ChipFind - документация

Электронный компонент: A80960JD-66

Скачать:  PDF   ZIP

Document Outline

80960JA/JF/JD/JT 3.3 V EMBEDDED
32-BIT MICROPROCESSOR
Advance Information Datasheet
Product Features
s
Pin/Code Compatible with all 80960Jx
Processors
s
High-Performance Embedded Architecture
-- One Instruction/Clock Execution
-- Core Clock Rate is:
80960JA/JF 1x the Bus Clock
80960JD 2x the Bus Clock
80960JT 3x the Bus Clock
-- Load/Store Programming Model
-- Sixteen 32-Bit Global Registers
-- Sixteen 32-Bit Local Registers (8 sets)
-- Nine Addressing Modes
-- User/Supervisor Protection Model
s
Two-Way Set Associative Instruction
Cache
-- 80960JA - 2 Kbyte
-- 80960JF/JD - 4 Kbyte
-- 80960JT - 16 Kbyte
-- Programmable Cache-Locking
Mechanism
s
Direct Mapped Data Cache
-- 80960JA - 1 Kbyte
-- 80960JF/JD - 2 Kbyte
-- 80960JT - 4 Kbyte
-- Write Through Operation
s
On-Chip Stack Frame Cache
-- Seven Register Sets Can Be Saved
-- Automatic Allocation on Call/Return
-- 0-7 Frames Reserved for High-Priority
Interrupts
s
On-Chip Data RAM
-- 1 Kbyte Critical Variable Storage
-- Single-Cycle Access
s
3.3 V Supply Voltage
-- 5 V Tolerant Inputs
-- TTL Compatible Outputs
s
High Bandwidth Burst Bus
-- 32-Bit Multiplexed Address/Data
-- Programmable Memory Configuration
-- Selectable 8-, 16-, 32-Bit Bus Widths
-- Supports Unaligned Accesses
-- Big or Little Endian Byte Ordering
s
High-Speed Interrupt Controller
-- 31 Programmable Priorities
-- Eight Maskable Pins plus NMI
-- Up to 240 Vectors in Expanded Mode
s
Two On-Chip Timers
-- Independent 32-Bit Counting
-- Clock Prescaling by 1, 2, 4 or 8
-- lnternal Interrupt Sources
s
Halt Mode for Low Power
s
IEEE 1149.1 (JTAG) Boundary Scan
Compatibility
s
Packages
-- 132-Lead Pin Grid Array (PGA)
-- 132-Lead Plastic Quad Flat Pack
(PQFP)
-- 196-Ball Mini Plastic Ball Grid Array
(MPBGA)
Order Number: 273159-001
March, 1998
Notice: This document contains information on products in the sampling and initial production
phases of development. The specifications are subject to change without notice. Verify with your
local Intel sales office that you have the latest datasheet before finalizing a design.
80960JA/JF/JD/JT 3.3 V Microprocessor
Advance Information Datasheet
Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.
Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
The
80960JA/JF/JD/JT 3.3 V Microprocessor may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-
548-4725 or by visiting Intel's website at http://www.intel.com.
Copyright Intel Corporation, 1998
*Third-party brands and names are the property of their respective owners.
Advance Information Datasheet
3
80960JA/JF/JD/JT 3.3 V Microprocessor
Contents
1.0
Introduction
.................................................................................................................. 7
2.0
80960Jx Overview
...................................................................................................... 7
2.1
80960 Processor Core .......................................................................................... 9
2.2
Burst Bus............................................................................................................. 10
2.3
Timer Unit............................................................................................................ 10
2.4
Priority Interrupt Controller .................................................................................. 10
2.5
Instruction Set Summary ..................................................................................... 11
2.6
Faults and Debugging ......................................................................................... 11
2.7
Low Power Operation.......................................................................................... 11
2.8
Test Features ...................................................................................................... 12
2.9
Memory-Mapped Control Registers .................................................................... 12
2.10
Data Types and Memory Addressing Modes ...................................................... 12
3.0
Package Information
............................................................................................... 14
3.1
Pin Descriptions .................................................................................................. 16
3.1.1
Functional Pin Definitions....................................................................... 16
3.1.2
80960Jx 132-Lead PGA Pinout.............................................................. 22
3.1.3
80960Jx 132-Lead PQFP Pinout............................................................ 26
3.1.4
80960Jx 196-Ball MPBGA Pinout .......................................................... 29
3.2
Package Thermal Specifications ......................................................................... 34
3.3
Thermal Management Accessories..................................................................... 38
3.3.1
Heatsinks................................................................................................ 38
4.0
Electrical Specifications
........................................................................................ 39
4.1
Absolute Maximum Ratings................................................................................. 39
4.2
Operating Conditions........................................................................................... 39
4.3
Connection Recommendations ........................................................................... 40
4.4
VCC5 Pin Requirements (VDIFF) ....................................................................... 40
4.5
VCCPLL Pin Requirements................................................................................. 41
4.6
DC Specifications ................................................................................................ 42
4.7
AC Specifications ................................................................................................ 44
4.7.1
AC Test Conditions and Derating Curves .............................................. 47
4.7.2
AC Timing Waveforms ........................................................................... 52
5.0
Bus Functional Waveforms
.................................................................................. 58
5.1
Basic Bus States ................................................................................................. 68
5.2
Boundary-Scan Register ..................................................................................... 69
6.0
Device Identification
............................................................................................... 74
7.0
Revision History
....................................................................................................... 77
80960JA/JF/JD/JT 3.3 V Microprocessor
4
Advance Information Datasheet
Figures
1
80960Jx Microprocessor Package Options...........................................................7
2
80960Jx Block Diagram ........................................................................................9
3
132-Lead Pin Grid Array Bottom View - Pins Facing Up.....................................22
4
132-Lead Pin Grid Array Top View - Pins Facing Down .....................................23
5
132-Lead PQFP - Top View ................................................................................26
6
196-Ball Mini Plastic Ball Grid Array Bottom View - Balls Facing Up ..................29
7
196-Ball Mini Plastic Ball Grid Array Top View - Balls Facing Down ..................30
8
VCC5 Current-Limiting Resistor ..........................................................................40
9
VCCPLL Lowpass Filter ......................................................................................41
10
AC Test Load ......................................................................................................47
11
Output Delay or Hold vs. Load Capacitance .......................................................48
12
T
LX
vs. AD Bus Load Capacitance......................................................................48
13
80960JA/JF I
CC
Active (Power Supply) vs. Frequency .......................................49
14
80960JA/JF I
CC
Active (Thermal) vs. Frequency ................................................49
15
80960JD I
CC
Active (Power Supply) vs. Frequency............................................50
16
80960JD I
CC
Active (Thermal) vs. Frequency.....................................................50
17
80960JT I
CC
Active (Power Supply) vs. Frequency ...........................................51
18
80960JT I
CC
Active (Thermal) vs. Frequency .....................................................51
19
CLKIN Waveform ................................................................................................52
20
T
OV1
Output Delay Waveform .............................................................................52
21
T
OF
Output Float Waveform ................................................................................53
22
T
IS1
and T
IH1
Input Setup and Hold Waveform ...................................................53
23
T
IS2
and T
IH2
Input Setup and Hold Waveform ...................................................53
24
T
IS3
and T
IH3
Input Setup and Hold Waveform ...................................................54
25
T
IS4
and T
IH4
Input Setup and Hold Waveform ...................................................54
26
T
LX
, T
LXL
and T
LXA
Relative Timings Waveform.................................................55
27
DT/R and DEN Timings Waveform .....................................................................55
28
TCK Waveform....................................................................................................56
29
T
BSIS1
and T
BSIH1
Input Setup and Hold Waveforms .........................................56
30
T
BSOV1
and T
BSOF1
Output Delay and Output Float Waveform..........................56
31
T
BSOV2
and T
BSOF2
Output Delay and Output Float Waveform..........................57
32
T
BSIS2
and T
BSIH2
Input Setup and Hold Waveform ...........................................57
33
Non-Burst Read and Write Transactions Without Wait States, 32-Bit Bus .........58
34
Burst Read and Write Transactions Without Wait States, 32-Bit Bus .................59
35
Burst Write Transactions With 2,1,1,1 Wait States, 32-Bit Bus...........................60
36
Burst Read and Write Transactions Without Wait States, 8-Bit Bus ...................61
37
Burst Read and Write Transactions With 1, 0 Wait States and
Extra Tr State on Read, 16-Bit Bus .....................................................................62
38
Double Word Read Bus Request, Misaligned One Byte From
Quad Word Boundary, 32-Bit Bus, Little Endian .................................................63
39
HOLD/HOLDA Waveform For Bus Arbitration ....................................................64
40
Cold Reset Waveform .........................................................................................65
41
Warm Reset Waveform .......................................................................................66
42
Entering the ONCE State ....................................................................................67
43
Bus States with Arbitration ..................................................................................68
44
Summary of Aligned and Unaligned Accesses (32-Bit Bus) ...............................72
45
Summary of Aligned and Unaligned Accesses (32-Bit Bus) (Continued) ...........73
46
80960JT Device Identification Register...............................................................74
47
80960JD Device Identification Register ..............................................................75
48
80960JA/JF Device Identification Register .........................................................76
Advance Information Datasheet
5
80960JA/JF/JD/JT 3.3 V Microprocessor
Tables
1
80960Jx Instruction Set....................................................................................... 13
2
Pin Description Nomenclature............................................................................. 16
3
Pin Description -- External Bus Signals ............................................................. 17
4
Pin Description -- Processor Control Signals, Test Signals and Power ............. 20
5
Pin Description -- Interrupt Unit Signals ............................................................. 21
6
132-Lead PGA Pinout -- In Signal Order............................................................ 24
7
132-Lead PGA Pinout -- In Pin Order ................................................................ 25
8
132-Lead PQFP Pinout -- In Signal Order ......................................................... 27
9
132-Lead PQFP Pinout -- In Pin Order .............................................................. 28
10
196-Ball MPBGA Pinout -- In Signal Order ........................................................ 31
11
196-Ball MPBGA Pinout -- In Pin Order ............................................................. 33
12
132-Lead PGA Package Thermal Characteristics............................................... 35
13
196-Ball MPBGA Package Thermal Characteristics ........................................... 35
14
132-Lead PQFP Package Thermal Characteristics ............................................ 36
15
Maximum T
A
at Various Airflows in C (80960JT) ............................................... 36
16
Maximum T
A
at Various Airflows in C (80960JD) .............................................. 37
17
Maximum T
A
at Various Airflows in C (80960JA/JF).......................................... 37
18
Absolute Maximum Ratings................................................................................. 39
19
80960Jx Operating Conditions ............................................................................ 39
20
VDIFF Parameters .............................................................................................. 40
21
80960Jx DC Characteristics................................................................................ 42
22
80960Jx I
CC
Characteristics................................................................................ 42
23
80960Jx AC Characteristics ................................................................................ 44
24
Note Definitions for Table 23, 80960Jx AC Characteristics (pg. 44) ................... 47
25
Boundary-Scan Register Bit Order...................................................................... 69
26
Natural Boundaries for Load and Store Accesses .............................................. 70
27
Summary of Byte Load and Store Accesses....................................................... 70
28
Summary of Short Word Load and Store Accesses............................................ 70
29
Summary of n-Word Load and Store Accesses (n = 1, 2, 3, 4)........................... 71
30
80960Jx Device Type and Stepping Reference .................................................. 74
31
Fields of 80960JT Device ID ............................................................................... 75
32
80960JT Device ID Model Types ........................................................................ 75
33
Fields of 80960JD Device ID............................................................................... 76
34
80960JD Device ID Model Types........................................................................ 76
35
Fields of 80960JA/JF Device ID .......................................................................... 77
36
80960JA/JF Device ID Model Types ................................................................... 77
37
Data Sheet Revision History ............................................................................... 77
Advance Information Datasheet
7
80960JA/JF/JD/JT 3.3 V Microprocessor
1.0
Introduction
This document contains information for the 80960Jx microprocessor, including electrical
characteristics and package pinout information. Detailed functional descriptions -- other than
parametric performance -- are published in the i960
Jx Microprocessor Developer's Manual
(272483).
Throughout this data sheet, references to "80960Jx" indicate features that apply to all of the
following:
80960JA -- 3.3 V (5 V Tolerant), 2 Kbyte instruction cache, 1 Kbyte data cache
80960JF -- 3.3 V (5 V Tolerant), 4 Kbyte instruction cache, 2 Kbyte data cache
80960JD -- 3.3 V (5 V Tolerant), 4 Kbyte instruction cache, 2 Kbyte data cache and clock
doubling
80960JT -- 3.3 V (5 V Tolerant), 16 Kbyte instruction cache, 4 Kbyte data cache and clock
tripling
2.0
80960Jx Overview
