ChipFind - документация

Электронный компонент: APT100GT60JR

Скачать:  PDF   ZIP
052-6274 Rev A 4-2006
APT100GT60JR
TYPICAL PERFORMANCE CURVES
Characteristic / Test Conditions
Collector-Emitter Breakdown Voltage (V
GE
= 0V, I
C
= 4mA)
Gate Threshold Voltage (V
CE
= V
GE
, I
C
= 1.5mA, T
j
= 25C)
Collector-Emitter On Voltage (V
GE
= 15V, I
C
= 100A, T
j
= 25C)
Collector-Emitter On Voltage (V
GE
= 15V, I
C
= 100A, T
j
= 125C)
Collector Cut-off Current (V
CE
= 600V, V
GE
= 0V, T
j
= 25C)
2
Collector Cut-off Current (V
CE
= 600V, V
GE
= 0V, T
j
= 125C)
2
Gate-Emitter Leakage Current (V
GE
= 30V)
Symbol
V
(BR)CES
V
GE(TH)
V
CE(ON)
I
CES
I
GES
Units
Volts
A
nA
MIN
TYP
MAX
600
3
4
5
1.7
2.1
2.5
2.5
25
TBD
300
MAXIMUM RATINGS
All Ratings: T
C
= 25C unless otherwise specified.


































































Symbol
V
CES
V
GE
I
C1
I
C2
I
CM
SSOA
P
D
T
J
,T
STG
T
L
APT100GT60JR
600
30
148
80
300
300A @ 600V
500
-55 to 150
300
UNIT
Volts
Amps
Watts
C
Parameter
Collector-Emitter Voltage
Gate-Emitter Voltage
Continuous Collector Current
@ T
C
= 25C
Continuous Collector Current @ T
C
= 100C
Pulsed Collector Current
1
Switching Safe Operating Area @ T
J
= 150C
Total Power Dissipation
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
The Thunderblot
IGBT
is a new generation of high voltage power IGBTs. Using Non- Punch
Through Technology, the Thunderblot
IGBT
offers superior ruggedness and ultrafast
switching speed.
Low Forward Voltage Drop

