C/W for H-10A
JA
= 150
C/W for H-10A
JC
= 25
C/W for D-14
JA
= 95
C/W for D-14
AD632
4
REV. A
Typical Performance Curves
(typical @ +25 C with V
S
= 15 V)
Figure 1. AC Feedthrough vs. Frequency
Figure 2. Frequency Response as a Multiplier
Figure 3. Frequency Response vs. Divider Denominator
Input Voltage
Figure 4. AD632 Functional Block Diagram
OPERATION AS A MULTIPLIER
Figure 5 shows the basic connection for multiplication. Note
that the circuit will meet all specifications without trimming.
Figure 5. Basic Multiplier Connection
In some cases the user may wish to reduce ac feedthrough to a
minimum (as in a suppressed carrier modulator) by applying an
external trim voltage (
30 mV range required) to the X or Y
input. Curve 1 shows the typical ac feedthrough with this ad-
justment mode. Note that the feedthrough of the Y input is a
factor of 10 lower than that of the X input and should be used
in applications where null suppression is critical.
The Z
2
terminal of the AD632 may be used to sum an addi-
tional signal into the output. In this mode the output amplifier
behaves as a voltage follower with a 1 MHz small signal band-
width and a 20 V/
s slew rate. This terminal should always be
referenced to the ground point of the driven system, particularly
if this is remote. Likewise the differential inputs should be refer-
enced to their respective signal common potentials to realize the
full accuracy of the AD632.
A much lower scaling voltage can be achieved without any re-
duction of input signal range using a feedback attenuator as
shown in Figure 6. In this example, the scale is such that
V
OUT
= XY, so that the circuit can exhibit a maximum gain of
10. This connection results in a reduction of bandwidth to
about 80 kHz without the peaking capacitor C
F
. In addition, the
output offset voltage is increased by a factor of 10 making exter-
nal adjustments necessary in some applications.
AD632
5
REV. A
Feedback attenuation also retains the capability for adding a
signal to the output. Signals may be applied to the Z terminal,
where they are amplified by 10, or to the common ground
connection where they are amplified by 1. Input signals may
also be applied to the lower end of the 2.7 k
resistor, giving a
gain of +9.
Figure 6. Connections for Scale-Factor of Unity
OPERATION AS A DIVIDER
Figure 7 shows the connection required for division. Unlike
earlier products, the AD632 provides differential operation on
both numerator and denominator, allowing the ratio of two
floating variables to be generated. Further flexibility results from
access to a high impedance summing input to Y
1
. As with all
dividers based on the use of a multiplier in a feedback loop, the
bandwidth is proportional to the denominator magnitude, as
shown in Figure 3.
Figure 7. Basic Divider Connection
Without additional trimming, the accuracy of the AD632B is
sufficient to maintain a 1% error over a 10 V to 1 V denomina-
tor range (The AD535 is functionally equivalent to the AD632
and has guaranteed performance in the divider and square-rooter
configurations and is recommended for such applications).
This range may be extended to 100:1 by simply reducing the X
offset with an externally generated trim voltage (range required
is
3.5 mV max) applied to the unused X input. To trim, apply
a ramp of +100 mV to +V at 100 Hz to both X
1
and Z
1
(if X
2
is
used for offset adjustment, otherwise reverse the signal polarity)
and adjust the trim voltage to minimize the variation in the
output.*
Since the output will be near +10 V, it should be ac-coupled for
this adjustment. The increase in noise level and reduction in
bandwidth preclude operation much beyond a ratio of 100 to 1.
*See the AD535 data sheet for more details.
AD632
6
REV. A
OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).
C526a16/97
PRINTED IN U.S.A.
H-Package TO-100
D-Package TO-116