The 80960Jx offers high performance to cost-sensitive 32-bit embedded applications. The 80960Jx
is object code compatible with the 80960 Core Architecture and is capable of sustained execution
at the rate of one instruction per clock. This processor's features include generous instruction
cache, data cache and data RAM. It also boasts a fast interrupt mechanism and dual-programmable
timer units.
The 80960Jx's clock multiplication operates the processor core at two or three times the bus clock
rate to improve execution performance without increasing the complexity of board designs.
Memory subsystems for cost-sensitive embedded applications often impose substantial wait state
penalties. The 80960Jx integrates considerable storage resources on-chip to decouple CPU
execution from the external bus.
Figure 1.
80960Jx Microprocessor Package Options
i960
i
M
i
19xx
M
19xx
A80960JX
NG80960JX
XXXXXXXXSS
XXXXXXXX SS
i
M
19xx
GD80960JX
XXXXXXXSS
132-Pin PGA
132-Pin PQFP
136-Ball MPBGA
80960JA/JF/JD/JT 3.3 V Microprocessor
8
Advance Information Datasheet
The 80960Jx rapidly allocates and deallocates local register sets during context switches. The
processor needs to flush a register set to the stack only when it saves more than seven sets to its
local register cache.
A 32-bit multiplexed burst bus provides a high-speed interface to system memory and I/O. A full
complement of control signals simplifies the connection of the 80960Jx to external components.
The user programs physical and logical memory attributes through memory-mapped control
registers (MMRs) -- an extension not found on the i960 Kx, Sx or Cx processors. Physical and
logical configuration registers enable the processor to operate with all combinations of bus width
and data object alignment. The processor supports a homogeneous byte ordering model.
This processor integrates two important peripherals: a timer unit, and an interrupt controller. These
and other hardware resources are programmed through memory-mapped control registers, an
extension to the familiar 80960 architecture.
The timer unit (TU) offers two independent 32-bit timers for use as real-time system clocks and
general-purpose system timing. These operate in either single-shot or auto-reload mode and can
generate interrupts.
The interrupt controller unit (ICU) provides a flexible, low-latency means for requesting interrupts.
The ICU provides full programmability of up to 240 interrupt sources into 31 priority levels. The
ICU takes advantage of a cached priority table and optional routine caching to minimize interrupt
latency. Clock doubling reduces interrupt latency by 40% compared to the 80960JA/JF, and clock
tripling reduces interrupt latency by 20% compared to the 80960JD. Local registers may be
dedicated to high-priority interrupts to further reduce latency. Acting independently from the core,
the ICU compares the priorities of posted interrupts with the current process priority, off-loading
this task from the core. The ICU also supports the integrated timer interrupts.
The 80960Jx features a Halt mode designed to support applications where low power consumption
is critical. The halt instruction shuts down instruction execution, resulting in a power savings of up
to 90 percent.
The 80960Jx's testability features, including ONCE (On-Circuit Emulation) mode and Boundary
Scan (JTAG), provide a powerful environment for design debug and fault diagnosis.
The Solutions960
program features a wide variety of development tools which support the i960
processor family. Many of these tools are developed by partner companies; some are developed by
Intel, such as profile-driven optimizing compilers. For more information on these products, contact
your local Intel representative.
Advance Information Datasheet
9
80960JA/JF/JD/JT 3.3 V Microprocessor
2.1
80960 Processor Core
The 80960Jx family is a scalar implementation of the 80960 Core Architecture. Intel designed this
processor core as a very high performance device that is also cost-effective. Factors that contribute
to the core's performance include:
Core operates at the bus speed with the 80960JA/JF
Core operates at two or three times the bus speed with the 80960JD and 80960JT respectively
Single-clock execution of most instructions
Independent Multiply/Divide Unit
Efficient instruction pipeline minimizes pipeline break latency
Register and resource scoreboarding allow overlapped instruction execution
128-bit register bus speeds local register caching
Two-way set associative, integrated instruction cache
Direct-mapped, integrated data cache
1 Kbyte integrated data RAM delivers zero wait state program data
Figure 2.
80960Jx Block Diagram
Programmable
Interrupt Controller
Control
Address/
Instruction Sequencer
Physical Region
Configuration
Interrupt
Port
1K Data RAM
Memory
Interface
Execution
Multiply
Unit
Divide
Unit
Memory-Mapped
Register Interface
Data Bus
Global / Local
Register File
SRC2 DEST
SRC1
address
Control
effective
Constants
Generation
Unit
Address
32-bit Address
32-bit Data
Bus Request
Queues
and
Two 32-Bit
Timers
8-Set
Local Register Cache
SRC1
SRC2
DEST
PLL, Clocks,
Power Mgmt
Boundary Scan
Controller
TAP
5
CLKIN
S
RC1
S
RC2
DE
ST
SRC1
DES
T
9
32
32-bit buses
address / data
21
Instruction Cache
80960JA - 2K
80960JF/JD - 4K
80960JT - 16K
Two-Way Set Associative
Direct Mapped
Data Cache
80960JA - 1K
80960JF/JD - 2K
80960JT - 4K
128
3 Independent 32-Bit SRC1, SRC2, and DEST Buses
Bus
Control Unit
80960JA/JF/JD/JT 3.3 V Microprocessor
10
Advance Information Datasheet
2.2
Burst Bus
A 32-bit high-performance Bus Controller Unit (BCU) interfaces the 80960Jx to external memory
and peripherals. The BCU fetches instructions and transfers data at the rate of up to four 32-bit
words per six clock cycles. The external address/data bus is multiplexed.
Users may configure the 80960Jx's bus controller to match an application's fundamental memory
organization. Physical bus width is register-programmed for up to eight regions. Byte ordering and
data caching are programmed through a group of logical memory templates and a defaults register.
The BCU's features include:
Multiplexed external bus to minimize pin count
32-, 16- and 8-bit bus widths to simplify I/O interfaces
External ready control for address-to-data, data-to-data and data-to-next-address wait state types
Support for big or little endian byte ordering to facilitate the porting of existing program code
Unaligned bus accesses performed transparently
Three-deep load/store queue to decouple the bus from the core
Upon reset, the 80960Jx conducts an internal self-test. Then, before executing its first instruction, it
performs an external bus confidence test by performing a checksum on the first words of the
initialization boot record (IBR).
The user may examine the contents of the caches by executing special cache control instructions.
2.3
Timer Unit
The timer unit (TU) contains two independent 32-bit timers that are capable of counting at several
clock rates and generating interrupts. Each is programmed by use of the TU registers. These
memory-mapped registers are addressable on 32-bit boundaries. The timers have a single-shot
mode and auto-reload capabilities for continuous operation. Each timer has an independent
interrupt request to the 80960Jx's interrupt controller. The TU can generate a fault when
unauthorized writes from user mode are detected. Clock prescaling is supported.
2.4
Priority Interrupt Controller
A programmable interrupt controller manages up to 240 external sources through an 8-bit external
interrupt port. Alternatively, the interrupt inputs may be configured for individual edge- or
level-triggered inputs. The interrupt unit (IU) also accepts interrupts from the two on-chip timer
channels and a single Non-Maskable Interrupt (NMI) pin. Interrupts are serviced according to their
priority levels relative to the current process priority.
Low interrupt latency is critical to many embedded applications. As part of its highly flexible
interrupt mechanism, the 80960Jx exploits several techniques to minimize latency:
Interrupt vectors and interrupt handler routines can be reserved on-chip
Register frames for high-priority interrupt handlers can be cached on-chip
The interrupt stack can be placed in cacheable memory space
Interrupt microcode executes at two or three times the bus frequency for the 80960JD and
80960JT respectively
Advance Information Datasheet
11
80960JA/JF/JD/JT 3.3 V Microprocessor
2.5
Instruction Set Summary
The 80960Jx adds several new instructions to the i960 core architecture. The new instructions are:
Conditional Move
Conditional Add
Conditional Subtract
Byte Swap
Halt
Cache Control
Interrupt Control
Table 1 identifies the instructions that the 80960Jx supports. Refer to the i960
Jx Microprocessor
Developer's Manual (272483) for a detailed description of each instruction.
2.6
Faults and Debugging
The 80960Jx employs a comprehensive fault model. The processor responds to faults by making
implicit calls to a fault handling routine. Specific information collected for each fault allows the
fault handler to diagnose exceptions and recover appropriately.
The processor also has built-in debug capabilities. In software, the 80960Jx may be configured to
detect as many as seven different trace event types. Alternatively, mark and fmark instructions
can generate trace events explicitly in the instruction stream. Hardware breakpoint registers are
also available to trap on execution and data addresses.
2.7
Low Power Operation
Intel fabricates the 80960Jx using an advanced sub-micron manufacturing process. The processor's
sub-micron topology provides the circuit density for optimal cache size and high operating speeds
while dissipating modest power. The processor also uses dynamic power management to turn off
clocks to unused circuits.
Users may program the 80960Jx to enter Halt mode for maximum power savings. In Halt mode,
the processor core stops completely while the integrated peripherals continue to function, reducing
overall power requirements up to 90 percent. Processor execution resumes from internally or
externally generated interrupts.
80960JA/JF/JD/JT 3.3 V Microprocessor
12
Advance Information Datasheet
2.8
Test Features
The 80960Jx incorporates numerous features which enhance the user's ability to test both the
processor and the system to which it is attached. These features include ONCE (On-Circuit
Emulation) mode and Boundary Scan (JTAG).
The 80960Jx provides testability features compatible with IEEE Standard Test Access Port and
Boundary Scan Architecture (IEEE Std. 1149.1).
One of the boundary scan instructions, HIGHZ, forces the processor to float all its output pins (ONCE
mode). ONCE mode can also be initiated at reset without using the boundary scan mechanism.
ONCE mode is useful for board-level testing. This feature allows a mounted 80960Jx to
electrically "remove" itself from a circuit board. This allows for system-level testing where a
remote tester -- such as an in-circuit emulator -- can exercise the processor system.
The provided test logic does not interfere with component or circuit board behavior and ensures
that components function correctly, connections between various components are correct, and
various components interact correctly on the printed circuit board.
The JTAG Boundary Scan feature is an attractive alternative to conventional "bed-of-nails" testing.
It can examine connections which might otherwise be inaccessible to a test system.
2.9
Memory-Mapped Control Registers
The 80960Jx, though compliant with i960 series processor core, has the added advantage of
memory-mapped, internal control registers not found on the i960 Kx, Sx or Cx processors. These
give software the interface to easily read and modify internal control registers.
Each of these registers is accessed as a memory-mapped, 32-bit register. Access is accomplished
through regular memory-format instructions. The processor ensures that these accesses do not
generate external bus cycles.
2.10
Data Types and Memory Addressing Modes
As with all i960 family processors, the 80960Jx instruction set supports several data types and formats:
Bit
Bit fields
Integer (8-, 16-, 32-, 64-bit)
Ordinal (8-, 16-, 32-, 64-bit unsigned integers)
Triple word (96 bits)
Quad word (128 bits)
The 80960Jx provides a full set of addressing modes for C and assembly programming:
Two Absolute modes
Five Register Indirect modes
Index with displacement
IP with displacement
Advance Information Datasheet
13
80960JA/JF/JD/JT 3.3 V Microprocessor
Table 1.
80960Jx Instruction Set
Data Movement
Arithmetic
Logical
Bit, Bit Field and Byte
Load
Store
Move
*Conditional Select
Load Address
Add
Subtract
Multiply
Divide
Remainder
Modulo
Shift
Extended Shift
Extended Multiply
Extended Divide
Add with Carry
Subtract with Carry
*Conditional Add
*Conditional Subtract
Rotate
And
Not And
And Not
Or
Exclusive Or
Not Or
Or Not
Nor
Exclusive Nor
Not
Nand
Set Bit
Clear Bit
Not Bit
Alter Bit
Scan For Bit
Span Over Bit
Extract
Modify
Scan Byte for Equal
*Byte Swap
Comparison
Branch
Call/Return
Fault
Compare
Conditional Compare
Compare and Increment
Compare and Decrement
Test Condition Code
Check Bit
Unconditional Branch
Conditional Branch
Compare and Branch
Call
Call Extended
Call System
Return
Branch and Link
Conditional Fault
Synchronize Faults
Debug
Processor Management
Atomic
Modify Trace Controls
Mark
Force Mark
Flush Local Registers
Modify Arithmetic
Controls
Modify Process Controls
*Halt
System Control
*Cache Control
*Interrupt Control
Atomic Add
Atomic Modify
Asterisk (*) denotes new 80960Jx instructions unavailable on 80960CA/CF, 80960KA/KB and 80960SA/SB implementations.
80960JA/JF/JD/JT 3.3 V Microprocessor
14
Advance Information Datasheet
3.0
Package Information
The 80960Jx is offered with four speeds and three package types. The 132-pin Pin Grid Array
(PGA) device is specified for operation at V
CC
= 3.3 V 0.15 V over a case temperature range of
0 to 100C:
A80960JT-100 (100 MHz core, 33 MHz bus)
A80960JT-75 (75 MHz core, 25 MHz bus)
A80960JD-66 (66 MHz core, 33 MHz bus)
A80960JD-50 (50 MHz core, 25 MHz bus)
A80960JD-40 (40 MHz core, 20 MHz bus)
A80960JD-33 (33 MHz core, 16 MHz bus)
A80960JA/JF-33 (33 MHz)
A80960JA/JF-25 (25 MHz)
A80960JA/JF-16 (16 MHz)
The 132-pin Plastic Quad Flatpack (PQFP) devices are specified for operation at
V
CC
= 3.3 V 0.15 V over a case temperature range of 0 to 100C:
NG80960JT-100 (100 MHz core, 33 MHz bus)
NG80960JT-75 (75 MHz core, 25 MHz bus)
NG80960JD-66 (66 MHz core, 33 MHz bus)
NG80960JD-50 (50 MHz core, 25 MHz bus)
NG80960JD-40 (40 MHz core, 20 MHz bus)
NG80960JD-33 (33 MHz core, 16 MHz bus)
NG80960JA/JF-33 (33 MHz)
NG80960JA/JF-25 (25 MHz)
NG80960JA/JF-16 (16 MHz)
An extended temperature 132-pin Plastic Quad Flatpack (PQFP) device is specified for operation
at V
CC
= 3.3 V 0.15 V over a case temperature range of -40 to 100C:
TG80960JA-25 (25 MHz)
Advance Information Datasheet
15
80960JA/JF/JD/JT 3.3 V Microprocessor
The 196-ball Mini Plastic Ball Grid Array (MPBGA) device is specified for operation at
V
CC
= 3.3 V 0.15 V over a case temperature range of 0 to 100C:
GD80960JT-100 (100 MHz core, 33 MHz bus)
GD80960JT-75 (75 MHz core, 25 MHz bus)
GD80960JD-50 (50 MHz core, 25 MHz bus)
GD80960JD-40 (40 MHz core, 20 MHz bus)
GD80960JD-33 (33 MHz core, 16 MHz bus)
GD80960JA/JF-33 (33 MHz)
GD80960JA/JF-25 (25 MHz)
GD80960JA/JF-16 (16 MHz)
For package specifications and information, refer to Intel's Packaging Handbook (240800).
80960JA/JF/JD/JT 3.3 V Microprocessor
16
Advance Information Datasheet
3.1
Pin Descriptions
This section describes the pins for the 80960Jx in the 132-pin ceramic Pin Grid Array (PGA)
package, 132-lead Plastic Quad Flatpack Package (PQFP) and 196-ball Mini Plastic Ball Grid
Array (MPBGA).
Section 3.1.1, "Functional Pin Definitions", describes pin function; Section 3.1.2, "80960Jx
132-Lead PGA Pinout", Section 3.1.3, "80960Jx 132-Lead PQFP Pinout" and Section 3.1.4,
"80960Jx 196-Ball MPBGA Pinout", define the signal and pin locations for the supported package
types.
3.1.1
Functional Pin Definitions
Table 2 presents the legend for interpreting the pin descriptions which follow. Pins associated with
the bus interface are described in Table 3. Pins associated with basic control and test functions are
described in Table 4. Pins associated with the Interrupt Unit are described in Table 5.
Table 2.
Pin Description Nomenclature
Symbol
Description
I
Input pin only.
O
Output pin only.
I/O
Pin can be either an input or output.
Pin must be connected as described.
S
Synchronous. Inputs must meet setup and hold times relative to CLKIN for proper operation.
S(E) Edge sensitive input
S(L) Level sensitive input
A (...)
Asynchronous. Inputs may be asynchronous relative to CLKIN.
A(E) Edge sensitive input
A(L) Level sensitive input
