ChipFind - документация

Электронный компонент: AOB416L

Скачать:  PDF   ZIP
Symbol
V
DS
V
GS
I
DM
I
AR
E
AR
T
J
, T
STG
Symbol
Typ
Max
8.1
12
33
40
R
JL
0.84
1.5
Junction and Storage Temperature Range
-55 to 175
mJ
W
50
W
C
Repetitive avalanche energy L=0.1mH
C
140
Power Dissipation
A
A
I
D
Avalanche Current
C
30
A
200
Continuous Drain
Current
B,G
Maximum
Units
Parameter
T
C
=25C
G
T
C
=100C
B
30
110
78
T
A
=25C
P
DSM
3.1
Power Dissipation
B
T
C
=25C
P
D
100
T
C
=100C
T
A
=70C
2
C/W
Absolute Maximum Ratings T
A
=25C unless otherwise noted
V
V
20
Pulsed Drain Current
Gate-Source Voltage
Drain-Source Voltage
Maximum Junction-to-Ambient
A
Steady-State
Maximum Junction-to-Lead
C
Steady-State
C/W
Thermal Characteristics
Parameter
Units
Maximum Junction-to-Ambient
A
t 10s
R
JA
C/W
AOB416
N-Channel Enhancement Mode Field Effect Transistor
Features
V
DS
(V) = 30V
I
D
= 110A (V
GS
= 10V)
R
DS(ON)
< 4.5m
(V
GS
= 10V) @ 30A
R
DS(ON)
< 6.5m
(V
GS
= 4.5V) @ 30A
General Description
The AOB416 uses advanced trench technology to
provide excellent R
DS(ON)
, shoot-through immunity
and body diode characteristics. This device is ideally
suited for use as a low side switch in CPU core
power conversion.
Standard Product AOB416 is Pb-
free (meets ROHS & Sony 259 specifications).
AOB416L is a Green Product ordering option.
AOB416 and AOB416L are electrically identical.
G
D
S
G D S
TO-263
D2-PAK
Top View
Drain Connected
to Tab
Alpha & Omega Semiconductor, Ltd.
AOB416
Symbol
Min
Typ
Max
Units
BV
DSS
30
V
1
T
J
=55C
5
I
GSS
100
nA
V
GS(th)
1.2
1.8
2.4
V
I
D(ON)
110
A
3.5
4.5
T
J
=125C
5.3
6.5
5.15
6.5
m
g
FS
94
S
V
SD
0.64
1
V
I
S
110
A
C
iss
6060
pF
C
oss
638
pF
C
rss
355
pF
R
g
0.45
Q
g
(10V)
96.4
nC
Q
g
(4.5V)
46.4
nC
Q
gs
13.6
nC
Q
gd
16
nC
t
D(on)
15.5
ns
t
r
28.2
ns
t
D(off)
52.5
ns
t
f
31
ns
t
rr
31.2
ns
Q
rr
19.3
nC
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Gate Drain Charge
V
GS
=0V, V
DS
=15V, f=1MHz
SWITCHING PARAMETERS
Total Gate Charge
Gate Source Charge
Gate resistance
V
GS
=0V, V
DS
=0V, f=1MHz
Total Gate Charge
V
GS
=4.5V, V
DS
=15V, I
D
=30A
Turn-On Rise Time
Turn-Off DelayTime
V
GS
=10V, V
DS
=15V, R
L
=0.5
,
R
GEN
=3
Turn-Off Fall Time
Turn-On DelayTime
m
V
GS
=4.5V, I
D
=30A
I
S
=1A,V
GS
=0V
V
DS
=5V, I
D
=30A
Maximum Body-Diode Continuous Current
Input Capacitance
Output Capacitance
DYNAMIC PARAMETERS
R
DS(ON)
Static Drain-Source On-Resistance
Forward Transconductance
Diode Forward Voltage
I
DSS
A
Gate Threshold Voltage
V
DS
=V
GS
I
D
=250
A
V
DS
=24V, V
GS
=0V
V
DS
=0V, V
GS
= 20V
Zero Gate Voltage Drain Current
Gate-Body leakage current
Electrical Characteristics (T
J
=25C unless otherwise noted)
STATIC PARAMETERS
Parameter
Conditions
Body Diode Reverse Recovery Time
Body Diode Reverse Recovery Charge I
F
=30A, dI/dt=100A/
s
Drain-Source Breakdown Voltage
On state drain current
I
D
=250
A, V
GS
=0V
V
GS
=4.5V, V
DS
=5V
V
GS
=10V, I
D
=30A
Reverse Transfer Capacitance
I
F
=30A, dI/dt=100A/
s
A: The value of R
JA
is measured with the device mounted on 1in
2
FR-4 board with 2oz. Copper, in a still air environment with T
A
=25C. The
Power dissipation P
DSM
is based on steady-state R
JA
and the maximum allowed junction temperature of 150C. The value in any given
application depends on the user's specific board design, and the maximum temperature
of 175C may be used if the PCB or heatsink allows it.
