ChipFind - документация

Электронный компонент: MCO450-20IO1

Скачать:  PDF   ZIP
2000 IXYS All rights reserved
1 - 4
Symbol
Test Conditions
Maximum Ratings
I
TRMS
T
VJ
= T
VJM
A
I
TAV
T
C
= 85
C; 180
sine
A
I
TSM
T
VJ
= 45
C
t = 10 ms (50 Hz)
A
V
R
= 0
t = 8.3 ms (60 Hz)
A
T
VJ
= T
VJM
t = 10 ms (50 Hz)
A
V
R
= 0
t = 8.3 ms (60 Hz)
A
I
2
t
T
VJ
= 45
C
t = 10 ms (50 Hz)
A
2
s
V
R
= 0
t = 8.3 ms (60 Hz)
A
2
s
T
VJ
= T
VJM
t = 10 ms (50 Hz)
A
2
s
V
R
= 0
t = 8.3 ms (60 Hz)
A
2
s
(di/dt)
cr
T
VJ
= T
VJM
repetitive, I
T
=
A
A/
m
s
f = 50 Hz, t
P
= 200
m
s
V
D
= 2/3 V
DRM
I
G
=
A,
non repetitive, I
T
= I
TAVM
A/
m
s
di
G
/dt =
A/
m
s
(dv/dt)
cr
T
VJ
= T
VJM
; V
DR
= 2/3 V
DRM
V/
m
s
R
GK
=
; method 1 (linear voltage rise)
P
GM
T
VJ
= T
VJM
t
P
=
30
m
s
W
I
T
= I
TAVM
t
P
= 500
m
s
W
P
GAV
W
V
RGM
V
T
VJ
C
T
VJM
C
T
stg
C
V
ISOL
50/60 Hz, RMS
t = 1 min
V~
I
ISOL
1 mA
t = 1 s
V~
M
d
Mounting torque (M6)
Nm/lb.in.
Terminal connection torque (M8)
Nm/lb.in.
Weight
Typical including screws
g
I
TRMS
= 750 A
I
TAV
= 464 A
V
RRM
= 2000-2200 V
15000
16000
1125000
1062000
845000
813000
960
100
1
500
1
1000
120
60
30
10
-40...130
130
-40...125
3000
3600
13000
14400
750
464
Data according to IEC 60747 refer to a single thyristor/diode unless otherwise stated.
IXYS reserves the right to change limits, test conditions and dimensions
Features
q
Direct copper bonded Al
2
O
3
-ceramic
with copper base plate
q
Planar passivated chips
q
Isolation voltage 3600 V~
q
UL applied
q
Keyed gate/cathode twin pins
Applications
q
Motor control, soft starter
q
Power converter
q
Heat and temperature control for
industrial furnaces and chemical
processes
q
Lighting control
q
Solid state switches
Advantages
q
Improved temperature and power
cycling
q
Reduced protection circuits
4.5-7/40-62
11-13/97-115
650
V
RSM
V
RRM
Type
V
DSM
V
DRM
V
V
2100
2000
MCO 450-20io1
2300
2200
MCO 450-22io1
MCO 450
High Power Single
Thyristor Module
3
5 4
2
3
2
5
4
030
2000 IXYS All rights reserved
2 - 4
MCO 450
2
3
300
400
40
0.25
10
300
2
1
1
350
50
500
10
Symbol
Test Conditions
Characteristic Values
I
RRM
T
VJ
= T
VJM
; V
R
= V
RRM
mA
V
T
I
T
=
A; T
VJ
= 25
C
V
V
T0
For power-loss calculations only (T
VJ
= T
VJM
)
V
r
T
m
W
V
GT
V
D
= 6 V;
T
VJ
= 25
C
V
T
VJ
= -40
C
V
I
GT
V
D
= 6 V;
T
VJ
= 25
C
mA
T
VJ
= -40
C
mA
V
GD
T
VJ
= T
VJM
; V
D
= 2/3 V
DRM
V
I
GD
T
VJ
= T
VJM
; V
D
= 2/3 V
DRM
mA
I
L
T
VJ
= 25
C; V
D
= 6 V; t
P
=
m
s
mA
di
G
/dt = A/
m
s; I
G
= 1 A
I
H
T
VJ
= 25
C; V
D
= 6 V; R
GK
=
mA
t
gd
T
VJ
= 25
C; V
D
= 1/2 V
DRM
m
s
di
G
/dt =
A/
m
s; I
G
=
A
t
q
T
VJ
= T
VJM
; V
R
= 100 V; V
D
= 2/3 V
DRM
; t
P
= 200
m
s
typ.