R (...)
While the processor's RESET pin is asserted, the pin:
R(1) is driven to V
CC
R(0) is driven to V
SS
R(Q) is a valid output
R(X) is driven to unknown state
R(H) is pulled up to V
CC
H (...)
While the processor is in the hold state, the pin:
H(1) is driven to V
CC
H(0) is driven to V
SS
H(Q) Maintains previous state or continues to be a valid output
H(Z) Floats
P (...)
While the processor is halted, the pin:
P(1) is driven to V
CC
P(0) is driven to V
SS
P(Q) Maintains previous state or continues to be a valid output
Advance Information Datasheet
17
80960JA/JF/JD/JT 3.3 V Microprocessor
Table 3.
Pin Description -- External Bus Signals (Sheet 1 of 3)
NAME
TYPE
DESCRIPTION
AD31:0
I/O
S(L)
R(X)
H(Z)
P(Q)
ADDRESS / DATA BUS carries 32-bit physical addresses and 8-, 16- or 32-bit data
to and from memory. During an address (
T
a
) cycle, bits 31:2 contain a physical word
address (bits 0-1 indicate SIZE; see below). During a data (T
d
) cycle, read or write
data is present on one or more contiguous bytes, comprising AD31:24, AD23:16,
AD15:8 and AD7:0. During write operations, unused pins are driven to determinate
values.
SIZE, which comprises bits 0-1 of the AD lines during a
T
a
cycle, specifies the
number of data transfers during the bus transaction.
AD1
AD0
Bus Transfers
0
0 1
Transfer
0
1
2
Transfers
1
0 3
Transfers
1
1 4
Transfers
When the processor enters Halt mode, if the previous bus operation was a:
write -- AD31:2 are driven with the last data value on the AD bus.
read -- AD31:4 are driven with the last address value on the AD bus; AD3:2 are
driven with the value of A3:2 from the last data cycle.
Typically, AD1:0 reflect the SIZE information of the last bus transaction (either
instruction fetch or load/store) that was executed before entering Halt mode.
ALE
O
R(0)
H(Z)
P(0)
ADDRESS LATCH ENABLE indicates the transfer of a physical address. ALE is
asserted during a
T
a
cycle and deasserted before the beginning of the T
d
state. It is
active HIGH and floats to a high impedance state during a hold cycle (T
h
).
ALE
O
R(1)
H(Z)
P(1)
ADDRESS LATCH ENABLE indicates the transfer of a physical address. ALE is the
inverted version of ALE. This signal gives the 80960Jx a high degree of compatibility
with existing 80960Kx systems.
ADS
O
R(1)
H(Z)
P(1)
ADDRESS STROBE indicates a valid address and the start of a new bus access.
The processor asserts ADS for the entire
T
a
cycle. External bus control logic typically
samples ADS at the end of the cycle.
A3:2
O
R(X)
H(Z)
P(Q)
ADDRESS3:2 comprise a partial demultiplexed address bus.
32-bit memory accesses:
the processor asserts address bits A3:2 during
T
a
. The
partial word address increments with each assertion of RDYRCV during a burst.
16-bit memory accesses:
the processor asserts address bits A3:1 during
T
a
with A1
driven on the BE1 pin. The partial short word address increments with each
assertion of RDYRCV during a burst.
8-bit memory accesses:
the processor asserts address bits A3:0 during
T
a
, with A1:0
driven on BE1:0. The partial byte address increments with each assertion of
RDYRCV during a burst.
80960JA/JF/JD/JT 3.3 V Microprocessor
18
Advance Information Datasheet
BE3:0
O
R(1)
H(Z)
P(1)
BYTE ENABLES select which of up to four data bytes on the bus participate in the
current bus access. Byte enable encoding is dependent on the bus width of the
memory region accessed:
32-bit bus:
BE3 enables data on AD31:24
BE2 enables data on AD23:16
BE1 enables data on AD15:8
BE0 enables data on AD7:0
16-bit bus:
BE3 becomes Byte High Enable (enables data on AD15:8)
BE2 is not used (state is high)
BE1 becomes Address Bit 1 (A1)
BE0 becomes Byte Low Enable (enables data on AD7:0)
8-bit bus:
BE3 is not used (state is high)
BE2 is not used (state is high)
BE1 becomes Address Bit 1 (A1)
BE0 becomes Address Bit 0 (A0)
The processor asserts byte enables, byte high enable and byte low enable during
T
a
.
Since unaligned bus requests are split into separate bus transactions, these signals
do not toggle during a burst. They remain active through the last T
d
cycle.
For accesses to 8- and 16-bit memory, the processor asserts the address bits in
conjunction with A3:2 described above.
WIDTH/
HLTD1:0
O
R(0)
H(Z)
P(1)
WIDTH/HALTED signals denote the physical memory attributes for a bus
transaction:
WIDTH/HLTD1 WIDTH/HLTD0
0
0
8 Bits Wide
0
1
16 Bits Wide
1
0
32 Bits Wide
1
1
Processor Halted
The processor floats the WIDTH/HLTD pins whenever it relinquishes the bus in
response to a HOLD request, regardless of prior operating state.
D/C
O
R(X)
H(Z)
P(Q)
DATA/CODE indicates that a bus access is a data access (1) or an instruction
access (0). D/C has the same timing as W/R.
0 = instruction access
1 = data access
W/R
O
R(0)
H(Z)
P(Q)
WRITE/READ specifies, during a
T
a
cycle, whether the operation is a write (1) or
read (0). It is latched on-chip and remains valid during T
d
cycles.
0 = read
1 = write
DT/R
O
R(0)
H(Z)
P(Q)
DATA TRANSMIT / RECEIVE indicates the direction of data transfer to and from the
address/data bus. It is low during T
a
and T
w
/T
d
cycles for a read; it is high during
T
a
and T
w
/T
d
cycles for a write. DT/R never changes state when DEN is asserted.
0 = receive
1 = transmit
DEN
O
R(1)
H(Z)
P(1)
DATA ENABLE indicates data transfer cycles during a bus access. DEN is asserted
at the start of the first data cycle in a bus access and deasserted at the end of the
last data cycle. DEN is used with DT/R to provide control for data transceivers
connected to the data bus.
0 = data cycle
1 = not data cycle
Table 3.
Pin Description -- External Bus Signals (Sheet 2 of 3)
NAME
TYPE
DESCRIPTION
Advance Information Datasheet
19
80960JA/JF/JD/JT 3.3 V Microprocessor
BLAST
O
R(1)
H(Z)
P(1)
BURST LAST indicates the last transfer in a bus access. BLAST is asserted in the
last data transfer of burst and non-burst accesses. BLAST remains active as long as
wait states are inserted via the RDYRCV pin. BLAST becomes inactive after the final
data transfer in a bus cycle.
0 = last data transfer
1 = not last data transfer
RDYRCV
I
S(L)
READY/RECOVER indicates that data on AD lines can be sampled or removed. If
RDYRCV is not asserted during a T
d
cycle, the T
d
cycle is extended to the next cycle
by inserting a wait state (T
w
).
0 = sample data
1 = don't sample data
The RDYRCV pin has another function during the recovery (T
r
) state. The processor
continues to insert additional recovery states until it samples the pin HIGH. This
function gives slow external devices more time to float their buffers before the
processor begins to drive address again.
0 = insert wait states
1 = recovery complete
LOCK/
ONCE
I/O
S(L)
R(H)
H(Z)
P(1)
BUS LOCK indicates that an atomic read-modify-write operation is in progress. The
LOCK output is asserted in the first clock of an atomic operation and deasserted in
the last data transfer of the sequence. The processor does not grant HOLDA while it
is asserting LOCK. This prevents external agents from accessing memory involved
in semaphore operations.
0 = Atomic read-modify-write in progress
1 = Atomic read-modify-write not in progress
ONCE MODE: The processor samples the ONCE input during reset. If it is asserted
LOW at the end of reset, the processor enters ONCE mode. In ONCE mode, the
processor stops all clocks and floats all output pins. The pin has a weak internal
pullup which is active during reset to ensure normal operation when the pin is left
unconnected.
0 = ONCE mode enabled
1 = ONCE mode not enabled
HOLD
I
S(L)
HOLD: A request from an external bus master to acquire the bus. When the
processor receives HOLD and grants bus control to another master, it asserts
HOLDA, floats the address/data and control lines and enters the T
h
state. When
HOLD is deasserted, the processor deasserts HOLDA and enters either the T
i
or
T
a
state, resuming control of the address/data and control lines.
0 = no hold request
1 = hold request
HOLDA
O
R(Q)
H(1)
P(Q)
HOLD ACKNOWLEDGE indicates to an external bus master that the processor has
relinquished control of the bus. The processor can grant HOLD requests and enter
the T
h
state during reset and while halted as well as during regular operation.
0 = hold not acknowledged
1 = hold acknowledged
BSTAT
O
R(0)
H(Q)
P(0)
BUS STATUS indicates that the processor may soon stall unless it has sufficient
access to the bus; see
i960
Jx Microprocessor Developer's Manual
(272483).
Arbitration logic can examine this signal to determine when an external bus master
should acquire/relinquish the bus.
0 = no potential stall
1 = potential stall
Table 3.
Pin Description -- External Bus Signals (Sheet 3 of 3)
NAME
TYPE
DESCRIPTION
80960JA/JF/JD/JT 3.3 V Microprocessor
20
Advance Information Datasheet
Table 4.
Pin Description -- Processor Control Signals, Test Signals and Power
NAME
TYPE
DESCRIPTION
CLKIN
I
CLOCK INPUT provides the processor's fundamental time base; both the processor
core and the external bus run at the CLKIN rate. All input and output timings are
specified relative to a rising CLKIN edge.
RESET
I
A(L)
RESET initializes the processor and clears its internal logic. During reset, the
processor places the address/data bus and control output pins in their idle (inactive)
states.
During reset, the input pins are ignored with the exception of LOCK/ONCE, STEST
and HOLD.
The RESET pin has an internal synchronizer. To ensure predictable processor
initialization during power up, RESET must be asserted a minimum of 10,000 CLKIN
cycles with V
CC
and CLKIN stable. On a warm reset, RESET should be asserted for
a minimum of 15 cycles.
STEST
I
S(L)
SELF TEST enables or disables the processor's internal self-test feature at
initialization. STEST is examined at the end of reset. When STEST is asserted, the
processor performs its internal self-test and the external bus confidence test. When
STEST is deasserted, the processor performs only the external bus confidence test.
0 = self test disabled
1 = self test enabled
FAIL
O
R(0)
H(Q)
P(1)
FAIL indicates a failure of the processor's built-in self-test performed during
initialization. FAIL is asserted immediately upon reset and toggles during self-test to
indicate the status of individual tests:
When self-test passes, the processor deasserts FAIL and begins operation from
user code.
When self-test fails, the processor asserts FAIL and then stops executing.
0 = self test failed
1 = self test passed
TCK
I
TEST CLOCK is a CPU input which provides the clocking function for IEEE 1149.1
Boundary Scan Testing (JTAG). State information and data are clocked into the
processor on the rising edge; data is clocked out of the processor on the falling edge.
TDI
I
S(L)
TEST DATA INPUT is the serial input pin for JTAG. TDI is sampled on the rising
edge of TCK, during the SHIFT-IR and SHIFT-DR states of the Test Access Port.
TDO
O
R(Q)
HQ)
P(Q)
TEST DATA OUTPUT is the serial output pin for JTAG. TDO is driven on the falling
edge of TCK during the SHIFT-IR and SHIFT-DR states of the Test Access Port. At
other times, TDO floats. TDO does not float during ONCE mode.
TRST
I
A(L)
TEST RESET asynchronously resets the Test Access Port (TAP) controller function
of IEEE 1149.1 Boundary Scan testing (JTAG). When using the Boundary Scan
feature, connect a pulldown resistor between this pin and V
SS
. If TAP is not used,
this pin must be connected to V
SS
; however, no resistor is required. See Section 4.3,
"Connection Recommendations" on page 40.
TMS
I
S(L)
TEST MODE SELECT is sampled at the rising edge of TCK to select the operation of
the test logic for IEEE 1149.1 Boundary Scan testing.
V
CC
POWER pins intended for external connection to a V
CC
board plane.
VCCPLL
PLL POWER is a separate V
CC
supply pin for the phase lock loop clock generator. It
is intended for external connection to the V
CC
board plane. In noisy environments,
add a simple bypass filter circuit to reduce noise-induced clock jitter and its effects
on timing relationships.
VCC5
5 V REFERENCE VOLTAGE input is the reference voltage for the 5 V-tolerant I/O
buffers. This signal should be connected to +5 V for use with inputs which exceed
3.3 V. If all inputs are from 3.3 V components, this pin should be connected to 3.3 V.
V
SS
GROUND pins intended for external connection to a V
SS
board plane.
NC
NO CONNECT pins. Do not make any system connections to these pins.
Advance Information Datasheet
21
80960JA/JF/JD/JT 3.3 V Microprocessor
Table 5.
Pin Description -- Interrupt Unit Signals
NAME
TYPE
DESCRIPTION
XINT7:0
I
A(E/L)
EXTERNAL INTERRUPT pins are used to request interrupt service. The XINT7:0
pins can be configured in three modes:
Dedicated Mode: Each pin is assigned a dedicated interrupt level. Dedicated inputs
can be programmed to be level (low) or edge (falling) sensitive.
Expanded Mode: All eight pins act as a vectored interrupt source. The interrupt pins
are level sensitive in this mode.
Mixed Mode:
The XINT7:5 pins act as dedicated sources and the XINT4:0 pins act
as the five most significant bits of a vectored source. The least significant bits of the
vectored source are set to 010
2
internally.
Unused external interrupt pins should be connected to V
CC
.
NMI
I
A(E)
NON-MASKABLE INTERRUPT causes a non-maskable interrupt event to occur.
NMI is the highest priority interrupt source and is falling edge-triggered. If NMI is
unused, it should be connected to V
CC
.
80960JA/JF/JD/JT 3.3 V Microprocessor
22
Advance Information Datasheet
3.1.2
80960Jx 132-Lead PGA Pinout
Figure 3.
132-Lead Pin Grid Array Bottom View - Pins Facing Up
AD6
AD11
AD13
V
CC
V
CC
V
CC
V
CC
V
CC
V
CC
V
CC
AD18
AD19
AD22
AD25
AD3
AD7
AD10
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
AD20
AD24
AD26
AD27
AD0
AD4
AD8
AD9
AD12
AD14
AD15
AD16
AD17
AD21
AD23
AD29
AD30
NC
AD28
BE3
BE2
AD31
V
SS
V
CC
BE1
V
SS
V
CC
BE0
V
SS
V
CC
ALE
V
CC
BSTAT
V
SS
V
CC
V
SS
V
CC
DT/R
V
SS
V
CC
V
CC
AD1
V
CC
V
SS
V
CC
V
SS
NC
CLKIN
V
SS
VCCPLL
V
CC
V
SS
NC
V
CC
RDYRCV
V
CC
RESET
V
CC
V
SS
AD5
AD2
V
SS
TDI
XINT0
NC
A2
WIDTH/
ADS
A3
XINT1
TMS
XINT2
NC
STEST
TRST
HOLD
NC
FAIL
VCC5
BLAST
LOCK/ HOLDA
TCK
XINT3
XINT5
XINT7
NMI
V
CC
V
CC
V
CC
V
CC
NC
NC
ALE
XINT6
V
SS
V
SS
V
SS
V
SS
NC
TDO
WIDTH/
D/C
W/R
XINT4
P
N
M
L
K
J
H
G
F
E
D
C
B
A
P
N
M
L
K
J
H
G
F
E
D
C
B
A
14
13
12
11
10
9
8
7
6
5
4
3
2
1
14
13
12
11
10
9
8
7
6
5
4
3
2
1
V
SS
DEN
V
SS
HLTD1
HLTD0
ONCE
Advance Information Datasheet
23
80960JA/JF/JD/JT 3.3 V Microprocessor
Figure 4.
132-Lead Pin Grid Array Top View - Pins Facing Down
AD6
AD11 AD13
V
CC
V
CC
V
CC
V
CC
V
CC
V
CC
V
CC
AD18
AD19 AD22
AD25
AD3
AD7
AD10
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
AD20
AD24 AD26
AD27
AD0
AD4
AD8
AD9
AD12
AD14 AD15
AD16
AD17
AD21 AD23
AD29
AD30
NC
AD28
BE3
BE2
AD31
V
SS
V
CC
BE1
V
SS
V
CC
BE0
V
SS
V
CC
ALE
V
CC
BSTAT V
SS
V
CC
V
SS
V
CC
DT/R
V
SS
V
CC
V
CC
AD1
V
CC
V
SS
V
CC
V
SS
NC
CLKIN
V
SS
VCCPLL
V
CC
V
SS
NC
V
CC
RDYRCV
V
CC
RESET
V
CC
V
SS
AD5
AD2
V
SS
TDI
XINT0
NC
A2
WIDTH/
ADS
A3
XINT1
TMS
XINT2
NC
STEST TRST
HOLD
NC
FAIL
VCC5
BLAST
LOCK/
HOLDA
TCK XINT3
XINT5 XINT7
NMI
V
CC
V
CC
V
CC
V
CC
NC
NC
ALE
XINT6
V
SS
V
SS
V
SS
V
SS
NC
TDO
WIDTH/
D/C
W/R
XINT4
P
N
M
L
K
J
H
G
F
E
D
C
B
A
P
N
M
L
K
J
H
G
F
E
D
C
B
A
14
13
12
11
10
9
8
7
6
5
4
3
2
1
14
13
12
11
10
9
8
7
6
5
4
3
2
1
V
SS
DEN
V
SS
HLTD1
HLTD0
ONCE
i
19xx
A80960Jx
XXXXXXXX SS
M
80960JA/JF/JD/JT 3.3 V Microprocessor
24
Advance Information Datasheet
Table 6.
132-Lead PGA Pinout -- In Signal Order
Signal
Pin
Signal
Pin
Signal
Pin
Signal
Pin
A2
C5
AD31
K3
TDO
B4
V
SS
B9
A3
C4
ADS
A1
TMS
A14
V
SS
D2
AD0
M14
ALE
G3
TRST
C12
V
SS
D13
AD1
L13
ALE
A3
V
CC
A6
V
SS
E2
AD2
K12
BE0
H3
V
CC
A7
V
SS
E13
AD3
N14
BE1
J3
V
CC
A8
V
SS
F2
AD4
M13
BE2
L1
V
CC
A9
V
SS
F13
AD5
L12
BE3
L2
V
CC
D1
V
SS
G2
AD6
P14
BLAST
C3
V
CC
D14
V
SS
G13
AD7
N13
BSTAT
F3
V
CC
E1
V
SS
H2
AD8
M12
CLKIN
H14
V
CC
E14
V
SS
H13
AD9
M11
D/C
B2
V
CC
F1
V
SS
J2
AD10
N12
DEN
E3
V
CC
F14
V
SS
J13
AD11
P13
DT/R
D3
V
CC
G1
V
SS
K2
AD12
M10
FAIL
C6
V
CC
G14
V
SS
K13
AD13
P12
HOLD
C9
V
CC
H1
V
SS
N5
AD14
M9
HOLDA
C2
V
CC
J1
V
SS
N6
AD15
M8
LOCK/ONCE
C1
V
CC
J14
V
SS
N7
AD16
M7
NC
A4
V
CC
K1
V
SS
N8
AD17
M6
NC
A5
V
CC
K14
V
SS
N9
AD18
P4
NC
B5
V
CC
L14
V
SS
N10
AD19
P3
NC
B14
V
CC
P5
V
SS
N11
AD20
N4
NC
C8
V
CC
P6
W/R
B1
AD21
M5
NC
C14
V
CC
P7
WIDTH/HLTD0
B3
AD22
P2
NC
G12
V
CC
P8
WIDTH/HLTD1
A2
AD23
M4
NC
J12
V
CC
P9
XINT0
C11
AD24
N3
NC
M3
V
CC
P10
XINT1
C10
AD25
P1
NMI
A10
V
CC
P11
XINT2
A13
AD26
N2
RDYRCV
F12
VCCPLL
H12
XINT3
B12
AD27
N1
RESET
E12
VCC5
C7
XINT4
B11
AD28
L3
STEST
C13
V
SS
B6
XINT5
A12
AD29
M2
TCK
B13
V
SS
B7
XINT6
B10
AD30
M1
TDI
D12
V
SS
B8
XINT7
A11
NOTE: Do not connect any external logic to pins marked NC (no connect pins).
Advance Information Datasheet
25
80960JA/JF/JD/JT 3.3 V Microprocessor
Table 7.
132-Lead PGA Pinout -- In Pin Order
Pin
Signal
Pin
Signal
Pin
Signal
Pin
Signal
A1
ADS
C6
FAIL
H1
V
CC
M10
AD12
