ChipFind - документация

Электронный компонент: LTC1597-1

Скачать:  PDF   ZIP
1
LTC1591/LTC1597
14-Bit and 16-Bit Parallel
Low Glitch Multiplying DACs
with 4-Quadrant Resistors
DESCRIPTIO
N
U
The LTC
1591/LTC1597 are pin compatible, parallel input
14-bit and 16-bit multiplying current output DACs that oper-
ate from a single 5V supply. INL and DNL are accurate to 1LSB
over the industrial temperature range in both 2- and 4-
quadrant multiplying modes. True 16-bit 4-quadrant multi-
plication is achieved with on-chip 4-quadrant multiplication
resistors.
These DACs include an internal deglitcher circuit that reduces
the glitch impulse to less than 2nV-s (typ). The asynchronous
CLR pin resets the LTC1591/LTC1597 to zero scale and
LTC1591-1/LTC1597-1 to midscale.
The LTC1591/LTC1597 are available in 28-pin SSOP and
PDIP packages and are specified over the industrial tempera-
ture range.
For serial interface 16-bit current output DACs refer to the
LTC1595/LTC1596 data sheet.
s
Process Control and Industrial Automation
s
Direct Digital Waveform Generation
s
Software-Controlled Gain Adjustment
s
Automatic Test Equipment
APPLICATIO
N
S
U
s
True 16-Bit Performance Over Industrial
Temperature Range
s
DNL and INL: 1LSB Max
s
On-Chip 4-Quadrant Resistors Allow Precise 0V to
10V, 0V to 10V or
10V Outputs
s
Pin Compatible 14- and 16-Bit Parts
s
Asynchronous Clear Pin
LTC1591/LTC1597: Reset to Zero Scale
LTC1591-1/LTC1597-1: Reset to Midscale
s
Glitch Impulse < 2nV-s
s
28-Lead SSOP Package
s
Low Power Consumption: 10
W Typ
s
Power-On Reset
FEATURES
, LTC and LT are registered trademarks of Linear Technology Corporation.
TYPICAL APPLICATIO
N
U
LTC1591/LTC1591-1 Integral Nonlinearity
LTC1597/LTC1597-1 Integral Nonlinearity
DIGITAL INPUT CODE
0
INTEGRAL NONLINEARITY (LSB)
1.0
0.8
0.6
0.4
0.2
0
0.2
0.4
0.6
0.8
1.0
16384
32768
1591/97 TA03
49152
65535
V
REF
= 10V
V
OUT
=
10V BIPOLAR
DIGITAL INPUT CODE
0
INTEGRAL NONLINEARITY (LSB)
1.0
0.8
0.6
0.4
0.2
0
0.2
0.4
0.6
0.8
1.0
4096
8192
1591/97 TA02
12288
16383
V
REF
= 10V
V
OUT
=
10V BIPOLAR
16-Bit, 4-Quadrant Multiplying DAC with a
Minimum of External Components
V
CC
LTC1597-1
R
FB
R
FB
R
OFS
R
OFS
5V
LD
LD
3
2
9
8
28
23
15pF
7
22
R1
R
COM
1
REF
4
5
0.1
F
6
I
OUT1
15pF
V
OUT
=
V
REF
TO V
REF
1591/97 TA01
AGND
DGND
+
LT
1468
WR
10 TO 21,
24 TO 27
WR
CLR
CLR
V
REF
+
LT1468
16-BIT DAC
R1
R2
16
DATA
INPUTS
2
LTC1591/LTC1597
ABSOLUTE
M
AXI
M
U
M
RATINGS
W
W
W
U
V
CC
to AGND ............................................... 0.5V to 7V
V
CC
to DGND .............................................. 0.5V to 7V
AGND to DGND ............................................. V
CC
+ 0.5V
DGND to AGND ............................................. V
CC
+ 0.5V
REF, R
OFS
, R
FB
, R1, R
COM
to AGND, DGND ..........