B. The power dissipation P
D
is based on T
J(MAX)
=175C, using junction-to-case thermal resistance, and is more useful in setting the upper
dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package
limit.
C: Repetitive rating, pulse width limited by junction temperature T
J(MAX)
=175C.
D. The R
JA
is the sum of the thermal impedence from junction to case R
JC
and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300
s pulses, duty cycle 0.5% max.
F. These tests are performed with the device mounted on 1 in
2
FR-4 board with 2oz. Copper, in a still air environment with T
A
=25C. The SOA
curve provides a single pulse rating.
G. The maximum current rating is limited by the package current capability.
Rev 4 : June 2005
Alpha & Omega Semiconductor, Ltd.
AOB416
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
0
10
20
30
40
50
60
0
1
2
3
4
5
V
DS
(Volts)
Figure 1: On-Region Characteristics
I
D
(A
)
V
GS
=3V
10V
3.5V
4.5V
0
10
20
30
40
50
60
1
1.5
2
2.5
3
3.5
4
V
GS
(Volts)
Figure 2: Transfer Characteristics
I
D
(A
)
3.0
3.5
4.0
4.5
5.0
5.5
6.0
0
20
40
60
80
100
I
D
(A)
Figure 3: On-Resistance vs. Drain Current and
Gate Voltage
R
DS(
O
N)
(m
)
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
1.0E+02
0.0
0.2
0.4
0.6
0.8
1.0
1.2
V
SD
(Volts)
Figure 6: Body-Diode Characteristics
I
S
(A
)
25C
125C
0.8
1
1.2
1.4
1.6
1.8
0
25
50
75
100
125
150
175
Temperature (C)
Figure 4: On-Resistance vs. Junction
Temperature
N
o
r
m
aliz
ed
O
n
-
R
esist
an
ce
V
GS
=10V
V
GS
=4.5V
2
4
6
8
10
12
2
4
6
8
10
V
GS
(Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
R
DS(
O
N)
(m
)
25C
125C
V
DS
=5V
V
GS
=4.5V
V
GS
=10V
I
D
=30A
25C
125C
I
D
=30A
Alpha & Omega Semiconductor, Ltd.
AOB416
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
0
2
4
6
8
10
0
20
40
60
80
100
Q
g
(nC)
Figure 7: Gate-Charge Characteristics
V
GS
(V
ol
ts
)
0
1000
2000
3000
4000
5000
6000
7000
8000
0
5
10
15
20
25
30
V
DS
(Volts)
Figure 8: Capacitance Characteristics
C
a
p
acit
a
n
ce (
p
F
)
C
iss
0
40
80
120
160
200
0.01
0.1
1
10
100
1000
Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-to-
Ambient (Note F)
Po
w
e
r (
W
)
0.001
0.01
0.1
1
10
0.00001
0.0001
0.001
0.01
0.1
1
10
100
1000
Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
Z
JA
N
o
r
m
aliz
ed
T
r
an
sien
t
T
h
e
r
m
al R
esist
an
ce
C
oss
C
rss
0.1
1
10
100
1000
0.1
1
10
100
V
DS
(Volts)
I
D
(A
mps
)
Figure 9: Maximum Forward Biased Safe
Operating Area (Note F)
100
s
10ms
1ms
0.1s
1s
10s
DC
R
DS(ON)
limited
T
J(Max)
=150C
T
A
=25C
V
DS
=15V
I
D
=30A
Single Pulse
D=T
on
/T
T
J,PK
=T
A
+P
DM
.Z
JA
.R
JA
R
JA
=40C/W
T
on
T
P
D
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
T
J(Max)
=150C
T
A
=25C
Alpha & Omega Semiconductor, Ltd.
AOB416
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
0
20
40
60
80
100
120
0.00001
0.0001
0.001
0.01
Time in avalanche, t
A
(s)
Figure 12: Single Pulse Avalanche capability
I
D
(
A
)
,
P
eak A
valan
ch
e C
u
r
r
en
t
0
20
40
60
80
100
120
0
25
50
75
100
125
150
175
T
CASE
(C)
Figure 13: Power De-rating (Note B)
P
o
we
r
D
i
s
s
i
pa
ti
on (W
)
T
A
=25C
DD
D
A
V
BV
I
L
t
-
=
0
20
40
60
80
100
120
0
25
50
75
100
125
150
175
T
CASE
(C)
Figure 14: Current De-rating (Note B)
C
u
r
r
e
n
t r
a
ti
ng I
D
(A
)
Alpha & Omega Semiconductor, Ltd.