ChipFind - документация

Электронный компонент: BFR360

Скачать:  PDF   ZIP
Jun-16-2003
1
BFR360F
1
2
3
NPN Silicon RF Transistor
Preliminary data
Low voltage/ low current operation
For low noise amplifiers
For Oscillators up to 3.5 GHz and Pout > 10 dBm
Low noise figure: 1.0 dB at 1.8 GHz
ESD: Electrostatic discharge sensitive device, observe handling precaution!
Type
Marking
Pin Configuration
Package
BFR360F
FBs
1 = B
2 = E
3 = C
TSFP-3
Maximum Ratings
Parameter
Symbol
Value
Unit
Collector-emitter voltage
V
CEO
6
V
Collector-emitter voltage
V
CES
15
Collector-base voltage
V
CBO
15
Emitter-base voltage
V
EBO
2
Collector current
I
C
35
mA
Base current
I
B
4
Total power dissipation
1)
T
S
98C
P
tot
210
mW
Junction temperature
T
j
150
C
Ambient temperature
T
A
-65 ... 150
Storage temperature
T
stg
-65 ... 150
Thermal Resistance
Parameter
Symbol
Value
Unit
Junction - soldering point
2)
R
thJS
250
K/W
1TS is measured on the collector lead at the soldering point to the pcb
2For calculation of R
thJA
please refer to Application Note Thermal Resistance
Jun-16-2003
2
BFR360F
Electrical Characteristics at T
A
= 25C, unless otherwise specified
Parameter
Symbol
Values
Unit
min.
typ.
max.
Characteristics
Collector-emitter breakdown voltage
I
C
= 1 mA, I
B
= 0
V
(BR)CEO
6
9
-
V
Collector-emitter cutoff current
V
CE
= 15 V, V
BE
= 0
I
CES
-
-
10
A
Collector-base cutoff current
V
CB
= 5 V, I
E
= 0
I
CBO
-
-
100
nA
Emitter-base cutoff current
V
EB
= 1 V, I
C
= 0
I
EBO
-
-
1
A
DC current gain-
I
C
= 15 mA, V
CE
= 3 V
h
FE
60
130
200
-
Jun-16-2003
3
BFR360F
Electrical Characteristics at T
A
= 25C, unless otherwise specified
Parameter
Symbol
Values
Unit
min.
typ.
max.
AC Characteristics (verified by random sampling)
Transition frequency
I
C
= 15 mA, V
CE
= 3 V, f = 1 GHz
f
T
11
14
-
GHz
Collector-base capacitance
V
CB
= 5 V, f = 1 MHz, emitter grounded
C
cb
-
0.32
0.5
pF
Collector emitter capacitance
V
CE
= 5 V, f = 1 MHz, base grounded
C
ce
-
0.2
-
Emitter-base capacitance
V
EB
= 0.5 V, f = 1 MHz, collector grounded
C
eb
-
0.4
-
Noise figure
I
C
= 3 mA, V
CE
= 3 V, Z
S
= Z
Sopt
,
f = 1.8 GHz
F
min
-
1
-
dB
Power gain, maximum available
1)
I
C
= 15 mA, V
CE
= 3 V, Z
S
= Z
Sopt
,
Z
L
= Z
Lopt
, f = 1.8 GHz
I
C
= 15 mA, V
CE
= 3 V, Z
S
= Z
Sopt
,
Z
L
= Z
Lopt
, f = 3 GHz
G
ma

-
-

15.5
11

-
-
Transducer gain
I
C
= 15 mA, V
CE
= 3 V, Z
S
= Z
L
= 50
,
f = 1.8 GHz
I
C
= 15 mA, V
CE
= 3 V, Z
S
= Z
L
= 50
,
f = 3 GHz
|S
21e
|
2