25V
Digital Inputs to DGND ............... 0.5V to (V
CC
+ 0.5V)
I
OUT1
to AGND ............................ 0.5V to( V
CC
+ 0.5V)
Maximum Junction Temperature .......................... 125
C
Operating Temperature Range
LTC1591C/LTC1591-1C
LTC1597C/LTC1597-1C .......................... 0
C to 70
C
LTC1591I/LTC1591-1I
LTC1597I/LTC1597-1I ....................... 40
C to 85
C
Storage Temperature Range ................ 65
C to 150
C
Lead Temperature (Soldering, 10 sec) ................. 300
C
(Note 1)
PACKAGE/ORDER I
N
FOR
M
ATIO
N
W
U
U
ORDER PART
NUMBER
ORDER PART
NUMBER
LTC1591CG
LTC1591CN
LTC1591IG
LTC1591IN
LTC1591-1CG
LTC1591-1CN
LTC1591-1IG
LTC1591-1IN
LTC1597ACG
LTC1597ACN
LTC1597BCG
LTC1597BCN
LTC1597-1ACG
LTC1597-1ACN
LTC1597-1BCG
LTC1597-1BCN
LTC1597AIG
LTC1597AIN
LTC1597BIG
LTC1597BIN
LTC1597-1AIG
LTC1597-1AIN
LTC1597-1BIG
LTC1597-1BIN
1
2
3
4
5
6
7
8
9
10
11
12
13
14
TOP VIEW
G PACKAGE
28-LEAD PLASTIC SSOP
N PACKAGE
28-LEAD NARROW PDIP
28
27
26
25
24
23
22
21
20
19
18
17
16
15
CLR
NC
NC
D0
D1
V
CC
DGND
D2
D3
D4
D5
D6
D7
D8
REF
R
COM
R1
R
OFS
R
FB
I
OUT1
AGND
LD
WR
D13
D12
D11
D10
D9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
TOP VIEW
G PACKAGE
28-LEAD PLASTIC SSOP
N PACKAGE
28-LEAD NARROW PDIP
28
27
26
25
24
23
22
21
20
19
18
17
16
15
CLR
D0
D1
D2
D3
V
CC
DGND
D4
D5
D6
D7
D8
D9
D10
REF
R
COM
R1
R
OFS
R
FB
I
OUT1
AGND
LD
WR
D15
D14
D13
D12
D11
T
JMAX
= 125
C,
JA
= 95
C/ W (G)
T
JMAX
= 125
C,
JA
= 70
C/ W (N)
Consult factory for Military grade parts.
T
JMAX
= 125
C,
JA
= 95
C/ W (G)
T
JMAX
= 125
C,
JA
= 70
C/ W (N)
3
LTC1591/LTC1597
ELECTRICAL CHARACTERISTICS
V
CC
= 5V
10%, V
REF
= 10V, I
OUT1
= AGND = DGND = 0V, T
A
= T
MIN
to T
MAX
, unless otherwise noted.
LTC1591/-1
LTC1597B/-1B
LTC1597A/-1A
SYMBOL PARAMETER
CONDITIONS
MIN
TYP
MAX
MIN
TYP
MAX
MIN
TYP
MAX
UNITS
Accuracy
Resolution
q
14
16
16
Bits
Monotonicity
q
14
16
16
Bits
INL
Integral Nonlinearity
(Note 2) T
A
= 25
C
1
2
0.25
1
LSB
T
MIN
to T
MAX
q
1
2
0.35
1
LSB
DNL
Differential Nonlinearity
T
A
= 25
C
1
1
0.2
1
LSB
T
MIN
to T
MAX
q
1
1
0.2
1
LSB
GE
Gain Error
Unipolar Mode
(Note 3) T
A
= 25
C
4
16
2
16
LSB
T
MIN
to T
MAX
q
6
24
3
16
LSB
Bipolar Mode
(Note 3) T
A
= 25
C
4
16
2
16
LSB
T
MIN
to T
MAX
q
6
24
3
16
LSB
Gain Temperature Coefficient
(Note 4)
Gain/
Temperature
q
1
2
1
2
1
2
ppm/
C
Bipolar Zero-Scale Error
T
A
= 25
C
3
10
5
LSB
T
MIN
to T
MAX
q
5
16
8
LSB
I
LKG
OUT1 Leakage Current
(Note 5) T
A
= 25
C
5
5
5
nA
T
MIN
to T
MAX
q
15
15
15
nA
PSRR
Power Supply Rejection Ratio
V
CC
= 5V
10
q
0.1
1
0.4
2
0.4
2
LSB/V
V
CC
= 5V
10%, V
REF
= 10V, I
OUT1
= AGND = DGND = 0V, T
A
= T
MIN
to T
MAX
, unless otherwise noted.