m
s
dv/dt =
V/
m
s; I
T
=
A; -di/dt =
A/
m
s
R
thJC
DC current
K/W
R
thJK
DC current
K/W
d
S
Creep distance on surface
mm
d
A
Strike distance in air
mm
a
Maximum allowable acceleration
m/s
2
30
400
1
600
1.15
0.77
0.42
12.7
9.6
50
0.072
0.096
Dimensions in mm (1 mm = 0.0394")
0.01
0.1
1
10
1
10
100
10
-3
10
-2
10
-1
10
0
10
1
10
2
0.1
1
10
I
G
V
G
A
A
I
G
1: I
GT
, T
VJ
= 130C
2: I
GT
, T
VJ
= 25C
3: I
GT
, T
VJ
= -40C
s
t
gd
V
4: P
GM
= 20 W
5: P
GM
= 60 W
6: P
GM
= 120 W
I
GD
, T
VJ
= 130C
4
2
1
5
6
Limit
typ.
3
T
VJ
= 25C
Fig. 1 Gate trigger characteristics
Fig. 2 Gate trigger delay time
Optional accessories for modules
Keyed Gate/Cathode twin plugs with wire length = 350 mm, gate = yellow, cathode = red
UL 758, style 1385, File E 38136,
CSA class 5851, guide 460-1-1, appl. 41234
Type ZY 180 L (L = Left for pin pair 4/5)
2000 IXYS All rights reserved
3 - 4
MCO 450
Fig. 6
Power dissipation versus on-
state current and ambient
temperature
Fig. 3 Surge overload current
I
TSM
: Crest value, t: duration
Fig. 4 I
2
t versus time (1-10 ms)
Fig. 5
Maximum forward current
at case temperature
Fig. 7 Three phase rectifier bridge:
Power dissipation versus direct
output current and ambient
temperature
0
300
600
900
1200
0
500
1000
1500
2000
2500
3000
3500
4000
0.001
0.01
0.1
1
0
2000
4000
6000
8000
10000
12000
14000
0
200
400
600
800
0
200
400
600
800
1000
0
25
50
75
100
125
150
1
10
10
5
10
6
10
7
0
25
50
75
100
125
150
I
2
t
I
TAVM
I
dAVM
A
T
A
T
C
s
t
ms
t
A
2
s
0
25
50
75
100
125
150
0
100
200
300
400
500
600
700
800
C
80 % V
RRM
T
VJ
= 45C
50 Hz
T
VJ
= 130C
T
VJ
= 130C
T
VJ
= 45C
I
TAVM
W
P
tot
A
C
R
thKA
K/W
0.03
0.07
0.12
0.2
0.3
0.4
0.6
C
6xMCO450
Circuit
B6
T
A
R
thKA
K/W
180 sin
120
60
30
DC
180 sin
120
60
30
DC
V
R
= 0V
I
TSM
A
A
0.01
0.02
0.03
0.045
0.06
0.08
0.12
P
tot
W
2000 IXYS All rights reserved
4 - 4
MCO 450
Fig.10 Transient thermal impedance
junction to
heatsink
0
300
600
900
0
500
1000
1500
2000
2500
3000
3500
4000
t
Z
thJK
s
t
10
-3
10
-2
10
-1
10
0
10
1
10
2
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
K/W
Z
thJC
I
RMS
P
tot
0
25
50
75
100
125
150
A
6xMCO450
Circuit
W3
10
-3
10
-2
10
-1
10
0
10
1
10
2
0.00
0.02
0.04
0.06
0.08
0.10
0.12
DC
180
120
60
30
DC
180
120
60
30
C
T
A
W
K/W
s
R
thKA
K/W
0.01
0.02
0.03
0.045
0.06
0.08
0.12
Fig. 9 Transient thermal impedance
junction to case
Fig. 8 Three phase AC-controller:
Power dissipation versus RMS
output current and ambient
temperature
R
thJC
for various conduction angles d:
d
R
thJC
(K/W)
DC
0.072
180
0.0768
120
0.081
60
0.092
30
0.111
Constants for Z
thJC
calculation:
i
R
thi
(K/W)
t
i
(s)
1
0.0035
0.0054
2
0.0186
0.098
3
0.0432
0.54
4
0.0067
12
R
thJK
for various conduction angles d:
d
R
thJK
(K/W)
DC
0.096
180
0.1
120
0.105
60
0.116
30
0.135
Constants for Z
thJK
calculation:
i
R
thi
(K/W)
t
i
(s)
1
0.0035
0.0054
2
0.0186
0.098
3
0.0432
0.54
4
0.0067
12
5
0.024
12