-
-

13
9

-
-
dB
Third order intercept point at output
2)
V
CE
= 3 V, I
C
= 15 mA, f = 1.8 GHz,
Z
S
= Z
L
= 50
IP
3
-
24
-
dBm
1dB Compression point at output
I
C
= 15 mA, V
CE
= 3 V, Z
S
= Z
L
= 50 ,
f = 1.8 GHz
P
-1dB
-
9
-
1G
ma
= |S
21e
/ S
12e
| (k-(k-1)
1/2
)
2IP3 value depends on termination of all intermodulation frequency components.
Termination used for this measurement is 50
from 0.1 MHz to 6 GHz
Jun-16-2003
4
BFR360F
SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax):
Transitor Chip Data:
NF =
1
-
ISE =
150
fA
NR =
1
-
ISC =
20
fA
IRB =
75
A
RC =
0.35
MJE =
0.5
-
VTF =
0.198
V
CJC =
473
fF
XCJC =
0.129
-
VJS =
0.75
V
EG =
1.11
eV
NK =
0.5
K
IS =
0.0689
fA
VAF =
20
V
NE =
2.4
-
VAR =
60
V
NC =
1.4
-
RBM =
7.31
CJE =
400
fF
TF =
9.219
ps
ITF =
1.336
mA
VJC =
0.864
V
TR =
1.92
ns
MJS =
0
-
XTI =
0
-
AF =
1
-
BF =
147
-
IKF =
77.28
mA
BR =
6
-
IKR =
0.3
A
RB =
0.1
RE =
78.2
m
VJE =
1.3
V
XTF =
0.115
-
PTF =
0
deg
MJC =
0.486
-
CJS =
0
fF
XTB =
0.5
K
FC =
0.954
KF =
1E-14
-
All parameters are ready to use, no scalling is necessary.
Package Equivalent Circuit:
L
1
=
0.556
nH
L
2
=
0.657
nH
L
3
=
0.381
nH
C
1
=
43
fF
C
2
=
123
fF
C
3
=
66
fF
C
4
=
10
fF
C
5
=
36
fF
C
6
=
47
fF
EHA07524
Transistor
C'
L
E'
B'
3
4
C
C
Chip
E
L
1
5
C
B
2
L
C
6
C
1
C
2
C
3
For examples and ready to use parameters
please contact your local Infineon Technologies
distributor or sales office to obtain a Infineon
Technologies CD-ROM or see Internet:
http//www.infineon.com/silicondiscretes
Valid up to 6GHz
Jun-16-2003
5
BFR360F
Total power dissipation
P
tot
=
(T
S
)
0
15
30
45
60
75
90 105 120 C
150
T
S
0
30
60
90
120
150
180
mW
240
P
tot
Permissible Pulse Load
R
thJS
=
(t
p
)
10
-7
10
-6
10
-5
10
-4
10
-3
10
-2
10
0
s
t
p
1
10
2
10
3
10
K/W
R
thJS
0.5
0.2
0.1
0.05
0.02
0.01
0.005
D=0
Permissible Pulse Load
P
totmax
/P
totDC
=
(t
p
)
10
-7
10
-6
10
-5
10
-4
10
-3
10
-2
10
0
s
t
p
0
10
1
10
P
totmax
/
P
totDC
D = 0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
Collector-base capacitance
C
cb
=
(V
CB
)
f
= 1MHz
0
2
4
6
8
10
12
V
16
V
CB
0
0.1
0.2
0.3
0.4
0.5
0.6
pF
0.8
C
cb
Jun-16-2003
6
BFR360F
Third order Intercept Point
IP
3
=
(I
C
)
(Output, Z
S
=Z
L
=50
)
V
CE
= parameter, f = 1.8GHz
0
5
10
15
20
25
30
mA
40
I
C
-5
0
5
10
15
20
dBm
30
IP
3
6V
4V
3V
2V
1V
Transition frequency f
T
=
(I
C
)
f
= 1GHz
V
CE
= parameter
0
5
10
15
20
25
30
mA
40
I
C
0
2
4
6
8
10
12
14
GHz
17
f
T
5V
3V
2V
1V
0.7V
Power gain G
ma
, G
ms
=
(I
C
)
f
= 0.9GHz
V
CE
= parameter
0
5
10
15
20
25
30
mA
40
I
C
12
13
14
15
16
17
18
19
20
21
22
dB
24
G
5V
3V
2V
1V
0.7V
Power gain
G
ma
, G
ms
=
(I
C
)
f
= 1.8GHz
V
CE
= parameter
0
5
10
15
20
25
30
mA
40
I
C
8
10
12
14
dB
18
G
5V
3V
2V
1V
0.7V
Jun-16-2003
7
BFR360F
Power Gain
G
ma
, G
ms
=
(f)
V
CE
= parameter
0
0.5
1
1.5
2
2.5
3
3.5 GHz
4.5
f
4
9
14
19
24
29
34
39
dB
49
G
Ic = 15mA
5V
2V
1V
0.7V
Insertion Power Gain
|S
21
| =
(f)
V
CE
= parameter
0
0.5
1
1.5
2
2.5
3
3.5 GHz
4.5
f
0
4
8
12
16
20
24
28
dB
36
G
Ic = 15mA
5V
2V
1V
0.7V
Power Gain
G
ma
, G
ms
=
(V
CE
):
|S
21
| =
(V
CE
): - - - -
f
= parameter
0
1
2
3
4
5
V
7
V
CE
8
10
12
14
16
18
20
dB
24
G
0.9GHz
1.8GHz
0.9GHz
1.8GHz
Ic = 15mA
Power gain
G
ma
, G
ms
=
(I
C
)
V
CE
= 3V
f
= parameter
0
5
10
15
20
25
30
35 mA
45
I
C
7
8
9
10
11
12
13
14
15
16
17
18
19
dB
22
G
0.9GHz
1.8GHz
2.4GHz
3GHz
4GHz
Jun-16-2003
8
BFR360F
Noise figure
NF =
(I
C
)
V
CE
= 3V, f = 1,8 GHz
0
5
10
15
20
25
30
35 mA
45
I
C
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
2.2
2.4
dB
3
F
F50
NFmin
Source impedance
for min.
noise figure vs. frequency
V
CE
= 3 V
100
+j10
-j10
50
+j25
-j25
25
+j50
-j50
10
+j100
-j100
0
0.9GHz
1.8GHz
2.4GHz
3GHz
4GHz
3mA
15mA