ChipFind - документация

Электронный компонент: 249NQ135

Скачать:  PDF   ZIP
Major Ratings and Characteristics
I
F(AV)
Rectangular
240
A
waveform
V
RRM
range
135 to 150
V
I
FSM
@ tp = 5 s sine
20000
A
V
F
@
240Apk, T
J
=125C
0.72
V
T
J
range
- 55 to 175
C
Characteristics
249NQ...(R) Units
Description/ Features
The 249NQ...(R) high current Schottky rectifier module series
has been optimized for low reverse leakage at high tempera-
ture. The proprietary barrier technology allows for reliable
operation up to 175 C junction temperature. Typical applica-
tions are in switching power supplies, converters, free-
wheeling
diodes, and reverse battery protection.
175 C T
J
operation
Unique high power, Half-Pak module
Replaces four parallel DO-5's
Easier to mount and lower profile than DO-5's
High purity, high temperature epoxy encapsulation for
enhanced mechanical strength and moisture resistance
Low forward voltage drop
High frequency operation
Guard ring for enhanced ruggedness and long term
reliability
SCHOTTKY RECTIFIER
240 Amp
249NQ...(R) SERIES
Bulletin PD-20721 rev. A 06/02
1
www.irf.com
D-67
Outline D-67 HALF PAK Module
Dimensions in millimeters and (inches)
249NQ150
Lug Terminal Anode
Base Cathode
249NQ150R
Lug Terminal Cathode
Base Anode
249NQ...(R) Series
Bulletin PD-20721 rev. A 06/02
2
www.irf.com
T
J
Max. Junction Temperature Range
-55 to 175
C
T
stg
Max. Storage Temperature Range
-55 to 175
C
R
thJC
Max. Thermal Resistance Junction
0.20
C/W DC operation * See Fig. 4
to Case
R
thCS
Typical Thermal Resistance, Case to
0.15
C/W Mounting surface , smooth and greased
Heatsink
wt
Approximate Weight
25.6 (0.9) g (oz.)
T
Mounting Torque
Min.
40 (35)
Non-lubricated threads
Max.
58 (50)
Terminal Torque
Min.
58 (50)
Max.
86 (75)
Case Style
HALF PAK Module
Thermal-Mechanical Specifications
Parameters
249NQ Units
Conditions
Kg-cm
(Ibf-in)
V
FM
Max. Forward Voltage Drop (1)
1.07
V
@ 240A
* See Fig. 1
1.27
V
@ 480A
0.74
V
@ 240A
0.86
V
@ 480A
I
RM
Max. Reverse Leakage Current (1)
6
mA
T
J
= 25 C
* See Fig. 2
85
mA
T
J
= 125 C
C
T
Max. Junction Capacitance
6000
pF
V
R
= 5V
DC
, (test signal range 100Khz to 1Mhz) 25 C
L
S
Typical Series Inductance
5.0
nH
From top of terminal hole to mounting plane
dv/dt Max. Voltage Rate of Change
10000
V/ s
(Rated V
R
)
T
J
= 25 C
T
J
= 125 C
V
R
= rated V
R
Parameters
249NQ Units
Conditions
(1) Pulse Width < 300s, Duty Cycle < 2%
Electrical Specifications
I
F(AV)
Max. Average Forward Current
240
A
50% duty cycle @ T
C
= 117 C, rectangular wave form
* See Fig. 5
I
FSM
Max. Peak One Cycle Non-Repetitive
20000
5s Sine or 3s Rect. pulse
Surge Current * See Fig. 7
2300
10ms Sine or 6ms Rect. pulse
E
AS
Non-Repetitive Avalanche Energy
15
mJ
T
J
= 25 C, I
AS
= 1 Amps, L = 30 mH
I
AR
Repetitive Avalanche Current
1
A
Current decaying linearly to zero in 1 sec
Frequency limited by T
J
max. V
A
= 1.5 x V
R
typical
Parameters
249NQ Units
Conditions
Absolute Maximum Ratings
A
Following any rated
load condition and
with rated V
RRM
applied
Part number
249NQ135
249NQ150
V
R
Max. DC Reverse Voltage (V)
V
RWM
Max. Working Peak Reverse Voltage (V)
Voltage Ratings
135
150
249NQ...(R) Series
Bulletin PD-20721 rev. A 06/02
3
www.irf.com
Fig. 1 - Max. Forward Voltage Drop Characteristics
Fig. 4 - Max. Thermal Impedance Z
thJC
Characteristics
Forward Voltage Drop - V
FM
(V)
Instantaneous Forward Current - I
F
(A)
Reverse Current - I
R
(mA)
Reverse Voltage - V
R
(V)
Reverse Voltage - V
R
(V)
Junction Capacitance - C
T
(pF)
t
1
, Rectangular Pulse Duration (Seconds)
Thermal Impedance Z
thJC
(C/W)
Fig. 3 - Typical Junction Capacitance
Vs. Reverse Voltage
0.001
0.01
0.1
1
10
100
1000
0
30
60
90
120
150
150C
125C
100C
75C
50C
25C
T = 175C
J
100
1000
10000
0
30
60
90
120
T = 25C
J
0.001
0.01
0.1
1
0.00001
0.0001
0.001
0.01
0.1
1
10
100
Single Pulse
(Thermal Resistance)
D = 0.75
D = 0.50
D = 0.33
D = 0.25
D = 0.20
2
t
1
t
P
DM
Notes:
1. Duty factor D = t / t
2. Peak T = P x Z + T
J
DM
thJC
C
2
1
1
10
100
1000
0
0.4
0.8
1.2
1.6
2
T = 175C
T = 125C
T = 25C
J
J
J
Fig. 2 - Typical Values Of Reverse Current
Vs. Reverse Voltage
249NQ...(R) Series
Bulletin PD-20721 rev. A 06/02
4
www.irf.com
Fig. 5 - Max. Allowable Case Temperature
Vs. Average Forward Current
Fig. 8 - Unclamped Inductive Test Circuit
FR EE-W H E EL
D IO D E
40H FL40 S02
C UR RE N T
M O N ITO R
H IG H-SPE ED
SW ITC H
IRFP460
L
D UT
R g = 25 ohm
V d = 25 V olt
+
(2) Formula used: T
C
= T
J
- (Pd + Pd
REV
) x R
thJC
;
Pd = Forward Power Loss = I
F(AV)
x V
FM
@ (I
F(AV)
/
D) (see Fig. 6);
Pd
REV
= Inverse Power Loss = V
R1
x I
R
(1 - D); I
R
@ V
R1
= rated V
R
Average Forward Current - I
F
(AV)
(A)
Average Forward Current - I
F
(AV)
(A)
Square Wave Pulse Duration - t
p
(microsec)
Fig. 7 - Max. Non-Repetitive Surge Current
Allowable Case Temperature - (C)
Average Power Loss - (Watts)
Non-Repetitive Surge Current - I
FSM
(A)
0
40
80
120
160
200
240
280
0
100
200
300
400
DC
RMS Limit
D = 0.20
D = 0.25
D = 0.33
D = 0.50
D = 0.75
1000
10000
100000
10
100
1000
10000
At Any Rated Load Condition
And With Rated V Applied
Following Surge
RRM
Fig. 6 - Forward Power Loss
Characteristics
60
80
100
120
140
160
180
0
100
200
300
400
DC
see note (2)
Square wave (D = 0.50)
Rated V applied
R
249NQ...(R) Series
Bulletin PD-20721 rev. A 06/02
5
www.irf.com
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 06/02
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial Level.
Qualification Standards can be found on IR's Web site.