A2
WIDTH/HLTD1
C7
VCC5
H2
V
SS
M11
AD9
A3
ALE
C8
NC
H3
BE0
M12
AD8
A4
NC
C9
HOLD
H12
VCCPLL
M13
AD4
A5
NC
C10
XINT1
H13
V
SS
M14
AD0
A6
V
CC
C11
XINT0
H14
CLKIN
N1
AD27
A7
V
CC
C12
TRST
J1
V
CC
N2
AD26
A8
V
CC
C13
STEST
J2
V
SS
N3
AD24
A9
V
CC
C14
NC
J3
BE1
N4
AD20
A10
NMI
D1
V
CC
J12
NC
N5
V
SS
A11
XINT7
D2
V
SS
J13
V
SS
N6
V
SS
A12
XINT5
D3
DT/R
J14
V
CC
N7
V
SS
A13
XINT2
D12
TDI
K1
V
CC
N8
V
SS
A14
TMS
D13
V
SS
K2
V
SS
N9
V
SS
B1
W/R
D14
V
CC
K3
AD31
N10
V
SS
B2
D/C
E1
V
CC
K12
AD2
N11
V
SS
B3
WIDTH/HLTD0
E2
V
SS
K13
V
SS
N12
AD10
B4
TDO
E3
DEN
K14
V
CC
N13
AD7
B5
NC
E12
RESET
L1
BE2
N14
AD3
B6
V
SS
E13
V
SS
L2
BE3
P1
AD25
B7
V
SS
E14
V
CC
L3
AD28
P2
AD22
B8
V
SS
F1
V
CC
L12
AD5
P3
AD19
B9
V
SS
F2
V
SS
L13
AD1
P4
AD18
B10
XINT6
F3
BSTAT
L14
V
CC
P5
V
CC
B11
XINT4
F12
RDYRCV
M1
AD30
P6
V
CC
B12
XINT3
F13
V
SS
M2
AD29
P7
V
CC
B13
TCK
F14
V
CC
M3
NC
P8
V
CC
B14
NC
G1
V
CC
M4
AD23
P9
V
CC
C1
LOCK/ONCE
G2
V
SS
M5
AD21
P10
V
CC
C2
HOLDA
G3
ALE
M6
AD17
P11
V
CC
C3
BLAST
G12
NC
M7
AD16
P12
AD13
C4
A3
G13
V
SS
M8
AD15
P13
AD11
C5
A2
G14
V
CC
M9
AD14
P14
AD6
NOTE: Do not connect any external logic to pins marked NC (no connect pins).
80960JA/JF/JD/JT 3.3 V Microprocessor
26
Advance Information Datasheet
3.1.3
80960Jx 132-Lead PQFP Pinout
Figure 5.
132-Lead PQFP - Top View
AD
8
AD
7
AD
6
AD
5
AD
4
V
CC
(I/O)
V
SS
(I/O)
AD
3
AD
2
AD
1
AD
0
V
CC
(I/O)
V
CC
(C
or
e)
V
SS
(C
or
e)
V
CC
(C
or
e)
V
SS
(C
or
e)
VCCP
L
L
V
CC
(C
L
K
)
NC
NC
RDYRCV
V
SS
(C
or
e
)
RESE
T
NC
ST
E
S
T
V
CC
(I/O)
TD
I
V
SS
(I/O)
AD2
7
V
CC
(
I/O)
V
SS
(I/O)
AD2
8
AD2
9
AD3
0
AD3
1
V
CC
(
C
ore)
V
SS
(C
or
e)
V
CC
(
I/O)
V
SS
(I/O)
BE
3
BE
2
BE
1
BE
0
BS
T
A
T
LOC
K
/ONCE
V
CC
(
I/O)
V
SS
(I/O)
V
CC
(
C
ore)
V
SS
(C
or
e)
AL
E
HOL
D
A
DEN
DT
/R
V
CC
(
I/O)
V
SS
(I/O)
V
CC
(
C
ore)
V
SS
(C
or
e)
W/
R
ADS
D/C
BL
A
S
T
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
10
0
101
102
103
104
105
106
107
108
109
11
0
111
11
2
11
3
11
4
11
5
11
6
11
7
11
8
11
9
120
121
122
123
124
125
126
127
128
129
130
131
132
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
TRST
TCK
TMS
HOLD
XINT0
XINT1
XINT2
XINT3
V
CC
(I/O)
V
SS
(I/O)
XINT4
XINT5
XINT6
XINT7
NMI
V
CC
(Core)
V
SS
(Core)
NC
NC
VCC5
NC
NC
FAIL
ALE
TDO
V
CC
(I/O)
V
SS
(I/O)
WIDTH/HLTD1
V
CC
(Core)
V
SS
(Core)
WIDTH/HLTD0
A2
A3
AD9
V
CC
(I/O)
AD10
V
SS
(I/O)
V
CC
(I/O)
AD11
V
SS
(I/O)
V
CC
(Core)
V
SS
(Core)
AD12
AD13
AD14
AD15
V
CC
(I/O)
V
SS
(I/O)
AD16
AD17
AD18
AD19
NC
V
CC
(I/O)
AD22
AD25
AD21
AD20
AD24
AD26
AD23
V
SS
(I/O)
V
CC
(Core)
V
CC
(I/O)
V
SS
(Core)
V
SS
(I/O)
V
SS
(I/O
)
CL
K
I
N
V
SS
(C
L
K
)
NC
V
CC
(
C
ore)
i
XXXXXXXX SS
M
19xx
i960
NG80960Jx
Advance Information Datasheet
27
80960JA/JF/JD/JT 3.3 V Microprocessor
Table 8.
132-Lead PQFP Pinout -- In Signal Order
Signal
Pin
Signal
Pin
Signal
Pin
Signal
Pin
AD31
60
ALE
24
V
CC
(Core)
47
V
SS
(Core)
124
AD30
61
ADS
36
V
CC
(Core)
59
V
SS
(I/O)
10
AD29
62
A3
33
V
CC
(Core)
74
V
SS
(I/O)
27
AD28
63
A2
32
V
CC
(Core)
92
V
SS
(I/O)
40
AD27
66
BE3
55
V
CC
(Core)
113
V
SS
(I/O)
48
AD26
68
BE2
54
V
CC
(Core)
115
V
SS
(I/O)
56
AD25
69
BE1
53
V
CC
(Core)
123
V
SS
(I/O)
64
AD24
70
BE0
52
V
CC
(I/O)
9
V
SS
(I/O)
71
AD23
75
WIDTH/HLTD1
28
V
CC
(I/O)
26
V
SS
(I/O)
79
AD22
76
WIDTH/HLTD0
31
V
CC
(I/O)
41
V
SS
(I/O)
85
AD21
77
D/C
35
V
CC
(I/O)
49
V
SS
(I/O)
93
AD20
78
W/R
37
V
CC
(I/O)
57
V
SS
(I/O)
97
AD19
81
DT/R
42
V
CC
(I/O)
65
V
SS
(I/O)
106
AD18
82
DEN
43
V
CC
(I/O)
72
V
SS
(I/O)
112
AD17
83
BLAST
34
V
CC
(I/O)
80
V
SS
(I/O)
131
AD16
84
RDYRCV
132
V
CC
(I/O)
86
NC
18
AD15
87
LOCK/ONCE
50
V
CC
(I/O)
94
NC
19
AD14
88
HOLD
4
V
CC
(I/O)
98
NC
21
AD13
89
HOLDA
44
V
CC
(I/O)
105
NC
22
AD12
90
BSTAT
51
V
CC
(I/O)
111
NC
67
AD11
95
CLKIN
117
V
CC
(I/O)
129
NC
121
AD10
96
RESET
125
VCCPLL
119
NC
122
AD9
99
STEST
128
VCC5
20
NC
126
AD8
100
FAIL
23
V
SS
(CLK)
118
NC
127
AD7
101
TCK
2
V
SS
(Core)
17
XINT7
14
AD6
102
TDI
130
V
SS
(Core)
30
XINT6
13
AD5
103
TDO
25
V
SS
(Core)
38
XINT5
12
AD4
104
TRST
1
V
SS
(Core)
46
XINT4
11
AD3
107
TMS
3
V
SS
(Core)
58
XINT3
8
AD2
108
V
CC
(CLK)
120
V
SS
(Core)
73
XINT2
7
AD1
109
V
CC
(Core)
16
V
SS
(Core)
91
XINT1
6
AD0
110
V
CC
(Core)
29
V
SS
(Core)
114
XINT0
5
ALE
45
V
CC
(Core)
39
V
SS
(Core)
116
NMI
15
NOTE: Do not connect any external logic to pins marked NC (no connect pins).
80960JA/JF/JD/JT 3.3 V Microprocessor
28
Advance Information Datasheet
Table 9.
132-Lead PQFP Pinout -- In Pin Order
Pin
Signal
Pin
Signal
Pin
Signal
Pin
Signal
1
TRST
34
BLAST
67
NC
100
AD8
2
TCK
35
D/C
68
AD26
101
AD7
3
TMS
36
ADS
69
AD25
102
AD6
4
HOLD
37
W/R
70
AD24
103
AD5
5
XINT0
38
V
SS
(Core)
71
V
SS
(I/O)
104
AD4
6
XINT1
39
V
CC
(Core)
72
V
CC
(I/O)
105
V
CC
(I/O)
7
XINT2
40
V
SS
(I/O)
73
V
SS
(Core)
106
V
SS
(I/O)
8
XINT3
41
V
CC
(I/O)
74
V
CC
(Core)
107
AD3
9
V
CC
(I/O)
42
DT/R
75
AD23
108
AD2
10
V
SS
(I/O)
43
DEN
76
AD22
109
AD1
11
XINT4
44
HOLDA
77
AD21
110
AD0
12
XINT5
45
ALE
78
AD20
111
V
CC
(I/O)
13
XINT6
46
V
SS
(Core)
79
V
SS
(I/O)
112
V
SS
(I/O)
14
XINT7
47
V
CC
(Core)
80
V
CC
(I/O)
113
V
CC
(Core)
15
NMI
48
V
SS
(I/O)
81
AD19
114
V
SS
(Core)
16
V
CC
(Core)
49
V
CC
(I/O)
82
AD18
115
V
CC
(Core)
17
V
SS
(Core)
50
LOCK/ONCE
83
AD17
116
V
SS
(Core)
18
NC
51
BSTAT
84
AD16
117
CLKIN
19
NC
52
BE0
85
V
SS
(I/O)
118
V
SS
(CLK)
20
VCC5
53
BE1
86
V
CC
(I/O)
119
VCCPLL
21
NC
54
BE2
87
AD15
120
V
CC (CLK)
22
NC
55
BE3
88
AD14
121
NC
23
FAIL
56
V
SS
(I/O)
89
AD13
122
NC
24
ALE
57
V
CC
(I/O)
90
AD12
123
V
CC
(Core)
25
TDO
58
V
SS
(Core)
91
V
SS
(Core)
124
V
SS
(Core)
26
V
CC
(I/O)
59
V
CC
(Core)
92
V
CC
(Core)
125
RESET
27
V
SS
(I/O)
60
AD31
93
V
SS
(I/O)
126
NC
28
WIDTH/HLTD1
61
AD30
94
V
CC
(I/O)
127
NC
29
V
CC
(Core)
62
AD29
95
AD11
128
STEST
30
V
SS
(Core)
63
AD28
96
AD10
129
V
CC
(I/O)
31
WIDTH/HLTD0
64
V
SS
(I/O)
97
V
SS
(I/O)
130
TDI
32
A2
65
V
CC
(I/O)
98
V
CC
(I/O)
131
V
SS
(I/O)
33
A3
66
AD27
99
AD9
132
RDYRCV
NOTE: Do not connect any external logic to pins marked NC (no connect pins).
Advance Information Datasheet
29
80960JA/JF/JD/JT 3.3 V Microprocessor
3.1.4
80960Jx 196-Ball MPBGA Pinout
Figure 6.
196-Ball Mini Plastic Ball Grid Array Bottom View - Balls Facing Up
NC
AD8
V
CC
AD13
AD15
V
CC
AD18
V
CC
AD22
V
CC
NC
V
CC
AD28
NC
AD4
AD7
AD9
AD10
AD12
AD14
AD17
AD20
AD23
V
CC
AD29
AD27
AD30
V
CC
AD2
AD6
AD11
V
CC
V
CC
AD16
AD19
AD21
AD24
AD25
AD26
AD31
NC
NC
NC
NC
NC
V
CC
NC
NC
V
CC
NC
NC
V
CC
NC
NC
BE3
BE1
BSTAT
BE0
V
CC
LOCK/
ALE
V
CC
DEN
HOLDA
AD1
AD0
V
CC
V
CC
VCCPLL
V
CC
V
CC
NC
CLKIN
NC
NC
V
CC
NC
RESET
TDI
STEST
NC
RDYRCV
NC
AD5
V
CC
V
CC
NC
XINT0
HOLD
A3
ADS
NC
NC
XINT2
NC
V
CC
TCK
TRST
TMS
V
CC
VCC5
V
CC
ALE
NC
DT/R
V
CC
XINT3
XINT1
XINT5
XINT7
NMI
NC
NC
FAIL
WIDTH1
WIDTH0
V
CC
BLAST
NC
XINT4
NC
TDO
V
CC
A2
NC
NC
D/C
W/R
XINT6
P
N
M
L
K
J
H
G
F
E
D
C
B
A
P
N
M
L
K
J
H
G
F
E
D
C
B
A
14
13
12
11
10
9
8
7
6
5
4
3
2
1
14
13
12
11
10
9
8
7
6
5
4
3
2
1
BE2
V
CC
NC
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
AD3
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
ONCE
80960JA/JF/JD/JT 3.3 V Microprocessor
30
Advance Information Datasheet
Figure 7.
196-Ball Mini Plastic Ball Grid Array Top View - Balls Facing Down
P
N
M
L
K
J
H
G
F
E
D
C
B
A
P
N
M
L
K
J
H
G
F
E
D
C
B
A
14
13
12
11
10
9
8
7
6
5
4
3
2
1
14
13
12
11
10
9
8
7
6
5
4
3
2
1
NC
AD8
V
CC
AD13
AD15
V
CC
AD18
V
CC
AD22
V
CC
NC
V
CC
AD28
NC
AD4
AD7
AD9
AD10
AD12
AD14
AD17
AD20
AD23
V
CC
AD29
AD27
AD30
V
CC
AD2
AD6
AD11
V
CC
V
CC
AD16
AD19
AD21
AD24
AD25
AD26
AD31
NC
NC
NC
NC
NC
V
CC
NC
NC
V
CC
NC
NC
V
CC
NC
NC
BE3
BE1
BSTAT
BE0
V
CC
LOCK/
ALE
V
CC
DEN
HOLDA
AD1
AD0
V
CC
V
CC
VCCPLL V
CC
V
CC
NC
CLKIN
NC
NC
V
CC
NC
RESET
TDI
STEST
NC
RDYRCV NC
AD5
V
CC
V
CC
NC
XINT0
HOLD
A3
ADS
NC
NC
XINT2
NC
V
CC
TCK
TRST
TMS
V
CC
VCC5
V
CC
ALE
NC
DT/R
V
CC
XINT3 XINT1
XINT5 XINT7
NMI
NC
NC
FAIL WIDTH1 WIDTH0 V
CC
BLAST
NC
XINT4
NC
TDO
V
CC
A2
NC
NC
D/C
W/R
XINT6
BE2
V
CC
NC
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
AD3
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
ONCE
Advance Information Datasheet
31
80960JA/JF/JD/JT 3.3 V Microprocessor
Table 10.
196-Ball MPBGA Pinout -- In Signal Order (Sheet 1 of 2)
Signal
Pin
Signal
Pin
Signal
Pin
Signal
Pin
A2
N5
BE0
J2
NC
M4
V
CC
J1
A3
M5
BE1
H1
NC
N3
V
CC
K3
AD0
D13
BE2
H2
NC
N4
V
CC
K13
AD1
D14
BE3
H3
NC
N8
V
CC
L3
AD2
C14
BLAST
P3
NC
N10
V
CC
M2
AD3
D11
BSTAT
J3
NC
P1
V
CC
M6
AD4
B14
CLKIN
G13
NC
P8
V
CC
M9
AD5
D12
DEN
L2
NC
P9
V
CC
N6
AD6
C13
D/C
N2
NC
P14
V
CC
P4
AD7
B13
DT/R
M1
NMI
P10
V
CC
P13
AD8
A13
FAIL
P7
RDYRCV
L14
VCCPLL
F14
AD9
B12
HOLD
N14
RESET
J14
V
SS
D4
AD10
B11
HOLDA
L1
STEST
K14
V
SS
D5
AD11
C12
LOCK/ONCE
K2
TCK
M14
V
SS
D6
AD12
B10
NC
A1
TDI
J12
V
SS
D7
AD13
A11
NC
A4
TDO
N7
V
SS
D8
AD14
B9
NC
A14
TMS
M12
V
SS
D9
AD15
A10
NC
C1
TRST
M13
V
SS
D10
AD16
C9
NC
C3
VCC5
M8
V
SS
E4
AD17
B8
NC
D1
V
CC
A3
V
SS
E5
AD18
A8
NC
D2
V
CC
A5
V
SS
E6
AD19
C8
NC
D3
V
CC
A7
V
SS
E7
AD20
B7
NC
E1
V
CC
A9
V
SS
E8
AD21
C7
NC
E2
V
CC
A12
V
SS
E9
AD22
A6
NC
F1
V
CC
B1
V
SS
E10
AD23
B6
NC
F2
V
CC
B5
V
SS
E11
AD24
C6
NC
G1
V
CC
C10
V
SS
F4
AD25
C5
NC
G2
V
CC
C11
V
SS
F5
AD26
C4
NC
G12
V
CC
E3
V
SS
F6
AD27
B3
NC
G14
V
CC
E12
V
SS
F7
AD28
A2
NC
H12
V
CC
E13
V
SS
F8
AD29
B4
NC
H14
V
CC
E14
V
SS
F9
AD30
B2
NC
J13
V
CC
F3
V
SS
F10
AD31
C2
NC
K12
V
CC
F12
V
SS
F11
ADS
P2
NC
L12
V
CC
F13
V
SS
G4
ALE
K1
NC
L13
V
CC
G3
V
SS
G5
ALE
M7
NC
M3
V
CC
H13
V
SS
G6
NOTE: Do not connect any external logic to pins marked NC (no connect pins).
80960JA/JF/JD/JT 3.3 V Microprocessor
32
Advance Information Datasheet
VSS
G7
V
SS
H11
V
SS
K7
V
SS
L11
VSS
G8
V
SS
J4
V
SS
K8
WIDTH0
P5
VSS
G9
V
SS
J5
V
SS
K9
WIDTH1
P6
VSS
G10
V
SS
J6
V
SS
K10
W/R
N1
VSS
G11
V
SS
J7
V
SS
K11
XINT0
M11
VSS
H4
V
SS
J8
V
SS
L5
XINT1
N12
VSS
H5
V
SS
J9
V
SS
L6
XINT2
M10
VSS
H6
V
SS
J10
V
SS
L7
XINT3
N13
VSS
H7
V
SS
J11
V
SS
L8
XINT4
N9
VSS
H8
V
SS
K4
V
SS
L9
XINT5
P12
VSS
H9
V
SS
K5
V
SS
L10
XINT6
N11
VSS
H10
V
SS
K6
V
SS
L4
XINT7
P11
Table 10.
196-Ball MPBGA Pinout -- In Signal Order (Sheet 2 of 2)
Signal
Pin
Signal
Pin
Signal
Pin
Signal
Pin
NOTE: Do not connect any external logic to pins marked NC (no connect pins).
Advance Information Datasheet
33
80960JA/JF/JD/JT 3.3 V Microprocessor
Table 11.
196-Ball MPBGA Pinout -- In Pin Order (Sheet 1 of 2)
Pin
Signal
Pin
Signal
Pin
Signal
Pin
Signal
A1
NC
C11
V
CC
F7
V
SS
J3
BSTAT
A2
AD28
C12
AD11
F8
V
SS
J4
V
SS
A3
V
CC
C13
AD6
F9
V
SS
J5
V
SS
A4
NC
C14
AD2
F10
V
SS
J6
V
SS
A5
V
CC
D1
NC
F11
V
SS
J7
V
SS
A6
AD22
D2
NC
F12
V
CC
J8
V
SS
A7
V
CC
D3
NC
F13
V
CC
J9
V
SS
A8
AD18
D4
V
SS
F14
VCCPLL
J10
V
SS
A9
V
CC
D5
V
SS
G1
NC
J11
V
SS
A10
AD15
D6
V
SS
G2
NC
J12
TDI
A11
AD13
D7
V
SS
G3
V
CC
J13
NC
A12
V
CC
D8
V
SS
G4
V
SS
J14
RESET
A13
AD8
D9
V
SS
G5
V
SS
K1
ALE
A14
NC
D10
V
SS
G6
V
SS
K2
LOCK/ONCE
B1
V
CC
D11
AD3
G7
V
SS
K3
V
CC
B2
AD30
D12
AD5
G8
V
SS
K4
V
SS
B3
AD27
D13
AD0
G9
V
SS
K5
V
SS
B4
AD29
D14
AD1
G10
V
SS
K6
V
SS
B5
V
CC
E1
NC
G11
V
SS
K7
V
SS
B6
AD23
E2
NC
G12
NC
K8
V
SS
B7
AD20
E3
V
CC
G13
CLKIN
K9
V
SS
B8
AD17
E4
V
SS
G14
NC
K10
V
SS
B9
AD14
E5
V
SS
H1
BE1
K11
V
SS
B10
AD12
E6
V
SS
H2
BE2
K12
NC
B11
AD10
E7
V
SS
H3
BE3
K13
V
CC
B12
AD9
E8
V
SS
H4
V
SS
K14
STEST
B13
AD7
E9
V
SS
H5
V
SS
L1
HOLDA
B14
AD4
E10
V
SS
H6
V
SS
L2
DEN
C1
NC
E11
V
SS
H7
V
SS
L3
V
CC
C2
AD31
E12
V
CC
H8
V
SS
L4
V
SS
C3
NC
E13
V
CC
H9
V
SS
L5
V
SS
C4
AD26
E14
V
CC
H10
V
SS
L6
V
SS
C5
AD25
F1
NC
H11
V
SS
L7
V
SS
C6
AD24
F2
NC
H12
NC
L8
V
SS
C7
AD21
F3
V
CC
H13
V
CC
L9
V
SS
C8
AD19
F4
V
SS
H14
NC
L10
V
SS
C9
AD16
F5
V
SS
J1
V
CC
L11
V
SS
C10
V
CC
F6
V
SS
J2
BE0
L12
NC
NOTE: Do not connect any external logic to pins marked NC (no connect pins).
80960JA/JF/JD/JT 3.3 V Microprocessor
34
Advance Information Datasheet
3.2
Package Thermal Specifications
The 80960Jx is specified for operation when T
C
(case temperature) is within the range of 0C to
100C for PGA, MPBGA and PQFP packages. An extended temperature device is also available in
a PQFP package with T
C
-40C to 100C. Case temperature may be measured in any environment
to determine whether the 80960Jx is within its specified operating range. The case temperature
should be measured at the center of the top surface, opposite the pins.
CA
is the thermal resistance from case to ambient. Use the following equation to calculate T
A
, the
maximum ambient temperature to conform to a particular case temperature:
T
A
= T
C
- P (
CA
)
Junction temperature (T
J
) is commonly used in reliability calculations. T
J
can be calculated from
JC
(thermal resistance from junction to case) using the following equation:
T
J
= T
C
+ P (
JC
)
Similarly, if T
A
is known, the corresponding case temperature (T
C
) can be calculated as follows:
T
C
= T
A
+ P (
CA
)
Compute P by multiplying I
CC
from Table 22 and V
CC
. Values for
JC
and
CA
are given in
Table 12 for the PGA package, Table 13 for the MPBGA package, and Table 14 for the PQFP
package. For high speed operation, the processor's
JA
may be significantly reduced by adding a
heatsink and/or by increasing airflow.
Tables 15, 16, and 17 show the maximum ambient temperature (T
A
) permitted without exceeding
T
C
for the PGA, MPBGA, and PQFP packages. The values are based on typical I
CC
and V
CC
of
+3.3 V, with a T
CASE
of +100C.
L13
NC
M10
XINT2
N7
TDO
P4
V
CC
L14
RDYRCV
M11
XINT0
N8
NC
P5
WIDTH0
M1
DT/R
M12
TMS
N9
XINT4
P6
WIDTH1
M2
V
CC
M13
TRST
N10
NC
P7
FAIL
M3
NC
M14
TCK
N11
XINT6
P8
NC
M4
NC
N1
W/R
N12
XINT1
P9
NC
M5
A3
N2
D/C
N13
XINT3
P10
NMI
M6
V
CC
N3
NC
N14
HOLD
P11
XINT7
M7
ALE
N4
NC
P1
NC
P12
XINT5
M8
VCC5
N5
A2
P2
ADS
P13
V
CC
M9
V
CC
N6
V
CC
P3
BLAST
P14
NC
Table 11.
196-Ball MPBGA Pinout -- In Pin Order (Sheet 2 of 2)
Pin
Signal
Pin
Signal
Pin
Signal
Pin
Signal
NOTE: Do not connect any external logic to pins marked NC (no connect pins).
Advance Information Datasheet
35
80960JA/JF/JD/JT 3.3 V Microprocessor
Table 12.
132-Lead PGA Package Thermal Characteristics
Thermal Resistance -- C/Watt
Parameter
Airflow -- ft./min (m/sec)
0
(0)
200
(1.01)
400
(2.03)
600
(3.04)
800
(4.06)
1000
(5.08)
JC
(Junction-to-Case)
0.7
0.7
0.7
0.7
0.7
0.7
CA
(Case-to-Ambient) (No Heatsink)
25
19
14
12
11
10
CA
(Case-to-Ambient) (Omnidirectional Heatsink)
15
9
6
5
4
4
CA
(Case-to-Ambient) (Unidirectional Heatsink)
16
8
6
5
4
4
NOTES:
1. This table applies to a PGA device plugged into a socket or soldered directly into a board.
2.
JA
=
JC
+
CA
3.
J-CAP
= 5.6C/W (approximate) (no heatsink)
4.
J-PIN
= 6.4C/W (inner pins) (approximate) (no heatsink)
5.
J-PIN
= 6.2C/W (outer pins) (approximate) (no heatsink)
6.
J-CAP
= 3C/W (approximate) (with heatsink)
7.
J-PIN
= 3.3C/W (inner pins) (approximate) (with heatsink)
8.
J-PIN
= 3.3C/W (outer pins) (approximate) (with heatsink)
Table 13.
196-Ball MPBGA Package Thermal Characteristics
Thermal Resistance -- C/Watt
Parameter
Airflow -- ft./min (m/sec)
0
(0)
200
(1.01)
400
(2.03)
600
(3.04)
800
(4.06)
1000
(5.08)
JC
(Junction-to-Case)
TBD
TBD
TBD
TBD
TBD
TBD
CA
(Case-to-Ambient) (No Heatsink)
TBD
TBD
TBD
TBD
TBD
TBD
CA
(Case-to-Ambient) (Omnidirectional Heatsink)
TBD
TBD
TBD
TBD
TBD
TBD
CA
(Case-to-Ambient) (Unidirectional Heatsink)
TBD
TBD
TBD
TBD
TBD
TBD
JC
JA
J-CAP
CA
J-PIN
TBD
80960JA/JF/JD/JT 3.3 V Microprocessor
36
Advance Information Datasheet
Table 14.
132-Lead PQFP Package Thermal Characteristics
Thermal Resistance -- C/Watt
Parameter
Airflow -- ft./min (m/sec)
0
(0)
50
(0.25)
100
(0.50)
200
(1.01)
400
(2.03)
600
(3.04)
800
(4.06)
JC
(Junction-to-Case)
4.1
4.3
4.3
4.3
4.3
4.7
4.9
CA
(Case-to-Ambient -No Heatsink)
23
19
18
16
14
11
9
NOTES:
1. This table applies to a PQFP device soldered directly into board.
2.
JA
=
JC
+
CA
3.
JL
= 13C/W (approx.)
4.
JB
= 13.5C/W (approx.)
Table 15.
Maximum T
A
at Various Airflows in C (80960JT)
Airflow-ft/min (m/sec)
f
CLKIN
(MHz)
0
(0)
200
(1.01)
400
(2.03)
600
(3.04)
800
(4.06)
1000
(5.07)
PQFP
Package
T
A
without Heatsink
33
25
62
71
73
79
76
82
81
86
85
88
88
91
PGA
Package
T
A
without Heatsink
33
25
58
68
68
75
76
82
80
84
81
86
83
87
T
A
with Omnidirectional
Heatsink
1
33
25
75
81
85
88
90
92
92
94
93
95
93
95
T
A
with Unidirectional
Heatsink
2
33
25
73
79
86
90
90
92
92
94
93
95
93
95
MPBGA
Package
T
A
without Heatsink
33
25
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
NOTES:
1. 0.248" high omnidirectional heatsink (AI alloy 6061, 41 mil fin width, 124 mil center-to-center fin spacing).
2. 0.250" high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 146 mil center-to-center fin spacing).
JB
JA
JC
JL
CA
Advance Information Datasheet
37
80960JA/JF/JD/JT 3.3 V Microprocessor
Table 16.
Maximum T
A
at Various Airflows in C (80960JD)
Airflow-ft/min (m/sec)
f
CLKIN
(MHz)
0
(0)
200
(1.01)
400
(2.03)
600
(3.04)
800
(4.06)
1000
(5.07)
PQFP
Package
T
A
without Heatsink
33
25
20
16.67
61
70
75
79
73
79
82
86
76
82
85
87
81
86
88
90
85
88
90
92
86
90
91
93
PGA
Package
T
A
without Heatsink
33
25
20
16.67
58
68
73
78
68
75
79
83
76
82
85
87
80
84
87
89
81
86
88
90
83
87
89
91
T
A
with Omnidirectional
Heatsink
1
33
25
20
16.67
75
81
84
87
85
88
90
92
90
92
93
95
92
94
95
96
93
95
96
96
93
95