SYMBOL
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
Reference Input
R
REF
DAC Input Resistance (Unipolar)
(Note 6)
q
4.5
6
10
k
R1/R2
R1/R2 Resistance (Bipolar)
(Notes 6, 13)
q
9
12
20
k
R
OFS
, R
FB
Feedback and Offset Resistances
(Note 6)
q
9
12
20
k
AC Performance (Note 4)
Output Current Settling Time
(Notes 7, 8)
1
s
Midscale Glitch Impulse
(Note 12)
2
nV-s
Digital-to-Analog Glitch Impulse
(Note 9)
1
nV-s
Multiplying Feedthrough Error
V
REF
=
10V, 10kHz Sine Wave
1
mV
P-P
THD
Total Harmonic Distortion
(Note 10)
108
dB
Output Noise Voltage Density
(Note 11)
10
nV/
Hz
Harmonic Distortion
Unipolar Mode (Note 14)
(Digital Waveform Generation)
2nd Harmonic
94
dB
3rd Harmonic
101
dB
SFDR
94
dB
Bipolar Mode (Note 14)
2nd Harmonic
94
dB
3rd Harmonic
101
dB
SFDR
94
dB
4
LTC1591/LTC1597
ELECTRICAL CHARACTERISTICS
V
CC
= 5V
10%, V
REF
= 10V, I
OUT1
= AGND = DGND = 0V, T
A
= T
MIN
to T
MAX
, unless otherwise noted.
SYMBOL
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
Analog Outputs (Note 4)
C
OUT
Output Capacitance (Note 4)
DAC Register Loaded to All 1s: C
OUT1
q
115
130
pF
DAC Register Loaded to All 0s: C
OUT1
q
70
80
pF
Digital Inputs
V
IH
Digital Input High Voltage
q
2.4
V
V
IL
Digital Input Low Voltage
q
0.8
V
I
IN
Digital Input Current
q
0.001
1
A
C
IN
Digital Input Capacitance
(Note 4) V
IN
= 0V
q
8
pF
Timing Characteristics
t
DS
Data to WR Setup Time
q
60
20
ns
t
DH
Data to WR Hold Time
q
0
12
ns
t
WR
WR Pulse Width
q
60
25
ns
t
LD
LD Pulse Width
q
110
55
ns
t
CLR
Clear Pulse Width
q
60
40
ns
t
LWD
WR to LD Delay Time
q
0
ns
Power Supply
V
DD
Supply Voltage
q
4.5
5
5.5
V
I
DD
Supply Current
Digital Inputs = 0V or V
CC
q
10
A
The
q
denotes specifications that apply over the full operating temperature
range.
Note 1: Absolute Maximum Values are those beyond which the life of a
device may be impaired.
Note 2:
1LSB =
0.006% of full scale =
61ppm of full scale for the
LTC1591/LTC1591-1.
1LSB =
0.0015% of full scale =
15.3ppm of full
scale for the LTC1597/LTC1597-1.
Note 3: Using internal feedback resistor.
Note 4: Guaranteed by design, not subject to test.
Note 5: I
(OUT1)
with DAC register loaded to all 0s.
Note 6: Typical temperature coefficient is 100ppm/
C.
Note 7: I
OUT1
load = 100
in parallel with 13pF.
Note 8: To 0.006% for a full-scale change, measured from the rising edge
of LD for the LTC1591/LTC1591-1. To 0.0015% for a full-scale change,
measured from the rising edge of LD for the LTC1597/LTC1597-1.
Note 9: V
REF
= 0V. DAC register contents changed from all 0s to all 1s or
all 1s to all 0s.
Note 10: V
REF
= 6V
RMS
at 1kHz. DAC register loaded with all 1s.
Note 11: Calculation from e
n
=
4kTRB where: k = Boltzmann constant
(J/
K), R = resistance (
), T = temperature (
K), B = bandwidth (Hz).
Note 12: Midscale transition code: 01 1111 1111 1111 to 10 0000 0000
0000 for the LTC1591/LTC1591-1 and 0111 1111 1111 1111 to 1000
0000 0000 0000 for the LTC1597/LTC1597-1.
