ChipFind - документация

Электронный компонент: IRFU3704Z

Скачать:  PDF   ZIP
www.docs.chipfind.ru
background image
www.irf.com
1
07/10/03
IRFR3704Z
IRFU3704Z
HEXFET
Power MOSFET
Notes
through
are on page 11
Applications
Benefits
l
Very Low R
DS(on)
at 4.5V V
GS
l
Ultra-Low Gate Impedance
l
Fully Characterized Avalanche Voltage
and Current
l
High Frequency Synchronous Buck
Converters for Computer Processor Power
l
High Frequency Isolated DC-DC
Converters with Synchronous Rectification
for Telecom and Industrial Use
PD - 94725
I-Pak
IRFU3704Z
D-Pak
IRFR3704Z
V
DSS
R
DS(on)
max Qg
20V
8.4m
:
9.3nC
Absolute Maximum Ratings
Parameter
Units
V
DS
Drain-to-Source Voltage
V
V
GS
Gate-to-Source Voltage
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
A
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ 10V
I
DM
Pulsed Drain Current
P
D
@T
C
= 25C
Maximum Power Dissipation
W
P
D
@T
C
= 100C Maximum Power Dissipation
Linear Derating Factor
W/C
T
J
Operating Junction and
C
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
Thermal Resistance
Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
3.1
C/W
R
JA
Junction-to-Ambient (PCB Mount)
g
50
R
JA
Junction-to-Ambient
110
300 (1.6mm from case)
-55 to + 175
48
0.32
24
Max.
60
f
42
f
240
20
20
background image
IRFR/U3704Z
2
www.irf.com
S
D
G
Static @ T
J
= 25C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
BV
DSS
Drain-to-Source Breakdown Voltage
20
V
V
DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.015
V/C
R
DS(on)
Static Drain-to-Source On-Resistance
6.7
8.4
m
9.2
11.4
V
GS(th)
Gate Threshold Voltage
1.65
2.1
2.55
V
V
GS(th)
/
T
J
Gate Threshold Voltage Coefficient
-5.5
mV/C
I
DSS
Drain-to-Source Leakage Current
1.0
A
150
I
GSS
Gate-to-Source Forward Leakage
100
nA
Gate-to-Source Reverse Leakage
-100
gfs
Forward Transconductance
41
S
Q
g
Total Gate Charge
9.3
14
Q
gs1
Pre-Vth Gate-to-Source Charge
3.0
Q
gs2
Post-Vth Gate-to-Source Charge
1.1
nC
Q
gd
Gate-to-Drain Charge
2.7
Q
godr
Gate Charge Overdrive
2.5
See Fig. 16
Q
sw
Switch Charge (Q
gs2
+ Q
gd
)
3.8
Q
oss
Output Charge
5.6
nC
t
d(on)
Turn-On Delay Time
41
t
r
Rise Time
8.9
t
d(off)
Turn-Off Delay Time
4.9
ns
t
f
Fall Time
12
C
iss
Input Capacitance
1190
C
oss
Output Capacitance
380
pF
C
rss
Reverse Transfer Capacitance
170
Avalanche Characteristics
Parameter
Units
E
AS
Single Pulse Avalanche Energy
d
mJ
I
AR
Avalanche Current
A
E
AR
Repetitive Avalanche Energy
mJ
Diode Characteristics
Parameter
Min. Typ. Max. Units
I
S
Continuous Source Current
60
f
(Body Diode)
A
I
SM
Pulsed Source Current
240
(Body Diode)
V
SD
Diode Forward Voltage
1.0
V
t
rr
Reverse Recovery Time
13
19
ns
Q
rr
Reverse Recovery Charge
4.2
6.3
nC
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
V
GS
= 20V
V
GS
= -20V
Conditions
4.8
Max.
41
12
= 1.0MHz
Conditions
V
GS
= 0V, I
D
= 250A
Reference to 25C, I
D
= 1mA
V
GS
= 10V, I
D
= 15A
e
V
DS
= V
GS
, I
D
= 250A
V
DS
=16V, V
GS
= 0V
V
DS
= 16V, V
GS
= 0V, T
J
= 125C
Clamped Inductive Load
V
DS
= 10V, I
D
= 12A
V
DS
= 10V, V
GS
= 0V
V
DD
= 10V, V
GS
= 4.5V
e
I
D
= 12A
V
DS
= 10V
T
J
= 25C, I
F
= 12A, V
DD
= 10V
di/dt = 100A/s
e
T
J
= 25C, I
S
= 12A, V
GS
= 0V
e
showing the
integral reverse
p-n junction diode.
MOSFET symbol
V
GS
= 4.5V, I
D
= 12A
e
V
GS
= 4.5V
Typ.