96
96
T
A
with Unidirectional
Heatsink
2
33
25
20
16.67
73
79
82
86
86
90
91
93
90
92
93
95
92
94
95
96
93
95
96
96
93
96
96
96
MPBGA
Package
T
A
without Heatsink
25
20
16.67
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
NOTES:
1. 0.248" high omnidirectional heatsink (AI alloy 6061, 41 mil fin width, 124 mil center-to-center fin spacing).
2. 0.250" high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 146 mil center-to-center fin spacing).
Table 17.
Maximum T
A
at Various Airflows in C (80960JA/JF)
Airflow-ft/min (m/sec)
f
CLKIN
(MHz)
0
(0)
200
(1.01)
400
(2.03)
600
(3.04)
800
(4.06)
1000
(5.07)
PQFP
Package
For NG80960JA/JF
T
A
without Heatsink
33
25
16
79
84
89
86
89
92
87
90
93
90
92
95
92
94
96
93
94
96
For TG80960JA-25
T
A
without Heatsink
25
84
89
90
92
94
94
PGA
Package
T
A
without Heatsink
33
25
16
78
83
88
83
87
91
87
90
93
89
92
94
90
92
95
91
93
95
T
A
with Omnidirectional
Heatsink
1
33
25
16
87
90
93
92
94
96
95
96
97
96
97
98
96
97
98
96
97
98
T
A
with Unidirectional
Heatsink
2
33
25
16
86
89
92
93
94
96
95
96
97
96
97
98
96
97
98
96
97
98
MPBGA
Package
T
A
without Heatsink
33
25
16
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
NOTES:
1. 0.248" high omnidirectional heatsink (AI alloy 6061, 41 mil fin width, 124 mil center-to-center fin spacing).
2. 0.250" high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 146 mil center-to-center fin spacing).
80960JA/JF/JD/JT 3.3 V Microprocessor
38
Advance Information Datasheet
3.3
Thermal Management Accessories
The following is a list of suggested sources for 80960Jx thermal solutions. This is neither an
endorsement or a warranty of the performance of any of the listed products and/or companies.
3.3.1
Heatsinks
1. Thermalloy, Inc.
2021 West Valley View Lane
Dallas, TX 75234-8993
(972) 243-4321
2. Wakefield Engineering
60 Audubon Road
Wakefield, MA 01880
(617) 245-5900
3. Aavid Thermal Technologies, Inc.
One Kool Path
Laconia, NH 03247-0400
(603) 528-3400
Advance Information Datasheet
39
80960JA/JF/JD/JT 3.3 V Microprocessor
4.0
Electrical Specifications
4.1
Absolute Maximum Ratings
Warning:
Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage.
These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended
and extended exposure beyond the "Operating Conditions" may affect device reliability.
Note:
This document contains information on products in the sampling and initial production phases of
development. It is valid for the devices indicated in the revision history. The specifications within
this data sheet are subject to change without notice. Verify with your local Intel sales office that
you have the latest data sheet before finalizing a design.
4.2
Operating Conditions
Table 19 indicates the operating conditions for the 80960Jx.
Table 18.
Absolute Maximum Ratings
Parameter
Maximum Rating
Storage Temperature
65
o
C to +150
o
C
Case Temperature Under Bias
65
o
C to +110
o
C
Supply Voltage wrt. V
SS
0.5 V to + 4.6 V
Voltage on VCC5 wrt. V
SS
0.5 V to + 6.5 V
Voltage on Other Pins wrt. V
SS
0.5 V to V
CC
+ 0.5 V
Table 19.
80960Jx Operating Conditions
Symbol
Parameter
Min
Max
Units
Notes
V
CC
Supply Voltage
3.15
3.45
V
VCC5
Input Protection Bias
3.15
5.5
V
(1)
f
CLKIN
Input Clock Frequency
80960JT-100
80960JT-75
80960JD-66
80960JD-50
80960JD-40
80960JD-33
80960JA/JF-33
80960JA/JF-25
80960JA/JF-16
15
15
12
12
12
12
12
12
12
33.3
25
33.3
25
20
16.67
33.3
25
16
MHz
T
C
Operating Case Temperature
PGA, MPBGA, and PQFP
Extended temp PQFP (TG80960JA-25)
0
-40
100
100
C
NOTE:
1. See Section 4.4, "VCC5 Pin Requirements (VDIFF)" on page 40.
80960JA/JF/JD/JT 3.3 V Microprocessor
40
Advance Information Datasheet
4.3
Connection Recommendations
For clean on-chip power distribution, V
CC
and V
SS
pins separately feed the device's functional units.
Power and ground connections must be made to all 80960Jx power and ground pins. On the circuit board,
every V
CC
pin should connect to a power plane and every V
SS
pin should connect to a ground plane. Place
liberal decoupling capacitance near the 80960Jx, since the processor can cause transient power surges.
Pay special attention to the Test Reset (TRST) pin. It is essential that the JTAG Boundary Scan Test Access
Port (TAP) controller initializes to a known state whether it will be used or not. If the JTAG Boundary Scan
function will be used, connect a pulldown resistor between the TRST pin and V
SS
. If the JTAG Boundary
Scan function will not be used (even for board-level testing), connect the TRST pin to V
SS
.
Do not connect the TDI, TDO, and TCK pins if the TAP Controller will not be used.
Note:
Pins identified as NC must not be connected in the system.
4.4
VCC5 Pin Requirements (VDIFF)
In 3.3 V only systems where the 80960Jx input pins are driven from 3.3 V logic, connect the VCC5
pin directly to the 3.3 V V
CC
plane.
In mixed voltage systems where the processor is powered by 3.3 V and interfaces with 5 V
components, VCC5 must be connected to 5 V. This allows proper 5 V tolerant buffer operation,
and prevents damage to the input pins. The voltage differential between the 80960Jx VCC5 pin and
its 3.3 V V
CC
pins must not exceed 2.25 V. If this requirement is not met, current flow through the
pin may exceed the value at which the processor is damaged. Instances when the voltage can
exceed 2.25 V is during power up or power down, where one source reaches its level faster than the
other, briefly causing an excess voltage differential. Another instance is during steady-state
operation, where the differential voltage of the regulator (provided a regulator is used) cannot be
maintained within 2.25 V. Two methods are possible to prevent this from happening:
Use a regulator that is designed to prevent the voltage differential from exceeding 2.25 V, or,
As shown in Figure 8, place a 100
resistor in series with the VCC5 pin to limit the current
through VCC5.
If the regulator cannot prevent the 2.25 V differential, the addition of the resistor is a simple and
reliable method for limiting current. The resistor can also prevent damage in the case of a power
failure, where the 5 V supply remains on and the 3.3 V supply goes to zero.
Figure 8.
VCC5 Current-Limiting Resistor
+5 V (0.25 V)
VCC5 Pin
100
(5%, 0.5 W)
Table 20.
VDIFF Parameters
Symbol
Parameter
Min
Max
Units
Notes
VDIFF
VCC5-V
CC
Difference
2.25
V
VCC5 input should not exceed V
CC
by more than 2.25 V
during power-up and power-down, or during
steady-state operation.
Advance Information Datasheet
41
80960JA/JF/JD/JT 3.3 V Microprocessor
4.5
VCCPLL Pin Requirements
To reduce clock skew on the i960 80960Jx processor, the VCCPLL pin for the Phase Lock Loop
(PLL) circuit is isolated on the pinout. The lowpass filter, as shown in Figure 9, reduces noise
induced clock jitter and its effects on timing relationships in system designs. The 4.7 F capacitor
must be low ESR solid tantalum; the 0.01 F capacitor must be of the type X7R and the node
connecting VCCPLL must be as short as possible.
Figure 9.
VCCPLL Lowpass Filter
100
V
CC
(Board Plane)
VCCPLL
(On 80960Jx)
(80960JA/JF/JD)
F_CA078A
0.01 F
4.7 F
+
10
(80960JT)
80960JA/JF/JD/JT 3.3 V Microprocessor
42
Advance Information Datasheet
4.6
DC Specifications
Table 21.
80960Jx DC Characteristics
Symbol
Parameter
Min
Typ
Max
Units
Notes
V
IL
Input Low Voltage
-0.3
0.8
V
V
IH
Input High Voltage
2.0
VCC5 + 0.3
V
V
OL
Output Low Voltage
0.4
0.2
V
V
I
OL
= 3 mA
I
OL
= 100 A
V
OH
Output High Voltage
2.4
V
CC
- 0.2
V
I
OH
= -1 mA
I
OH
= -200 A
V
OLP
Output Ground Bounce
<0.8
V
(1,2)
C
IN
Input Capacitance
PGA
PQFP
MPBGA
15
15
15
pF
f
CLKIN
= f
MIN
(2)
C
OUT
I/O or Output Capacitance
PGA
PQFP
MPBGA
15
15
15
pF
f
CLKIN
= f
MIN
(2)
C
CLK
CLKIN Capacitance
PGA
PQFP
MPBGA
15
15
15
pF
f
CLKIN
= f
MIN
(2)
NOTES:
1. Typical is measured with V
CC
= 3.3 V and temperature = 25 C.
2. Not tested.
Table 22.
80960Jx I
CC
Characteristics (Sheet 1 of 2)
Symbol
Parameter
Typ
Max
Units
Notes
I
LI1
Input Leakage Current for each pin
except TCK, TDI, TRST and TMS
1
A
0
V
IN
V
CC
I
LI2
Input Leakage Current for TCK, TDI,
TRST and TMS
-140
-250
A
V
IN
= 0.45V (1)
I
LO
Output Leakage Current
1
A
0.4
V
OUT
V
CC
R
pu
Internal Pull-UP Resistance for
ONCE, TMS, TDI and TRST
20
30
k
I
CC
Active
(Power Supply)
80960JT-100
80960JT-75
80960JD-66
80960JD-50
80960JD-40
80960JD-33
80960JA/JF-33
80960JA/JF-25
80960JA/JF-16
600
450
580
447
367
310
320
260
194
mA
(2,3)
(2,3)
(2,3)
(2,3)
(2,3)
(2,3)
(2,3)
(2,3)
(2,3)
Advance Information Datasheet
43
80960JA/JF/JD/JT 3.3 V Microprocessor
I
CC
Active
(Thermal)
80960JT-100
80960JT-75
80960JD-66
80960JD-50
80960JD-40
80960JD-33
80960JA/JF-33
80960JA/JF-25
80960JA/JF-16
500
380
510
390
320
260
271
215
152
mA
(2,4)
(2,4)
(2,4)
(2,4)
(2,4)
(2,4)
(2,4)
(2,4)
(2,4)
I
CC
Test
(Power modes)
Reset mode
80960JT-100
80960JT-75
80960JD-66
80960JD-50
80960JD-40
80960JD-33
80960JA/JF-33
80960JA/JF-25
80960JA/JF-16
Halt mode
80960JT-100
80960JT-75
80960JD-66
80960JD-50
80960JD-40
80960JD-33
80960JA/JF-33
80960JA/JF-25
80960JA/JF-16
ONCE mode
450
400
475
425
345
300
250
200
150
50
40
50
40
34
34
31
26
21
10
mA
(5)
(5)
(5)
(5)
(5)
(5)
(5)
(5)
(5)
(5)
(5)
(5)
(5)
(5)
(5)
(5)
(5)
(5)
I
CC5
Current on the
VCC5 Pin
80960JT-100
80960JT-75
80960JD-66
80960JD-50
80960JD-40
80960JD-33
80960JA/JF-33
80960JA/JF-25
80960JA/JF-16
200
A
(6)
(6)
(6)
(6)
(6)
(6)
(6)
(6)
(6)
NOTES:
1. These pins have internal pullup devices. Typical leakage current is not tested.
2. Measured with device operating and outputs loaded to the test condition in Figure 10 "AC Test Load" on
page 47.
3. I
CC
Active (Power Supply) value is provided for selecting your system's power supply. It is measured using
one of the worst case instruction mixes with V
CC
= 3.45 V. This parameter is characterized but not tested.
4. I
CC
Active (Thermal) value is provided for your system's thermal management. Typical I
CC
is measured with
V
CC
=3.3 V and temperature = 25C. This parameter is characterized but not tested.
5. I
CC
Test (Power modes) refers to the I
CC
values that are tested when the 80960JD is in Reset mode, Halt
mode or ONCE mode with V
CC
= 3.45 V.
6. I
CC5
is tested at V
CC
= 3.3 V, VCC5 = 5.25 V.
Table 22.
80960Jx I
CC
Characteristics (Sheet 2 of 2)
Symbol
Parameter
Typ
Max
Units
Notes
80960JA/JF/JD/JT 3.3 V Microprocessor
44
Advance Information Datasheet
4.7
AC Specifications
The 80960Jx AC timings are based upon device characterization.
Table 23.
80960Jx AC Characteristics (Sheet 1 of 3)
Symbol
Parameter
Min
Max
Unit
Notes
INPUT CLOCK TIMINGS
T
F
CLKIN Frequency
80960JT-100
80960JT-75
80960JD-66
80960JD-50
80960JD-40
80960JD-33
80960JA/JF-33
80960JA/JF-25
80960JA/JF-16
15
15
12
12
12
12
12
12
12
33.3
25
33.3
25
20
16.67
33.3
25
16
MHz
T
C
CLKIN Period
80960JT-100
80960JT-75
80960JD-66
80960JD-50
80960JD-40
80960JD-33
80960JA/JF-33
80960JA/JF-25
80960JA/JF-16
30
40
30
40
50
60
30
40
62.5
66.7
66.7
83.3
83.3
83.3
83.3
83.3
83.3
83.3
ns
T
CS
CLKIN Period Stability
250
ps
(1, 2)
T
CH
CLKIN High Time
8
ns
Measured at 1.5 V
(1)
T
CL
CLKIN Low Time
8
ns
Measured at 1.5 V
(1)
T
CR
CLKIN Rise Time
4
ns
0.8 V to 2.0 V (1)
T
CF
CLKIN Fall Time
4
ns
2.0 V to 0.8 V (1)
SYNCHRONOUS OUTPUT TIMINGS
T
OV1
Output Valid Delay, Except ALE/ALE
Inactive and DT/R for 3.3 V input signals
Same as above, but for 5.5 V input signals
2.5
2.5
13.5
16.5
ns
(3)
T
OV2
Output Valid Delay, DT/R
80960JT
80960JD
80960JA/JF
0.5T
C
+ 7
0.5T
C
+ 7
0.5T
C
+ 4
0.5T
C
+ 9
0.5T
C
+ 9
0.5T
C
+ 18
ns
T
OF
Output Float Delay
2.5
13.5
ns
(4)
NOTE:
See Table 24 on page 47 for note definitions for this table.
Advance Information Datasheet
45
80960JA/JF/JD/JT 3.3 V Microprocessor
SYNCHRONOUS INPUT TIMINGS
T
IS1
Input Setup to CLKIN -- AD31:0, NMI,
XINT7:0
80960JT
80960JD
80960JA/JF
6
6
9
ns
(5)
T
IH1
Input Hold from CLKIN -- AD31:0, NMI,
XINT7:0
80960JT
80960JD
80960JA/JF
1.5
1.5
1.0
ns
(5)
T
IS2
Input Setup to CLKIN -- RDYRCV and
HOLD
80960JT
80960JD
80960JA/JF
6.5
6.5
10.0
ns
(6)
T
IH2
Input Hold from CLKIN -- RDYRCV and
HOLD
1
ns
(6)
T
IS3
Input Setup to CLKIN -- RESET
80960JT
80960JD
80960JA/JF
7
7
8
ns
(7)
T
IH3
Input Hold from CLKIN -- RESET
80960JT
80960JD
80960JA/JF
2
2
1
ns
(7)
T
IS4
Input Setup to RESET -- ONCE, STEST
80960JT
80960JD
80960JA/JF
7
7
8
ns
(8)
T
IH4
Input Hold from RESET -- ONCE, STEST
80960JT
80960JD
80960JA/JF
2
2
1
ns
(8)
RELATIVE OUTPUT TIMINGS
T
LX
Address Valid to ALE/ALE Inactive
For 3.3 V Data Input Signals
For 5.0 V Data Input Signals
0.5T
C
- 5
0.5T
C
- 8
ns
(9)
T
LXL
ALE/ALE Width
0.5T
C
- 7
ns
Equal Loading (9)
T
LXA
Address Hold from ALE/ALE Inactive
T
DXD
DT/R Valid to DEN Active
BOUNDARY SCAN TEST SIGNAL TIMINGS
T
BSF
TCK Frequency
0.5T
F
MHz
T
BSCH
TCK High Time
15
ns
Measured at 1.5 V
(1)
T
BSCL
TCK Low Time
15
ns
Measured at 1.5 V
(1)
T
BSCR
TCK Rise Time
5
ns
0.8 V to 2.0 V (1)
T
BSCF
TCK Fall Time
5
ns
2.0 V to 0.8 V (1)
Table 23.
80960Jx AC Characteristics (Sheet 2 of 3)
Symbol
Parameter
Min
Max
Unit
Notes
NOTE:
See Table 24 on page 47 for note definitions for this table.
80960JA/JF/JD/JT 3.3 V Microprocessor
46
Advance Information Datasheet
T
BSIS1
Input Setup to TCK -- TDI, TMS
4
ns
T
BSIH1
Input Hold from TCK -- TDI, TMS
6
ns
T
BSOV1
TDO Valid Delay
3
30
ns
(1,10)
T
BSOF1
TDO Float Delay
3
30
ns
(1,10)
T
BSOV2
All Outputs (Non-Test) Valid Delay
3
30
ns
(1,10)
T
BSOF2
All Outputs (Non-Test) Float Delay
3
30
ns
(1,10)
T
BSIS2
Input Setup to TCK -- All Inputs
(Non-Test)
4
ns
T
BSIH2
Input Hold from TCK -- All Inputs
(Non-Test)
6
ns
Table 23.
80960Jx AC Characteristics (Sheet 3 of 3)
Symbol
Parameter
Min
Max
Unit
Notes
NOTE:
See Table 24 on page 47 for note definitions for this table.
Advance Information Datasheet
47
80960JA/JF/JD/JT 3.3 V Microprocessor
4.7.1
AC Test Conditions and Derating Curves
The AC Specifications in Section 4.7, "AC Specifications" are tested with the 50 pF load indicated
in Figure 10. Figure 11 shows how timings and output rise and fall times vary with load
capacitance.
Table 24.
Note Definitions for Table 23, 80960Jx AC Characteristics (pg. 44)
NOTES:
1. Not tested.
2. To ensure a 1:1 relationship between the amplitude of the input jitter and the internal clock, the jitter
frequency spectrum should not have any power peaking between 500 KHz and 1/3 of the CLKIN
frequency.
3. Inactive ALE/ALE refers to the falling edge of ALE and the rising edge of ALE. For inactive ALE/ALE
timings, refer to Relative Output Timings in this table.
4. A float condition occurs when the output current becomes less than I
OL
. Float delay is not tested, but is
designed to be no longer than the valid delay.
5. AD31:0 are synchronous inputs. Setup and hold times must be met for proper processor operation. NMI
and XINT7:0 may be synchronous or asynchronous. Meeting setup and hold time guarantees recognition
at a particular clock edge. For asynchronous operation, NMI and XINT7:0 must be asserted for a
minimum of two CLKIN periods to guarantee recognition.
6. RDYRCV and HOLD are synchronous inputs. Setup and hold times must be met for proper processor
operation.
7. RESET may be synchronous or asynchronous. Meeting setup and hold time guarantees recognition at a
particular clock edge.
8. ONCE and STEST must be stable at the rising edge of RESET for proper operation.
9. Guaranteed by design. May not be 100% tested.
10.Relative to falling edge of TCK.
11.Worst-case T
OV
condition occurs on I/O pins when pins transition from a floating high input to driving a
low output state. The Address/Data Bus pins encounter this condition between the last access of a read,
and the address cycle of a following write. 5 V signals take 3 ns longer to discharge than 3.3 V signals at
50 pF loads.
Figure 10.
AC Test Load
Output Pin
C
L
= 50 pF for all signals
C
L
80960JA/JF/JD/JT 3.3 V Microprocessor
48
Advance Information Datasheet
Note:
The T
LX
Derating curve applies only when an imbalance in the capacitive load occurs between the
AD bus and ALE. The T
LX
derating is based on a 50 pF load on ALE. The derating applies to ALE
and ALE.
Figure 11.
Output Delay or Hold vs. Load Capacitance
Figure 12.
T
LX
vs. AD Bus Load Capacitance
AC Timings vs. Load Capacitance
nom + 0
nom + 1
nom + 2
nom + 3
nom + 4
nom + 5
nom + 6
nom + 7
50
100
150
AD Bus Capacitive Load (pF)
Tov (ns)
Rising
Falling
Rise and Fall times are identical.
AC Timings vs. Load Capacitance
nom + 0
nom + 1
nom + 2
nom + 3
nom + 4
nom + 5
nom + 6
nom + 7
50
100
150
AD Bus Capacitive Load (pF)
Tlx (ns)
Rising
Falling
Rise and Fall times are identical.
Advance Information Datasheet
49
80960JA/JF/JD/JT 3.3 V Microprocessor
Figure 13.
80960JA/JF I
CC
Active (Power Supply) vs. Frequency
Figure 14.
80960JA/JF I
CC
Active (Thermal) vs. Frequency
Icc Active (Power Supply) vs Frequency
0
50
100
150
200
250
300
350
12
15
18
21
24
27
30
33
CLKIN Frequency MHz
Icc Active (Pow
e
r Supply) (mA)
I
CC
Active (Thermal) vs. Frequency
I
CC