High Freq. Switching to 80KHz
Low Tail Current

Ultra Low Leakage Current
RBSOA and SCSOA Rated
Thunderbolt IGBT
G
C
E
SO
T-2
27
ISOTOP
file # E145592
"UL Recognized"
G
E
E
C
600V
APT100GT60JR
STATIC ELECTRICAL CHARACTERISTICS
APT Website - http://www.advancedpower.com
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
052-6274 Rev A 4-2006
APT100GT60JR
DYNAMIC CHARACTERISTICS
Symbol
C
ies
C
oes
C
res
V
GEP
Q
g
Q
ge
Q
gc
SSOA
t
d(on)
t
r
t
d(off)
t
f
E
on1
E
on2
E
off
t
d(on)
t
r
t
d(off)
t
f
E
on1
E
on2
E
off
Test Conditions
Capacitance
V
GE
= 0V, V
CE
= 25V
f = 1 MHz
Gate Charge
V
GE
= 15V
V
CE
= 300V
I
C
= 100A
T
J
= 150C, R
G
= 4.3, V
GE
=
15V, L = 100H,V
CE
= 600V
Inductive Switching (25C)
V
CC
= 400V
V
GE
= 15V
I
C
= 100A
R
G
= 4.3
T
J
= +25C
Inductive Switching (125C)
V
CC
= 400V
V
GE
= 15V
I
C
= 100A
R
G
= 4.3
T
J
= +125C
Characteristic
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Gate-to-Emitter Plateau Voltage
Total Gate Charge
3
Gate-Emitter Charge
Gate-Collector ("Miller") Charge
Switching Safe Operating Area
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy
4
Turn-on Switching Energy (Diode)
5
Turn-off Switching Energy
6
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy
4
4
Turn-on Switching Energy (Diode)
5
5
Turn-off Switching Energy
6
6
MIN
TYP
MAX
5150
475
295
8.0
460
40
210
300
40
75
320
100
3250
3525
3125
40
75
350
100
3275
4650
3750
UNIT
pF
V
nC
A
n
s
J
ns
J
1
Repetitive Rating: Pulse width limited by maximum junction temperature.
2
For Combi devices, I
ces
includes both IGBT and FRED leakages
3
See MIL-STD-750 Method 3471.
4
E
on1
is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5
E
on2
is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6
E
off
is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
APT Reserves the right to change, without notice, the specifications and information contained herein.
THERMAL AND MECHANICAL CHARACTERISTICS
UNIT
C/W
gm
Volts
MIN
TYP
MAX
.25
N/A
29.2
2500
Characteristic
Junction to Case
(IGBT)
Junction to Case
(DIODE)
Package Weight
RMS Voltage
(50-60hHz Sinusoidal Wavefomr Ffrom Terminals to Mounting Base for 1 Min.)
Symbol
R
JC
R
JC
W
T
V
Isolation
052-6274 Rev A 4-2006
APT100GT60JR
TYPICAL PERFORMANCE CURVES
V
GS(TH)
, THRESHOLD VOLTAGE
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (V)
I
C
, COLLECTOR CURRENT (A)
I
C
, COLLECTOR CURRENT (A)
(NORMALIZED)
I
C,
DC COLLECTOR CURRENT(A)
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (V)
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
I
C
, COLLECTOR CURRENT (A)
V
CE
= 480V
V
CE
= 300V
V
CE
= 120V
I
C
= 100A
T
J
= 25C
250s PULSE
TEST<0.5 % DUTY
CYCLE
200
180
160
140
120
100
80
60
40
20
0
200
180
160
140
120
100
80
60
40
20
0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
1.15
1.10
1.05
1.00
0.95
0.90
0.85
0.80
0.75
0.70
300
250
200
150
100
50
0
16
14
12
10
8
6
4
2
0
4
3.5
3
2.5
2
1.5
1
0.5
0
200
180
160
140
120
100
80
60
40
20
0
V
CE
, COLLECTER-TO-EMITTER VOLTAGE (V)
V
CE
, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(V
GE
= 15V)
FIGURE 2, Output Characteristics (T
J
= 125C)
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
GATE CHARGE (nC)
FIGURE 3, Transfer Characteristics
FIGURE 4, Gate Charge
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
T
J
, Junction Temperature (C)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
FIGURE 6, On State Voltage vs Junction Temperature
T
J
, JUNCTION TEMPERATURE (C)
T
C
, CASE TEMPERATURE (C)
FIGURE 7, Threshold Voltage vs. Junction Temperature
FIGURE 8, DC Collector Current vs Case Temperature
T
C
= 125
C
12, 13, &15V
10V
9V
8V
7V
T
J
= 125C
T
J
= 25C
T
J
= -55C
T
J
= 25C.
250s PULSE TEST
<0.5 % DUTY CYCLE
I
C
= 200A
I
C
= 100A
I
C
= 50A
V
GE
= 15V.
250s PULSE TEST
<0.5 % DUTY CYCLE
I
C
= 200A
I
C
= 100A
I
C
= 50A
0 0.5
1
1.5
2
2.5
3
3.5
4
0
5
10
15
20
25
30
0
2
4
6
8
10
0
100
200
300
400
500
6
8
10
12
14
16
0
25
50
75
100
125
150
-50 -25
0
25 50 75 100 125 150
-50 -25
0
25 50 75 100 125 150
T
C
= 25C
T
C
= -55C
V
GE
= 15V
6V
052-6274 Rev A 4-2006
APT100GT60JR
V
GE
=15V,T
J
=125C
V
GE
=15V,T
J
=25C
V
CE
=
400V
R
G
=
4.3
L = 100H
SWITCHING ENERGY LOSSES (J)
E
ON2
