ChipFind - документация

Электронный компонент: IS24C128-3P

Скачать:  PDF   ZIP
Integrated Silicon Solution, Inc. -- www.issi.com --
1-800-379-4774
1
PRELIMINARY INFORMATION
Rev. 00B
03/11/03
IS24C128
ISSI
Copyright 2002 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI
assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device
specification before relying on any published information and before placing orders for products.
131,072-bit 2-WIRE SERIAL
CMOS EEPROM
FEATURES
Organization:
16K-bit x 8-bit
64-Byte Page Write Buffer
Two-Wire Serial Interface
Bi-directional data transfer protocol
Low Power CMOS Technology
Active Current less than 2 mA (5V)
Standby Current less than 5 A (5V)
Standby Current less than 2 A (2.5V)
Low Voltage Operation
IS24C128-2: Vcc = 1.8V to 5.5V
IS24C128-3: Vcc = 2.5V to 5.5V
400 KHz (I
2
C Protocol) Compatibility
PRELIMINARY INFORMATION
MARCH 2003
Hardware Data Protection
Write Protect pin
Sequential Read Feature
Filtered Inputs for Noise Suppression
Self time Write cycle with auto clear
5 ms @ 2.5V
High Reliability
Endurance: 100,000 Cycles
Data Retention: 40 Years
Commercial and Industrial temperature ranges
8-pin PDIP, 8-pin SOIC, and 14-pin TSSOP
The IS24C128 is an electrically erasable PROM
device that uses the standard 2-wire interface for
communications. The IS24C128 contains a memory
array of 128K-bits (16,384 x 8), and is further
subdivided into 256 pages of 64 bytes each for page-
write mode. This EEPROM is offered in wide operating
voltages of
1.8V to 5.5V
(IS24C128-2) and 2.5V to 5.5V
(IS24C128-3) to be compatible with most application
voltages. ISSI designed the IS24C128 to be a low-cost
and low-power 2-wire EEPROM solution. The devices
are packaged in 8-pin PDIP, 8-pin SOIC, and 14-pin
TSSOP.
The IS24C128 maintains compatibility with the popular
2-wire bus protocol, so it is easy to design into
applications implementing this bus type. The simple
bus consists of the Serial Clock wire (SCL) and the
Serial Data wire (SDA). Using the bus, a Master
device such as a microcontroller is usually connected
to one or more Slave devices such as the IS24C128.
The bit stream over the SDA line includes a series of
bytes, which identifies a particular Slave device, an
instruction, an address within that Slave device, and a
series of data, if appropriate. The IS24C128 has a
Write Protect pin (WP) to allow blocking of any write
instruction transmitted over the bus.
DESCRIPTION
2
Integrated Silicon Solution, Inc. -- www.issi.com --
1-800-379-4774
PRELIMINARY INFORMATION
Rev. 00B
03/11/03
IS24C128
ISSI
FUNCTIONAL BLOCK DIAGRAM
>
CONTROL
LOGIC
X
DECODER
SLAVE ADDRESS
REGISTER &
COMPARATOR
WORD ADDRESS
COUNTER
HIGH VOLTAGE
GENERATOR,
TIMING & CONTROL
EEPROM
ARRAY
Y
DECODER
DATA
REGISTER
Clock
DI/O
ACK
GND
WP
SCL
SDA
Vcc
nMOS
A0
A1
NC
Integrated Silicon Solution, Inc. -- www.issi.com --
1-800-379-4774
3
PRELIMINARY INFORMATION
Rev. 00A
03/11/03
IS24C128
ISSI
PIN DESCRIPTIONS
A0-A1
Address Inputs
SDA
Serial Address/Data I/O
SCL
Serial Clock Input
WP
Write Protect Input
Vcc
Power Supply
NC
No Connect
GND
Ground
SCL
This input clock pin is used to synchronize the data
transfer to and from the device.
SDA
The SDA is a Bi-directional pin used to transfer addresses
and data into and out of the device. The SDA pin is an open
PIN CONFIGURATION
8-Pin DIP and SOIC
drain output and can be wire Or'ed with other open drain
or open collector outputs. The SDA bus
requires a pullup
resistor to Vcc.