Active (
T
hermal) (
mA)
Icc Active (Thermal) vs. Frequency
0
50
100
150
200
250
300
12
15
18
21
24
27
30
33
CLKIN Frequency MHz
Icc A
c
tive (Ther
m
al) (mA
)
80960JA/JF/JD/JT 3.3 V Microprocessor
50
Advance Information Datasheet
Figure 15.
80960JD I
CC
Active (Power Supply) vs. Frequency
Figure 16.
80960JD I
CC
Active (Thermal) vs. Frequency
Icc Active (Power Supply) vs. Frequency
0
100
200
300
400
500
600
12
15
18
21
24
27
30
33
CLKIN Frequency (MHz)
Icc A
c
tive (Pow
e
r Supply) (mA
)
Icc Active (Thermal) vs. Frequency
0
100
200
300
400
500
600
12
15
18
21
24
27
30
33
CLKIN Frequency (MHz)
Icc A
c
tive (Ther
m
al) (mA
)
Advance Information Datasheet
51
80960JA/JF/JD/JT 3.3 V Microprocessor
Figure 17.
80960JT I
CC
Active (Power Supply) vs. Frequency
Figure 18.
80960JT I
CC
Active (Thermal) vs. Frequency
Icc Active (Power Supply) vs. Frequency
0
100
200
300
400
500
600
15
18
21
24
27
30
33
CLKIN Frequency (MHz)
Icc Active (Pow
e
r Supply) (mA)
Icc Active (Thermal) vs. Frequency
0
200
400
600
800
1000
15
18
21
24
27
30
33
CLKIN Frequency (MHz)
Icc A
c
tive (Ther
m
al) (mA
)
80960JA/JF/JD/JT 3.3 V Microprocessor
52
Advance Information Datasheet
4.7.2
AC Timing Waveforms
Figure 19.
CLKIN Waveform
Figure 20.
T
OV1
Output Delay Waveform
2.0V
1.5V
0.8V
T
CF
T
CH
T
CL
T
C
T
CR
CLKIN
AD31:0,
ALE (active),
ALE (active),
ADS, A3:2,
BE3:0,
WIDTH/HLTD1:0,
D/C, W/R, DEN,
BLAST, LOCK,
HOLDA, BSTAT, FAIL
1.5V
1.5V
1.5V
T
OV1
Advance Information Datasheet
53
80960JA/JF/JD/JT 3.3 V Microprocessor
Figure 21.
T
OF
Output Float Waveform
Figure 22.
T
IS1
and T
IH1
Input Setup and Hold Waveform
Figure 23.
T
IS2
and T
IH2
Input Setup and Hold Waveform
1.5V
1.5V
T
OF
CLKIN
AD31:0,
ALE, ALE
ADS, A3:2,
BE3:0,
WIDTH/HLTD1:0,
D/C, W/R, DT/R,
DEN, BLAST, LOCK
CLKIN
AD31:0
1.5V
1.5V
1.5V
T
IS1
T
IH1
1.5V
NMI
XINT7:0
Valid
CLKIN
Valid
HOLD,
1.5V
1.5V
1.5V
1.5V
1.5V
T
IS2
T
IH2
RDYRCV
80960JA/JF/JD/JT 3.3 V Microprocessor
54
Advance Information Datasheet
Figure 24.
T
IS3
and T
IH3
Input Setup and Hold Waveform
Figure 25.
T
IS4
and T
IH4
Input Setup and Hold Waveform
CLKIN
RESET
1.5V
1.5V
T
IH3
T
IS3
RESET
Valid
ONCE,
T
IS4
T
IH4
STEST
Advance Information Datasheet
55
80960JA/JF/JD/JT 3.3 V Microprocessor
Figure 26.
T
LX
, T
LXL
and T
LXA
Relative Timings Waveform
Figure 27.
DT/R and DEN Timings Waveform
CLKIN
ALE
1.5V
1.5V
1.5V
ALE
1.5V
1.5V
AD31:0
Valid
T
LXA
T
a
T
w
/T
d
1.5V
Valid
1.5V
T
LXL
T
LX
CLKIN
DT/R
1.5V
1.5V
1.5V
DEN
Valid
T
DXD
T
a
T
w
/T
d
T
OV1
T
OV2
80960JA/JF/JD/JT 3.3 V Microprocessor
56
Advance Information Datasheet
Figure 28.
TCK Waveform
Figure 29.
T
BSIS1
and T
BSIH1
Input Setup and Hold Waveforms
Figure 30.
T
BSOV1
and T
BSOF1
Output Delay and Output Float Waveform
2.0V
1.5V
0.8V
T
BSCH
T
BSCL
T
BSCF
T
BSCR
TCK
TMS
1.5V
1.5V
1.5V
TDI
1.5V
1.5V
Valid
T
BSIS1
T
BSIH1
TCK
1.5V
1.5V
1.5V
T
BSOV1
TDO
Valid
T
BSOF1
1.5V
Advance Information Datasheet
57
80960JA/JF/JD/JT 3.3 V Microprocessor
Figure 31.
T
BSOV2
and T
BSOF2
Output Delay and Output Float Waveform
Figure 32.
T
BSIS2
and T
BSIH2
Input Setup and Hold Waveform
TCK
1.5V
1.5V
1.5V
T
BSOV2
Non-Test
Valid
T
BSOF2
Outputs
1.5V
TCK
Non-Test
1.5V
1.5V
1.5V
1.5V
1.5V
Valid
T
BSIS2
T
BSIH2
Inputs
80960JA/JF/JD/JT 3.3 V Microprocessor
58
Advance Information Datasheet
5.0
Bus Functional Waveforms
Figure 33 through Figure 38 illustrate typical 80960Jx bus transactions. Figure 39 depicts the bus
arbitration sequence. Figure 40 illustrates the processor reset sequence from the time power is
applied to the device. Figure 41 illustrates the processor reset sequence when the processor is in
operation. Figure 42 illustrates the processor ONCE sequence from the time power is applied to the
device. Figure 44 and Figure 45 also show accesses on 32-bit buses. Table 27 through Table 29
summarize all possible combinations of bus accesses across 8-, 16-, and 32-bit buses according to
data alignment.
Figure 33.
Non-Burst Read and Write Transactions Without Wait States, 32-Bit Bus
CLKIN
AD31:0
ALE
ADS
A3:2
BE3:0
WIDTH1:0
D/C
W/R
DT/R
DEN
RDYRCV
BLAST
ADDR
D
In
Invalid
ADDR
DATA Out
10
10
T
a
T
d
T
r
T
i
T
i
T
a
T
d
T
r
T
i
T
i
F_JF030A
Advance Information Datasheet
59
80960JA/JF/JD/JT 3.3 V Microprocessor
Figure 34.
Burst Read and Write Transactions Without Wait States, 32-Bit Bus
ADDR
D
D
ADDR
DATA DATA DATA
DATA
1 0
1 0
CLKIN
AD31:0
ALE
ADS
A3:2
BE3:0
WIDTH1:0
D/C
W/R
BLAST
DT/R
DEN
RDYRCV
T
A
T
D
T
D
T
R
T
A
T
D
T
D
T
D
T
D
T
R
In
In
Out
Out
Out
Out
00 or 10
01 or 11
00
01
10
11
80960JA/JF/JD/JT 3.3 V Microprocessor
60
Advance Information Datasheet
Figure 35.
Burst Write Transactions With 2,1,1,1 Wait States, 32-Bit Bus
ADDR
DATA
1 0
DATA
DATA
DATA
CLKIN
AD31:0
ALE
ADS
A3:2
BE3:0
WIDTH1:0
D/C
W/R
BLAST
DT/R
DEN
RDYRCV
T
A
T
W
T
W
T
D
T
W
T
D
T
W
T
D
T
W
T
D
T
R
Out
Out
Out
Out
F_JF032A
0 0
0 1
1 0
1 1
Advance Information Datasheet
61
80960JA/JF/JD/JT 3.3 V Microprocessor
Figure 36.
Burst Read and Write Transactions Without Wait States, 8-Bit Bus
ADDR
D
D
ADDR
DATA DATA DATA
DATA
CLKIN
AD31:0
ALE
ADS
A3:2
BE1/A1
WIDTH1:0
D/C
W/R
BLAST
DT/R
DEN
RDYRCV
T
A
T
D
T
D
T
R
T
A
T
D
T
D
T
D
T
D
T
R
00,01,10 or 11
00,01,10 or 11
00
01
10
11
00
00
BE0/A0
In
In
Out
Out
Out
Out
F_JF033A
00 or 10
01 or
11
80960JA/JF/JD/JT 3.3 V Microprocessor
62
Advance Information Datasheet
Figure 37.
Burst Read and Write Transactions With 1, 0 Wait States and Extra Tr State on
Read, 16-Bit Bus
ADDR
D
D
ADDR
DATA
DATA
CLKIN
AD31:0
ALE
ADS
A3:2
BE3/BHE
WIDTH1:0
D/C
W/R
BLAST
DT/R
DEN
RDYRCV
T
W
T
D
T
D
T
R
T
R
T
A
T
W
T
D
T
D
T
R
00,01,10, or 11
00,01,10, or 11
T
A
BE0/BLE
BE1/A1
01
01
0
1
0
1
Out
Out
In
In
F_JF034A
Advance Information Datasheet
63
80960JA/JF/JD/JT 3.3 V Microprocessor
Figure 38.
Double Word Read Bus Request, Misaligned One Byte From
Quad Word Boundary, 32-Bit Bus, Little Endian
T
A
T
D
T
R
T
A
T
D
T
R
T
A
T
D
T
R
T
A
T
D
T
R
CLKIN
AD31:0
ALE
ADS
A3:2
BE3:0
WIDTH1:0
D/C
W/R
BLAST
DT/R
DEN
RDYRCV
00
00
01
10
1 1 0 1
0 0 1 1
0 0 0 0
1 1 1 0
1 0
Valid
A
A
A
D
A
D
In
In
D
In
D
In
80960JA/JF/JD/JT 3.3 V Microprocessor
64
Advance Information Datasheet
Figure 39.
HOLD/HOLDA Waveform For Bus Arbitration
CLKIN
Valid
Outputs:
AD31:0,
ALE, ALE,
ADS, A3:2,
BE3:0,
WIDTH/HLTD1:0,
D/C, W/R,
DT/R, DEN,
BLAST, LOCK
HOLD
HOLDA
~ ~
~ ~
~ ~
~ ~
(Note)
NOTE: HOLD is sampled on the rising edge of CLKIN. The processor asserts HOLDA to grant the bus on the
same edge in which it recognizes HOLD if the last state was T
i
or the last T
r
of a bus transaction. Similarly,
Valid
~ ~
~ ~
~ ~
~ ~
~ ~
T
I
or T
R
T
H
T
H
T
I
or T
A
the processor deasserts HOLDA on the same edge in which it recognizes the deassertion of HOLD.
Advance Information Datasheet
65
80960JA/JF/JD/JT 3.3 V Microprocessor
Figure 40.
Cold Reset Waveform
CL
KIN
AL
E
, A
D
S
,
AL
E
,W
/R
,
RE
SET
LOC
K
/
ST
EST
V
CC
DT
/R
FA
I
L
~
~
~
~
~
~
~
~
~
~
~
~
~
~
Fi
r
s
t
Bu
s
Act
i
vit
y
~
~
~
~
~
~
~
~
~
~
~
~
V
a
lid
~
~
(Ou
t
pu
t)
O
NCE
A
D
3
1
:0
, A
3
:2
,D/C
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
(
N
ote
1)
~
~
~
~
Id
l
e
(N
o
t
e
2)
HO
L
D
~
~
V
a
l
i
d
In
put
(N
o
t
e 3
)
~
~
~
~
~
~
~
~
BE3
:
0
, DE
N
,
BL
AST
~
~
~
~
~
~
V
a
lid Outp
ut (Not
e
3
)
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
HO
L
D
A
V
1
0
,0
0
0
CL
KIN p
e
r
i
o
d
s
,
fo
r
PL
L
sta
b
iliza
t
io
n
.
CC a
n
d
CL
K
I
N st
a
b
le
t
o
RESET