, TURN ON ENERGY LOSS (J)
t
r,
RISE TIME (ns)
t
d(ON)
, TURN-ON DELAY TIME (ns)
SWITCHING ENERGY LOSSES (J)
E
OFF
, TURN OFF ENERGY LOSS (J)
t
f,
FALL TIME (ns)
t
d
(OFF)
, TURN-OFF DELAY TIME (ns)
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
FIGURE 10, Turn-Off Delay Time vs Collector Current
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
FIGURE 12, Current Fall Time vs Collector Current
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
FIGURE 14, Turn Off Energy Loss vs Collector Current
R
G
, GATE RESISTANCE (OHMS)
T
J
, JUNCTION TEMPERATURE (C)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
FIGURE 16, Switching Energy Losses vs Junction Temperature
V
CE
= 400V
V
GE
= +15V
R
G
= 4.3
R
G
=
4.3, L
=
100
H, V
CE
=
400V
V
CE
= 400V
T
J
= 25C
,
or 125C
R
G
= 4.3
L = 100H
35
30
25
20
15
10
5
0
250
200
150
100
50
0
16000
14000
12000
10000
8000
6000
4000
2000
0
35000
30000
25000
20000
15000
10000
5000
0
V
GE
= 15V
T
J
=
125C, V
GE
=
15V
T
J
=
25 or 125C,V
GE
=
15V
T
J
=
25C, V
GE
=
15V
T
J
=
125C
T
J
=
25C
V
CE
= 400V
V
GE
= +15V
R
G
= 4.3
T
J
=
125C
T
J
=
25C
0 25 50 75 100 125 150 175 200 225
0 25 50 75 100 125 150 175 200 225
0 25 50 75 100 125 150 175 200 225
0 25 50 75 100 125 150 175 200 225
0 25 50 75 100 125 150 175 200 225
0 25 50 70 100 125 150 175 200 225
0
10
20
30
40
50
0
25
50
75
100
125
R
G
=
4.3, L
=
100
H, V
CE
=
400V
450
400
350
300
250
200
150
100
50
0
200
180
160
140
120
100
80
60
40
20
0
12000
10000
8000
6000
4000
2000
0
16000
14000
12000
10000
8000
6000
4000
2000
0
V
CE
= 400V
V
GE
= +15V
R
G
= 4.3
E
off,
200A
E
on2,
200A
E
off,
100A
E
on2,
100A
E
off,
50A
E
on2,
50A
V
CE
= 400V
V
GE
= +15V
T
J
= 125C
E
off,
200A
E
on2,
200A
E
off,
100A
E
on2,
100A
E
off,
50A
E
on2,
50A
052-6274 Rev A 4-2006
APT100GT60JR
TYPICAL PERFORMANCE CURVES
0.30
0.25
0.20
0.15
0.10
0.05
0
Z
JC
, THERMAL IMPEDANCE (C/W)
0.3
0.9
0.7
SINGLE PULSE
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10
-5
10
-4
10
-3
10
-2
10
-1
1.0
10
10,000
5,000
1,000
500
100
350
300
250
200
150
100
50
0
C, CAPACITANCE (
P
F)
I
C
, COLLECTOR CURRENT (A)
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
V
CE
, COLLECTOR TO EMITTER VOLTAGE
Figure 17, Capacitance vs Collector-To-Emitter Voltage
Figure 18,Minimim Switching Safe Operating Area
0
10
20
30
40
50
0
100 200 300 400 500 600 700
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
10 20 30 40 50 60 70 80 90 100
F
MAX
, OPERATING FREQUENCY (kHz)
I
C
, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
100
50
10
5
1
C
0es
C
res
0.5
0.1
0.05
F
max
=
min (f
max
, f
max2
)
0.05
f
max1
=
t
d(on)
+ t
r
+ t
d(off)
+ t
f
P
diss
- P
cond
E
on2
+ E
off
f
max2
=
P
diss
=
T
J
- T
C
R
JC
C
ies
T
J
= 125
C
D = 50 %
V
CE
= 400V
R
G
= 4.3
Peak TJ = PDM x ZJC + TC
Duty Factor D =
t1
/
t2
t2
t1
P
DM
Note:
T
C
= 75
C
T
C
= 100
C
0.0587
0.132
0.0587
0.0120
0.420
4.48
Dissipated Power
(Watts)
T
J
(C)
T
C
(C)
Z
EXT
are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
Z
E
X
T
052-6274 Rev A 4-2006
APT100GT60JR
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 23, Turn-off Switching Waveforms and Definitions
T
J
= 125C
Collector Current
CollectorVoltage
Gate Voltage
Switching Energy
5%
10%
t
d(on)
90%
10%
t
r
5%
T
J
= 125C
CollectorVoltage
Collector Current
Gate Voltage
Switching Energy
0
90%
t
d(off)
10%
t
f
90%
I
C
A
D.U.T.
V
CE
Figure 21, Inductive Switching Test Circuit
V
CC
APT100DQ60
SOT-227 (ISOTOP
) Package Outline
31.5 (1.240)
31.7 (1.248)
Dimensions in Millimeters and (Inches)
7.8 (.307)
8.2 (.322)
30.1 (1.185)
30.3 (1.193)
38.0 (1.496)
38.2 (1.504)
14.9 (.587)
15.1 (.594)
11.8 (.463)
12.2 (.480)
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
0.75 (.030)
0.85 (.033)
12.6 (.496)
12.8 (.504)
25.2 (0.992)
25.4 (1.000)
1.95 (.077)
2.14 (.084)
* Emitter
Collector
Gate
*
r = 4.0 (.157)
(2 places)
4.0 (.157)
4.2 (.165)
(2 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
3.3 (.129)
3.6 (.143)
* Emitter
Emitter terminals are shorted
internally. Current handling
capability is equal for either
Source terminal.
APT's products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
ISOTOP
is a Registered Trademark of SGS Thomson.