A0, A1
The A0, and A1 are the device address inputs that are
hardwired or left not connected for hardware compatibility
with the 24C32/64. When pins are hardwired, as many as
four 128K devices may be addressed on a single bus
system. When the pins are not hardwired, the default A0
and A1 are zero.
WP
WP is the Write Protect pin. If the WP pin is tied to Vcc
the entire array becomes Write Protected (Read only).
When WP is tied to GND or left floating, normal read/write
operations are allowed to the device.
14-pin TSSOP
14
13
12
11
10
9
8
1
2
3
4
5
6
7
A0
A1
NC
NC
NC
NC
VCC
WP
NC
NC
NC
SCL
SDA
GND
1
2
3
4
8
7
6
5
A0
A1
NC
GND
VCC
WP
SCL
SDA
4
Integrated Silicon Solution, Inc. -- www.issi.com --
1-800-379-4774
PRELIMINARY INFORMATION
Rev. 00B
03/11/03
IS24C128
ISSI
DEVICE OPERATION
The IS24C128 features a serial communication and
supports a bi-directional 2-wire bus transmission protocol.
2-WIRE BUS
The two-wire bus is defined as a Serial Data line (SDA),
and a Serial Clock line (SCL). The protocol defines any
device that sends data onto the SDA bus as a transmitter,
and the receiving devices as a receiver. The bus is
controlled by Master device which generates the SCL,
controls the bus access and generates the Stop and Start
conditions. The IS24C128 is the Slave device on the bus.
The Bus Protocol:
Data transfer may be initiated only when the bus is not
busy
During a data transfer, the data line must remain stable
whenever the clock line is high. Any changes in the
data line while the clock line is high will be interpreted
as a Start or Stop condition.
The state of the data line represents valid data after a Start
condition. The data line must be stable for the duration of
the High period of the clock signal. The data on the SDA
line may be changed during the Low period of the clock
signal. There is one clock pulse per bit of data. Each data
transfer is initiated with a Start condition and terminated
with a Stop condition.
Start Condition
The Start condition precedes all commands to the device
and is defined as a High to Low transition of SDA when
SCL is High. The IS24C128 monitors the SDA and SCL
lines and will not respond until the Start condition is met.
Stop Condition
The Stop condition is defined as a Low to High transition
of SDA when SCL is High. All operations must end with
a Stop condition.
Acknowledge (ACK)
After a successful data transfer, each receiving device is
required to generate an ACK. The Acknowledging device
pulls down the SDA line.
Reset
The IS24C128 contains a reset function in case the 2-
wire bus transmission is accidentally interrupted (eg. a
power loss), or needs to be terminated mid-stream.
The reset is caused when the Master device creates a
Start condition. To do this, it may be necessary for the
Master device to monitor the SDA line while cycling the
SCL up to nine times. (For each clock signal transition
to High, the Master checks for a High level on SDA.)
Standby Mode
Power consumption in reduced in standby mode. The
IS24C128 will enter standby mode: a) At Power-up, and
remain in it until SCL or SDA toggles; b) Following the Stop
signal if no write operation is initiated; or c) Following any
internal write operation
DEVICE ADDRESSING
The Master begins a transmission by sending a Start
condition. The Master then sends the address of the
particular Slave devices it is requesting. The Slave
(Fig. 5) address is 8 bits.
The four most significant bits of the address are fixed as
1010 for the IS24C128.
This device has two address bits (A1 and A0), which
allows up to four IS24C128 devices to share the 2-wire
bus. Upon receiving the Slave address, the device
compares the two address bits with the hardwired A1
and A0 input pins to determine if it is the appropriate
Slave. If the A1 and A0 pins are not biased to High nor
Low, then internal circuitry defaults the value to Low.
The last bit of the Slave address specifies whether a Read
or Write operation is to be performed. When this bit is set
to 1, a Read operation is selected, and when set to 0, a
Write operation is selected.
After the Master transmits the Start condition and
Slave address byte (Fig. 5), the appropriate 2-wire
Slave (eg. IS24C128) will respond with ACK on the
SDA line. The Slave will pull down the SDA on the
ninth clock cycle, signaling that it received the eight
bits of data. The selected IS24C128 then prepares for a
Read or Write operation by monitoring the bus.