Note 13: R1 and R2 are measured between R1 and R
COM
, REF and R
COM
.
Note 14: Measured using the LT1468 op amp in unipolar mode for I/V
converter and LT1468 I/V and LT1001 reference inverter in bipolar mode.
Sample Rate = 50kHz, Signal Frequency = 1kHz, V
REF
= 5V, T
A
= 25
C.
5
LTC1591/LTC1597
TYPICAL PERFOR A CE CHARACTERISTICS
U
W
Unipolar Multiplying Mode
Signal-to-(Noise + Distortion)
vs Frequency
(LTC1591/LTC1597)
FREQUENCY (Hz)
90
SIGNAL/(NOISE + DISTORTION) (dB)
70
50
40
10
1k
10k
100k
1591/97 G03
110
100
60
80
100
V
CC
= 5V USING AN LT1468
C
FEEDBACK
= 30pF
REFERENCE = 6V
RMS
500kHz FILTER
80kHz FILTER
30kHz FILTER
Midscale Glitch Impulse
TIME (
s)
0
OUTPUT VOLTAGE (mV)
10
0
10
0.6
1.0
1591/97 G01
20
30
40
0.2
0.4
0.8
20
30
40
USING AN LT1468
C
FEEDBACK
= 30pF
V
REF
= 10V
1nV-s TYPICAL
Full-Scale Settling Waveform
GATED
SETTLING
WAVEFORM
500
V/DIV
LD PULSE
5V/DIV
500ns/DIV
1591/97 G02
USING LT1468 OP AMP
C
FEEDBACK
= 20pF
0V to 10V STEP
Bipolar Multiplying Mode
Signal-to-(Noise + Distortion)
vs Frequency, Code = All Zeros
FREQUENCY (Hz)
90
SIGNAL/(NOISE + DISTORTION) (dB)
70
50
40
10
1k
10k
100k
1591/97 G04
110
100
60
80
100
V
CC
= 5V USING TWO LT1468s
C
FEEDBACK
= 15pF
REFERENCE = 6V
RMS
500kHz FILTER
80kHz FILTER
30kHz
FILTER
Bipolar Multiplying Mode
Signal-to-(Noise + Distortion)
vs Frequency, Code = All Ones
FREQUENCY (Hz)
90
SIGNAL/(NOISE + DISTORTION) (dB)
70
50
40
10
1k
10k
100k
1591/97 G05
110
100
60
80
100
V
CC
= 5V USING TWO LT1468s
C
FEEDBACK
= 15pF
REFERENCE = 6V
RMS
500kHz FILTER
80kHz FILTER
30kHz FILTER
Supply Current vs Input Voltage
INTPUT VOLTAGE (V)
0
SUPPLY CURRENT (mA)
3
4
5
4
1591/97 G06
2
1
0
1
2
3
5
V
CC
= 5V
ALL DIGITAL INPUTS
TIED TOGETHER
Logic Threshold vs Supply Voltage
SUPPLY VOLTAGE (V)
0
0
LOGIC THRESHOLD (V)
0.5
1.0
1.5
2.0
3.0
1
2
3
4
1591/97 G07
5
7
6
2.5
6
LTC1591/LTC1597
TYPICAL PERFOR A CE CHARACTERISTICS
U
W
DIGITAL INPUT CODE
0
1.0
INTEGRAL NONLINEARITY (LSB)
0.8
0.4
0.2
0
1.0
0.4
4096
8192
1591 G01
0.6
0.6
0.8
0.2
12280
16383
Integral Nonlinearity (INL)
REFERENCE VOLTAGE (V)
10
INTEGRAL NONLINEARITY (LSB)
0.2
0.6
1.0
6
1591 G03
0.2
0.6
0
0.4
0.8
0.4
0.8
1.0
6
2
2
8
8
4
0
4
10
Integral Nonlinearity
vs Reference Voltage
in Unipolar Mode
DIGITAL INPUT CODE
0
1.0
DIFFERENTIAL NONLINEARITY (LSB) 0.8
0.4
0.2
0
1.0
0.4
4096
8192