Hig
h
,
m
i
n
i
m
u
m
~
~
B
u
i
l
t
-
i
n se
l
f
-te
s
t (
N
ote
4)
(
I
np
ut)
~
~
1
.
T
he
pro
c
esso
r a
sser
t
s F
A
IL
du
r
i
ng
bu
i
l
t
-i
n s
e
l
f
-
t
es
t
.
If
s
e
l
f
-
t
e
s
t
pa
s
s
e
s
,
t
h
e
F
A
IL
p
i
n
i
s
d
eas
sert
ed.
Th
e p
r
oce
ssor
al
so
as
sert
s F
A
IL
du
ring
th
e bu
s co
nfid
ence
te
st. If
the
bu
s co
nfide
n
ce
tes
t
pa
sses,
F
A
IL
i
s
de
asse
rte
d
a
n
d
the
pr
oce
ssor
beg
i
n
s u
s
er
pr
og
ram
exe
c
ut
i
o
n.
No
te
s:
2
.
If
the
pro
c
ess
o
r
fai
l
s
b
u
i
l
t
-
i
n
se
l
f
-te
s
t, i
t

i
n
i
t
i
a
t
e
s o
ne
dum
my
l
oad
bu
s ac
cess.
Th
e l
o
a
d
a
d
d
r
ess
i
ndi
c
a
tes
the
po
i
n
t o
f
s
e
l
f-te
st fa
ilure
.
3
.
S
i
nce
th
e b
u
s i
s

i
d
l
e
,
hol
d
re
que
sts a
r
e
hon
or
ed
dur
i
ng
rese
t a
nd
bui
l
t
-
i
n se
l
f
-t
est.
~
~
~
~
WI
DT
H/
HL
T
D
1
:
0
4
.
W
h
en
sel
e
ct
ed,
bu
i
l
t
-
i
n

sel
f
t
e
st r
e
q
u
i
r
e
s
ap
pro
x
i
m
a
t
el
y
(i
n
C
L
K
I
N
p
e
ri
o
d
s)
: 39
3,0
00
for
80
960
JT
, 2
07,
000
fo
r 8
096
0JD
,

and
4
1
4
,0
00
for
809
60
JA
/JF
.
~
~
80960JA/JF/JD/JT 3.3 V Microprocessor
66
Advance Information Datasheet
Figure 41.
Warm Reset Waveform
~
~
~
~
Ma
x
i
mu
m R
E
S
E
T
Lo
w to
Rese
t S
t
a
t
e
4
C
L
KIN Cycle
s
~
~
~
~
~
~
CL
K
I
N
A
D
31
:0,
A
3
:2,
D/C
ST
EST
RE
SET
~
~
~
~
RESET
H
i
gh to
F
i
rst