WRITE OPERATION
Byte Write
In the Byte Write mode, the Master device sends the Start
condition and the Slave address information (with the R/
W set to Zero) to the Slave device. After the Slave
generates an ACK, the Master sends two byte addresses
that are to be written into the address pointer of the
IS24C128. After receiving another ACK from the Slave,
the Master device transmits the data byte to be written into
the address memory location. The IS24C128
acknowledges once more and the Master generates the
Stop condition, at which time the device begins its internal
programming cycle. While this internal cycle is in progress,
the device will not respond to any request from the Master
device.
Integrated Silicon Solution, Inc. -- www.issi.com --
1-800-379-4774
5
PRELIMINARY INFORMATION
Rev. 00A
03/11/03
IS24C128
ISSI
Page Write
The IS24C128 is capable of 64-byte Page-Write operation. A
Page-Write is initiated in the same manner as a Byte Write,
but instead of terminating the internal Write cycle after the
first data word is transferred, the Master device can transmit
up to 63 more bytes. After the receipt of each data word, the
IS24C128 responds immediately with an ACK on SDA line,
and the six lower order data word address bits are internally
incremented by one, while the higher order bits of the data
word address remain constant. If the Master device should
transmit more than 64 words, prior to issuing the Stop
condition, the address counter will "roll over," and the previously
written data will be overwritten. Once all 64 bytes are
received and the Stop condition has been sent by the Master,
the internal programming cycle begins. At this point, all
received data is written to the IS24C128 in a single Write
cycle. All inputs are disabled until completion of the internal
Write cycle.
Random Address Read
Selective Read operations allow the Master device to
select at random any memory location for a Read
operation. The Master device first performs a 'dummy'
Write operation by sending the Start condition, Slave
address and word address of the location it wishes to
read. After the IS24C128 acknowledges the word address,
the Master device resends the Start condition and the
Slave address, this time with the R/
W
bit set to one. The
IS24C128 then responds with its ACK and sends the data
requested. The Master device does not send an ACK but
will generate a Stop condition. (Refer to Figure 9. Random
Address Read Diagram.)
Sequential Read
Sequential Reads can be initiated as either a Current
Address Read or Random Address Read. After the
IS24C128 sends initial byte sequence, the Master device
now responds with an ACK indicating it requires additional
data from the IS24C128. The IS24C128 continues to
output data for each ACK received. The Master device
terminates the sequential Read operation by pulling SDA
High (no ACK) indicating the last data word to be read,
followed by a Stop condition.
The data output is sequential, with the data from address
n followed by the data from address n+1, ... etc. The
address counter increments by one automatically, allowing
the entire memory contents to be serially read during
sequential Read operation. When the memory address
boundary 16383 is reached, the address counter "rolls
over" to address 0, and the IS24C128 continues to output
data for each ACK received. (Refer to Figure 10. Sequential
Read Operation Starting with a Random Address Read
Diagram.)
Acknowledge (ACK) Polling
The disabling of the inputs can be used to take advantage
of the typical Write cycle time. Once the Stop condition
is issued to indicate the end of the host's Write operation,
the IS24C128 initiates the internal Write cycle. ACK
polling can be initiated immediately. This involves issuing
the Start condition followed by the Slave address for a
Write operation. If the IS24C128 is still busy with the Write
operation, no ACK will be returned. If the IS24C128 has
completed the Write operation, an ACK will be returned
and the host can then proceed with the next Read or Write
operation.
READ OPERATION
Read operations are initiated in the same manner as Write
operations, except that the (R/
W
) bit of the Slave address
is set to "1". There are three Read operation options:
current address read, random address read and sequential
read.
Current Address Read
The IS24C128 contains an internal address counter which
maintains the address of the last byte accessed,
incremented by one. For example, if the previous operation
is either a Read or Write operation addressed to the
address location n, the internal address counter would
increment to address location n+1. When the IS24C128
receives the Device Addressing Byte with a Read operation
(R/
W
bit set to "1"), it will respond an ACK and transmit the
8-bit data word stored at address location n+1. The
Master should not acknowledge the transfer but should
generate a Stop condition so the IS24C128 discontinues
transmission. If 'n' is the last byte of the memory, then the
data from location '0' will be transmitted. (Refer to
Figure 8. Current Address Read Diagram.)