I
D
= 12A
V
GS
= 0V
V
DS
= 10V
background image
IRFR/U3704Z
www.irf.com
3
Fig 4. Normalized On-Resistance
vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
0.01
0.1
1
10
VDS, Drain-to-Source Voltage (V)
0.001
0.01
0.1
1
10
100
1000
I D
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
2.4V
20s PULSE WIDTH
Tj = 25C
VGS
TOP 10V
6.0V
4.5V
4.0V
3.3V
2.8V
2.6V
BOTTOM
2.4V
0.01
0.1
1
10
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
I D
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
2.4V
20s PULSE WIDTH
Tj = 175C
VGS
TOP
10V
6.0V
4.5V
4.0V
3.3V
2.8V
2.6V
BOTTOM
2.4V
2
3
4
5
6
7
8
9
VGS, Gate-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
I D
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t
(
)
TJ = 25C
TJ = 175C
VDS = 10V
20s PULSE WIDTH
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (C)
0.5
1.0
1.5
2.0
R
D
S
(
o
n
)
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

O
n

R
e
s
i
s
t
a
n
c
e






















(
N
o
r
m
a
l
i
z
e
d
)
ID = 30A
VGS = 10V
background image
IRFR/U3704Z
4
www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
1
10
100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
C
,

C
a
p
a
c
i
t
a
n
c
e
(
p
F
)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0
2
4
6
8
10
12
14
QG Total Gate Charge (nC)
0.0
1.0
2.0
3.0
4.0
5.0
6.0
V
G
S
,

G
a
t
e
-
t
o
-
S
o
u
r
c
e

V
o
l
t
a
g
e

(
V
)
VDS= 18V
VDS= 10V
ID= 12A
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
VSD, Source-to-Drain Voltage (V)
0.10
1.00
10.00
100.00
1000.00
I S
D
,

R
e
v
e
r
s
e

D
r
a
i
n

C
u
r
r
e
n
t

(
A
)
TJ = 25C
TJ = 175C
VGS = 0V
0
1
10
100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
I D
,


D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100sec
Tc = 25C
Tj = 175C
Single Pulse
background image
IRFR/U3704Z
www.irf.com
5
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 10. Threshold Voltage vs. Temperature
25
50
75
100
125
150
175
TC , Case Temperature (C)
0
10
20
30
40
50
60
I D
,
D
r
a
i
n

C
u
r
r
e
n
t

(
A
)
Limited By Package
-75 -50 -25
0
25 50 75 100 125 150 175 200
TJ , Temperature ( C )
0.5
1.0
1.5
2.0
2.5
V
G
S
(
t
h
)
G
a
t
e

t
h
r
e
s
h
o
l
d

V
o
l
t
a
g
e

(
V
)
ID = 250A
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
T
h
e
r
m
a
l

R
e
s
p
o
n
s
e

(

Z

t
h
J
C
)
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
J
J
1
1
2
2
3
3
R
1
R
1
R
2
R
2
R
3
R
3
Ci i
/
Ri
Ci=
i
/
Ri
C
4
4
R
4
R
4
Ri (C/W)
i (sec)
0.8190 0.000092
1.6018 0.000698
0.6592 0.009033
0.0418 0.046618