B
u
s
M
i
n
i
m
u
m
RESET
Lo
w
T
i
m
e
1
5
CL
KI
N Cycle
s
~
~
~
~
~
~
~
~
HO
L
D
A
~
~
~
~
~
~
~
~
V
a
lid
AL
E
, A
D
S
, B
E
3
:0
,
DEN
,
BL
AST
AL
E,
W/
R
,DT
/
R
,
BST
A
T
,
WIDT
H/HL
T
D
1
:
0
~
~
~
~
FA
I
L
~
~
~
~
~
~
HO
L
D
~
~
~
~
~
~
~
~
~
~
LO
C
K
/ON
CE
~
~
~
~
~
~
~
~
~
~
Activit
y
:
~
~
~
~
~
~
~
~
80
96
0JD
-
46
C
L
K
I
N
8
096
0JA
/
J
F
-
92
C
L
K
I
N
Cycle
s
Cy
cle
s
80
96
0JT
- 2
6
C
L
K
I
N
Cycle
s
Advance Information Datasheet
67
80960JA/JF/JD/JT 3.3 V Microprocessor
Figure 42.
Entering the ONCE State
CL
KIN
AL
E
, A
D
S
,
AL
E
,
W/
R
,
RESET
LOC
K
/
V
CC
DT
/R
, WIDT
H/HL
T
D
1
:
0
FA
I
L
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
ONC
E
A
D
3
1
:0
, A
3
:
2
,
D/C
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
HO
L
D
~
~
~
~
~
~
BE3
:
0
, DE
N
,
BL
AST
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
HOL
D
A
~
~
~
~
(I
npu
t)
mi
ni
m
u
m
10
,
0
0
0
C
L
K
I
N
pe
ri
od
s
,
f
o
r P
L
L
V
CC
a
n
d
CL
KI
N st
a
b
le

t
o
RESET
H
i
gh,
~
~
~
~
~
~
~
~
~ ~
~
~
(
N
ot
e 1)
1
.
ONCE
m
o
d
e
m
a
y b
e
e
n
t
e
r
e
d
p
r
io
r

t
o
t
h
e
r
i
sin
g
e
d
g
e

o
f
RESET
: O
NCE
i
n
p
u
t i
s

not
l
a
tch
ed
unt
i
l

the
ri
si
n
g
ed
ge
of
R
E
S
E
T
.
NO
T
ES:
CLK
I
N m
a
y n
o
t
be
allowe
d to
floa
t.
~
~
~
~
ST
EST
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
2.
Th
e O
N
C
E
i
npu
t m
a
y b
e
r
e
m
o
ve
d af
ter
the
pr
oce
ssor
en
ter
s
ON
C
E
M
o
d
e
.
~
~
s
t
a
b
i
liza
t
io
n
.
It m
u
st
be
dr
i
v
en
hi
gh
or
l
o
w
o
r
co
nti
n
ue
to r
u
n
.
80960JA/JF/JD/JT 3.3 V Microprocessor
68
Advance Information Datasheet
5.1
Basic Bus States
The bus has five basic bus states: idle (Ti), address (Ta), wait/data (Tw/Td), recovery (Tr), and hold
(Th). During system operation, the processor continuously enters and exits different bus states.
The bus occupies the idle (Ti) state when no address/data transactions are in progress and when RESET is
asserted. When the processor needs to initiate a bus access, it enters the Ta state to transmit the address.
Following a Ta state, the bus enters the Tw/Td state to transmit or receive data on the address/data
lines. Assertion of the RDYRCV input signal indicates completion of each transfer. When data is
not ready, the processor can wait as long as necessary for the memory or I/O device to respond.
After the data transfer, the bus exits the Tw/Td state and enters the recovery (Tr) state. In the case of a
burst transaction, the bus exits the Td state and re-enters the Td/Tw state to transfer the next data word.
The processor asserts the BLAST signal during the last Tw/Td states of an access. Once all data words
transfer in a burst access (up to four), the bus enters the Tr state to allow devices on the bus to recover.
The processor remains in the Tr state until RDYRCV is deasserted. When the recovery state
completes, the bus enters the Ti state if no new accesses are required. If an access is pending, the
bus enters the Ta state to transmit the new address.
Figure 43.
Bus States with Arbitration
Ti -- IDLE STATE
Ta -- ADDRESS STATE
Tw / Td -- WAIT/DATA STATE
Tr -- RECOVERY STATE
Th -- HOLD STATE
To -- ONCE STATE
READY -- RDYRCV ASSERTED
NOT READY -- RDYRCV NOT ASSERTED
BURST -- BLAST NOT ASSERTED
NO BURST -- BLAST ASSERTED
RECOVERED -- RDYRCV NOT ASSERTED
NOT RECOVERED -- RDYRCV ASSERTED
REQUEST PENDING -- NEW TRANSACTION
NO REQUEST -- NO NEW TRANSACTION
HOLD -- HOLD REQUEST ASSERTED
NO HOLD -- HOLD REQUEST NOT ASSERTED
LOCKED -- ATOMIC EXECUTION (ATADD, ATMOD) IN PROGRESS
NOT LOCKED -- NO ATOMIC EXECUTION IN PROGRESS
RESET -- RESET ASSERTED
ONCE -- ONCE ASSERTED
Tw/Td
Tr
Th
Ti
Ta
HOLD AND
NOT LOCKED
HOLD
RECOVERED AND
NO REQUEST AND
(NO HOLD OR
LOCKED)
RECOVERED AND
REQUEST
PENDING AND (NO
HOLD OR LOCKED)
NO REQUEST
AND NO HOLD
To
RESET
NOT
RECOVERED
RECOVERED AND
HOLD AND NOT
LOCKED
READY AND NO BURST
(READY AND BURST)
OR NOT READY
REQUEST PENDING
AND (NO HOLD OR
LOCKED)
NO REQUEST
AND (NO HOLD
OR LOCKED)
ONCE & RESET
DEASSERTION
REQUEST
PENDING AND
NO HOLD
Advance Information Datasheet
69
80960JA/JF/JD/JT 3.3 V Microprocessor
5.2
Boundary-Scan Register
The Boundary-Scan register contains a cell for each pin as well as cells for control of I/O and HIGHZ pins.
Table 25 shows the bit order of the 80960Jx processor Boundary-Scan register. All table cells that
contain "CTL" select the direction of bidirectional pins or HIGHZ output pins. If a "1" is loaded
into the control cell, the associated pin(s) are HIGHZ or selected as input.
Table 25.
Boundary-Scan Register Bit Order
Bit
Signal
Input/
Output
Bit
Signal
Input/
Output
Bit
Signal
Input/
Output
0
RDYRCV (TDI)
I
24
DEN
O
48
AD17
I/O
1
HOLD
I
25
HOLDA
O
49
AD16
I/O
2
XINT0
I
26
ALE
O
50
AD15
I/O
3
XINT1
I
27
LOCK/ONCE
cell
Enable cell
1
51
AD14
I/O
4
XINT2
I
28
LOCK/ONCE
I/O
52
AD13
I/O
5
XINT3
I
29
BSTAT
O
53
AD12
I/O
6
XINT4
I
30
BE0
O
54
AD cells
Enable
cell
1
7
XINT5
I
31
BE1
O
55
AD11
I/O
8
XINT6
I
32
BE2
O
56
AD10
I/O
9
XINT7
I
33
BE3
O
57
AD9
I/O
10
NMI
I
34
AD31
I/O
58
AD8
I/O
11
FAIL
I
35
AD30
I/O
59
AD7
I/O
12
ALE
O
36
AD29
I/O
60
AD6
I/O
13
WIDTH/HLTD1
O
37
AD28
I/O
61
AD5
I/O
14
WIDTH/HLTD0
O
38
AD27
I/O
62
AD4
I/O
15
A2
O
39
AD26
I/O
63
AD3
I/O
16
A3
O
40
AD25
I/O
64
AD2
I/O
17
CONTROL1
Enable cell
1
41
AD24
I/O
65
AD1
I/O
18
CONTROL2
Enable cell
1
42
AD23
I/O
66
AD0
I/O
19
BLAST
O
43
AD22
I/O
67
CLKIN
I
20
D/C
O
44
AD21
I/O
68
RESET
I
21
ADS
O
45
AD20
I/O
69
STEST
(TDO)
I
22
W/R
O
46
AD19
I/O
23
DT/R
O
47
AD18
I/O
NOTE:
1. Enable cells are active low.
80960JA/JF/JD/JT 3.3 V Microprocessor
70
Advance Information Datasheet
Table 26.
Natural Boundaries for Load and Store Accesses
Data Width
Natural Boundary (Bytes)
Byte
1
Short Word
2
Word
4
Double Word
8
Triple Word
16
Quad Word
16
Table 27.
Summary of Byte Load and Store Accesses
Address Offset from
Natural Boundary
(in Bytes)
Accesses on 8-Bit Bus
(WIDTH1:0=00)
Accesses on 16 Bit
Bus (WIDTH1:0=01)
Accesses on 32 Bit
Bus (WIDTH1:0=10)
+0 (aligned)
byte access
byte access
byte access
Table 28.
Summary of Short Word Load and Store Accesses
Address Offset from
Natural Boundary
(in Bytes)
Accesses on 8-Bit Bus
(WIDTH1:0=00)
Accesses on 16 Bit
Bus (WIDTH1:0=01)
Accesses on 32 Bit
Bus (WIDTH1:0=10)
+0 (aligned)
burst of 2 bytes
short-word access
short-word access
+1
2 byte accesses
2 byte accesses
2 byte accesses
Advance Information Datasheet
71
80960JA/JF/JD/JT 3.3 V Microprocessor
Table 29.
Summary of
n
-Word Load and Store Accesses (
n
= 1, 2, 3, 4)
Address Offset
from Natural
Boundary in Bytes
Accesses on 8-Bit Bus
(WIDTH1:0=00)
Accesses on 16 Bit Bus
(WIDTH1:0=01)
Accesses on 32 Bit
Bus (WIDTH1:0=10)
+0 (aligned)
(
n
=1, 2, 3, 4)
n
burst(s) of 4 bytes
case
n
=1:
burst of 2 short words
case
n
=2:
burst of 4 short words
case
n
=3:
burst of 4 short words
burst of 2 short words
case
n
=4:
2 bursts of 4 short words
burst of
n
word(s)
+1 (
n
=1, 2, 3, 4)
+5 (
n
= 2, 3, 4)
+9 (
n
= 3, 4)
+13 (
n
= 3, 4)
byte access
burst of 2 bytes
n
-1 burst(s) of 4 bytes
byte access
byte access
short-word access
n
-1 burst(s) of 2 short
words
byte access
byte access
short-word access
n
-1 word
access(es)
byte access
+2 (
n
=1, 2, 3, 4)
+6 (
n
= 2, 3, 4)
+10 (
n
= 3, 4)
+14 (
n
= 3, 4)
burst of 2 bytes
n
-1 burst(s) of 4 bytes
burst of 2 bytes
short-word access
n
-1 burst(s) of 2 short
words
short-word access
short-word access
n
-1 word
access(es)
short-word access
+3 (
n
=1, 2, 3, 4)
+7 (
n
= 2, 3, 4)
+11 (
n
= 3, 4)
+15 (
n
= 3, 4)
byte access
n
-1 burst(s) of 4 bytes
burst of 2 bytes
byte access
byte access
n
-1 burst(s) of 2 short
words
short-word access
byte access
byte access
n
-1 word
access(es)
short-word access
byte access
+4 (
n
= 2, 3, 4)
+8 (
n
= 3, 4)
+12 (
n
= 3, 4)
n
burst(s) of 4 bytes
n
burst(s) of 2 short words
n
word access(es)
80960JA/JF/JD/JT 3.3 V Microprocessor
72
Advance Information Datasheet
Figure 44.
Summary of Aligned and Unaligned Accesses (32-Bit Bus)
0
4
8
12
16
20
24
0
1
2
3
4
5
6
One Double-Word
Short-Word
Load/Store
Word
Load/Store
Double-Word
Load/Store
Byte, Byte Accesses
Short Access (Aligned)
Short Access (Aligned)
Byte, Byte Accesses
Word Access (Aligned)
Byte, Short, Byte, Accesses
Short, Short Accesses
Byte, Short, Byte Accesses
Byte Offset
Word Offset
One Double-Word Burst (Aligned)
Byte, Short, Word, Byte Accesses
Short, Word, Short Accesses
Byte, Word, Short, Byte Accesses
Word, Word Accesses
Burst (Aligned)
Advance Information Datasheet
73
80960JA/JF/JD/JT 3.3 V Microprocessor
Figure 45.
Summary of Aligned and Unaligned Accesses (32-Bit Bus) (Continued)
0
4
8
12
16
20
24
0
1
2
3
4
5
6
Triple-Word
Load/Store
Quad-Word
Load/Store
Word, Word,
Word Accesses
Word,
Accesses
Word,
Word,
Word,
Word, Word, Word,
Word Accesses
Byte Offset
Word Offset
One Three-Word
Burst (Aligned)
Byte, Short, Word,
Word, Byte Accesses
Short Accesses
Short, Word, Word,
Byte, Word, Word,
Short, Byte Accesses
Word, Word,
Word Accesses
One Four-Word
Burst (Aligned)
Byte, Short, Word, Word,
Word, Byte Accesses
Short, Word, Word, Word,
Short Accesses
Byte, Word, Word, Word,
Short, Byte Accesses
Accesses
Word,
Word
Word,
80960JA/JF/JD/JT 3.3 V Microprocessor
74
Advance Information Datasheet
6.0
Device Identification
80960Jx processors may be identified electrically, according to device type and stepping (see
Figure 46, and Table 31 through Table 36). Table 30 identifies the device type and stepping for all
5V, 80960Jx processors. Figure 46, and Table 31 through Table 36 identify all 3.3V-5V-tolerant
80960Jx processors. The device ID was enhanced to differentiate between 3.3V and 5V supply
voltages, and between non-clock-doubled and clock-doubled cores when stepping from the A2
stepping to the C0 stepping. The 32-bit identifier is accessible in three ways:
Upon reset, the identifier is placed into the g0 register.
The identifier may be accessed from supervisor mode at any time by reading the DEVICEID
register at address FF008710H.
The IEEE Standard 1149.1 Test Access Port may select the DEVICE ID register through the
IDCODE instruction.
The device and stepping letter is also printed on the top side of the product package.
Table 30.
80960Jx Device Type and Stepping Reference
Device and
Stepping
Version
Number
Part Number
Manufacturer
X
Complete ID
(Hex)
80960JT A0, A1
0000
0000 1000 0010 1011
0000 0001 001
1
0082B013
80960JD C0
0011
0000 1000 0011 0000
0000 0001 001
1
30830013
80960JF C0
0011
0000 1000 0010 0000
0000 0001 001
1
30820013
80960JA C0
0011
0000 1000 0010 0001
0000 0001 001
1
30821013
Figure 46.
80960JT
Device Identification Register
28
24
20
4
0
16
12
8
1
1
0
0
1
0
0
0
0
0
0
0
Manufacturer ID
Part Number
Version
Model
Gen
Product
Type
V
CC
1
0
0
0
0
0
1
0
0
0
0
1
1
1
0
1
0
Advance Information Datasheet
75
80960JA/JF/JD/JT 3.3 V Microprocessor
Table 31.
Fields of 80960JT Device ID
Field
Value
Definition
Version
See Table 32
Indicates major stepping changes.
V
CC
0 = 3.3 V device
Indicates that a device is 3.3 V.
Product Type
000 100
(Indicates i960 CPU)
Designates type of product.
Generation Type
0001 = J-series
Indicates the generation (or series) the product belongs
to.
Model
D DPCC
D = Clock Multiplier
(01) Clock-Tripled
(P) Product Derivative
(0) Jx
C = Cache Size
(11) 16K I-cache, 4K D-cache
Indicates member within a series and specific model
information.
Manufacturer ID
000 0000 1001
(Indicates Intel)
Manufacturer ID assigned by IEEE.
Table 32.
80960JT Device ID Model Types
Device
Version
V
CC
Product
Gen.
Model
Manufacturer ID
`1'
80960JT A0, A1
0000
0
000100
0001
01011
00000001001
1
Figure 47.
80960JD Device Identification Register
28
24
20
4
0
16
12
8
1
1
0
0
1
0
0
0
0
0
0
0
Manufacturer ID
Part Number
Version
Model
Gen
Product
Type
V
CC
1
0
0
0
0
0
1
0
0
0
0
1
1
0
0
0
1
80960JA/JF/JD/JT 3.3 V Microprocessor
76
Advance Information Datasheet
Table 33.
Fields of 80960JD Device ID
Field
Value
Definition
Version
See Table 30
Indicates major stepping changes.
V
CC
0 = 3.3 V device
1 = 5V device
Indicates that a device is 3.3 V.
Product Type
00 0100
(Indicates i960 CPU)
Designates type of product.
Generation Type
0001 = J-series
Indicates the generation (or series) the product belongs to.
Model
D000C
D = Clock Doubled
(0) Not Clock-Doubled
(1) Clock Doubled
C = Cache Size
(0) 4K I-cache, 2K
D-cache
(1) 2K I-cache, 1K
D-cache
Indicates member within a series and specific model information.
Manufacturer ID
000 0000 1001
(Indicates Intel)
Manufacturer ID assigned by IEEE.
Table 34.
80960JD Device ID Model Types
Device
Version
V
CC
Product
Gen.
Model
Manufacturer ID
`1'
80960JD C0
0011
0
000100
0001
10000
00000001001
1
Figure 48.
80960JA/JF Device Identification Register
28
24
20
4
0
16
12
8
1
1
0
0
1
0
0
0
0
0
0
0
Manufacturer ID
Part Number
Version
Model
Gen
Product
Type
V
CC
1
0
0
0
0
0
1
0
0
0
0
1
Advance Information Datasheet
77
80960JA/JF/JD/JT 3.3 V Microprocessor
7.0
Revision History
This data sheet supersedes revisions 273109-001, 272971-002, and 276146-001. Table 37 indicates
significant changes since the previous revisions.
Table 35.
Fields of 80960JA/JF Device ID
Field
Value
Definition
Version
See Table 36
Indicates major stepping changes.
V
CC
0 = 3.3 V device
1 = 5V device
Indicates that a device is 3.3 V.
Product Type
00 0100
(Indicates i960 CPU)
Designates type of product.
Generation Type
0001 = J-series
Indicates the generation (or series) to which the
product belongs.
Model
0000C
C = Cache Size
0 = 4K I-cache, 2K D-cache
1 = 2K I-cache, 1K D-cache
Indicates member within a series and specific
model information.
Manufacturer ID
000 0000 1001
(Indicates Intel)
Manufacturer ID assigned by IEEE.
Table 36.
80960JA/JF Device ID Model Types
Device
Version
V
CC
Product
Gen.
Model
Manufacturer ID
`1'
80960JA C0
0011
0
000100
0001
00001
00000001001
1
80960JF C0
0011
0
000100
0001
00000
00000001001
1
Table 37.
Data Sheet Revision History
Figure 1 "80960Jx Microprocessor Package
Options" on page 7
Added MPBGA package diagram
Section 3.1.4, "80960Jx 196-Ball MPBGA
Pinout" on page 29
Added new Figures 6 and 7, Tables 10, 11 and 13
Figure 12 "T
LX
vs. AD Bus Load Capacitance" on
page 48
Added with following note
Throughout document
Merged 80960JA/JF/JD/JT 3.3 volt Processor data sheets