1591 G02
0.6
0.6
0.8
0.2
12280
16383
Differential Nonlinearity (DNL)
Integral Nonlinearity
vs Reference Voltage
in Bipolar Mode
REFERENCE VOLTAGE (V)
10
INTEGRAL NONLINEARITY (LSB)
0.2
0.6
1.0
6
1591 G04
0.2
0.6
0
0.4
0.8
0.4
0.8
1.0
6
2
2
8
8
4
0
4
10
Differential Nonlinearity
vs Reference Voltage
in Unipolar Mode
REFERENCE VOLTAGE (V)
10
DIFFERENTIAL NONLINEARITY (LSB)
0.2
0.6
1.0
6
1591 G05
0.2
0.6
0
0.4
0.8
0.4
0.8
1.0
6
2
2
8
8
4
0
4
10
(LTC1591)
Differential Nonlinearity
vs Reference Voltage
in Bipolar Mode
REFERENCE VOLTAGE (V)
10
DIFFERENTIAL NONLINEARITY (LSB)
0.2
0.6
1.0
6
1591 G06
0.2
0.6
0
0.4
0.8
0.4
0.8
1.0
6
2
2
8
8
4
0
4
10
Integral Nonlinearity vs
Supply Voltage in Unipolar Mode
SUPPLY VOLTAGE (V)
0
1.0
INTEGRAL NONLINEARITY (LSB)
0.8
0.4
0.2
0
1.0
0.4
2
4
5
1591 G07
0.6
0.6
0.8
0.2
1
3
6
7
V
REF
= 10V
V
REF
= 2.5V
V
REF
= 10V
V
REF
= 2.5V
Integral Nonlinearity vs
Supply Voltage in Bipolar Mode
SUPPLY VOLTAGE (V)
0
1.0
INTEGRAL NONLINEARITY (LSB)
0.8
0.4
0.2
0
1.0
0.4
2
4
5
1591 G08
0.6
0.6
0.8
0.2
1
3
6
7
V
REF
= 10V
V
REF
= 2.5V
V
REF
= 10V
V
REF
= 2.5V
Differential Nonlinearity vs
Supply Voltage in Unipolar Mode
SUPPLY VOLTAGE (V)
0
1.0
DIFFERENTIAL NONLINEARITY (LSB) 0.8
0.4
0.2
0
1.0
0.4
2
4
5
1591 G09
0.6
0.6
0.8
0.2
1
3
6
7
V
REF
= 10V
V
REF
= 2.5V
V
REF
= 10V
V
REF
= 2.5V
7
LTC1591/LTC1597
TYPICAL PERFOR A CE CHARACTERISTICS
U
W
(LTC1591)
Differential Nonlinearity vs
Supply Voltage in Bipolar Mode
SUPPLY VOLTAGE (V)
0
1.0
DIFFERENTIAL NONLINEARITY (LSB) 0.8
0.4
0.2
0
1.0
0.4
2
4
5
1591 G10
0.6
0.6
0.8
0.2
1
3
6
7
V
REF
= 10V
V
REF
= 10V
V
REF
= 2.5V
V
REF
= 2.5V
Bipolar Multiplying Mode Frequency
Response vs Digital Code
Unipolar Multiplying Mode Frequency
Response vs Digital Code
Bipolar Multiplying Mode Frequency
Response vs Digital Code
FREQUENCY (Hz)
100
ATTENUATION (dB)
80
40
0
10
1k
10k
10M
1M
*DAC ZERO VOLTAGE OUTPUT LIMITED BY BIPOLAR
ZERO ERROR TO 84dB TYPICAL (70dB MAX)
100
100k
20
60
D13 AND D12 ON
D13 AND D11 ON
D13 AND D10 ON
D13 AND D9 ON
D13 AND D8 ON
D13 AND D7 ON
D13 AND D6 ON
D13 AND D5 ON
D13 AND D4 ON
D13 AND D3 ON
D13 AND D2 ON
D13 AND D1 ON
D13 AND D0 ON
ALL BITS ON
1591 G12
15pF
12pF
+
+
12pF
V
REF
V
OUT
1
2
3
4
6
7
22
5
LT1468
LT1468
LTC1591
CODES FROM MIDSCALE TO FULL SCALE
D13 ON
*
FREQUENCY (Hz)
100
ATTENUATION (dB)
80
40
0
10
1k
10k
10M
1M
1591G13
100
100k
20
60
*DAC ZERO VOLTAGE OUTPUT LIMITED BY BIPOLAR
ZERO ERROR TO 84dB TYPICAL (70dB MAX)
15pF
12pF
+
+
12pF
V
REF
V
OUT
1
2
3
4
6
7
22
5
LT1468
LT1468
LTC1591
CODES FROM MIDSCALE TO ZERO SCALE
D12 ON
D12 AND D11 ON
D12 TO D10 ON
D12 TO D9 ON
D12 TO D8 ON
D12 TO D7 ON
D12 TO D6 ON
D12 TO D5 ON
D12 TO D4 ON
D12 TO D3 ON
D12 TO D2 ON
D12 TO D1 ON
D12 TO D0 ON
ALL BITS OFF
D13 ON
*
FREQUENCY (Hz)
100
ATTENUATION (dB)
80
40
0
100
10k
100k
10M
1591G11
120
1k
1M
20
60
ALL BITS OFF
+
30pF
3 2 1 4
6
7
22
5
LT1468
LTC1591
V
OUT
V
REF
D9 ON
D8 ON
D6 ON
D5 ON
D4 ON
D3 ON
D2 ON
D1 ON
D13 ON
D12 ON
D11 ON
D10 ON
ALL BITS ON
D7 ON
D0 ON
8
LTC1591/LTC1597
TYPICAL PERFOR A CE CHARACTERISTICS
U
W
Integral Nonlinearity (INL)
Integral Nonlinearity
vs Reference Voltage
in Unipolar Mode
Differential Nonlinearity (DNL)
Integral Nonlinearity
vs Reference Voltage
in Bipolar Mode
Differential Nonlinearity
vs Reference Voltage
in Unipolar Mode
(LTC1597)
Differential Nonlinearity
vs Reference Voltage
in Bipolar Mode
Integral Nonlinearity vs
Supply Voltage in Unipolar Mode
Integral Nonlinearity vs
Supply Voltage in Bipolar Mode
Differential Nonlinearity vs
Supply Voltage in Unipolar Mode
DIGITAL INPUT CODE
0
1.0
INTEGRAL NONLINEARITY (LSB)
0.8
0.4
0.2
0
1.0
0.4
16384
32768
1597 G01
0.6
0.6
0.8
0.2
49152
65535
DIGITAL INPUT CODE
0
1.0
DIFFERENTIAL NONLINEARITY (LSB) 0.8
0.4
0.2
0
1.0
0.4
16384
32768
1597 G02
0.6
0.6
0.8
0.2
49152
65535
REFERENCE VOLTAGE (V)
10
INTEGRAL NONLINEARITY (LSB)
0.2
0.6
1.0
6
1597 G03
0.2
0.6
0
0.4
0.8
0.4
0.8
1.0
6
2
2
8
8
4
0
4
10
REFERENCE VOLTAGE (V)
10
INTEGRAL NONLINEARITY (LSB)
0.2
0.6
1.0
6
1597 G04
0.2
0.6
0
0.4
0.8
0.4
0.8
1.0
6
2
2
8
8
4
0
4
10
REFERENCE VOLTAGE (V)
10
DIFFERENTIAL NONLINEARITY (LSB)
0.2
0.6
1.0
6
1597 G05
0.2
0.6
0
0.4
0.8
0.4
0.8
1.0
6
2
2
8
8
4
0
4
10
REFERENCE VOLTAGE (V)
10
DIFFERENTIAL NONLINEARITY (LSB)
0.2
0.6
1.0
6
1597 G06
0.2
0.6
0
0.4
0.8
0.4
0.8
1.0
6
2
2
8
8
4
0
4
10
SUPPLY VOLTAGE (V)
1.0
INTEGRAL NONLINEARITY (LSB)
0.8
0.4
0.2
0
1.0
0.4
2
4
5
1597 G07
0.6
0.6
0.8
0.2
3
6
7
V
REF
= 10V
V
REF
= 10V
V
REF
= 2.5V
V
REF
= 2.5V
SUPPLY VOLTAGE (V)
INTEGRAL NONLINEARITY (LSB)
2.0
1.0
0.5
0
2.0
1.0
2
4
5
1597 G08
1.5
1.5
0.5
3
6
7
V
REF
= 10V
V
REF
= 10V
V
REF
= 2.5V
V
REF
= 2.5V
SUPPLY VOLTAGE (V)
1.0
DIFFERENTIAL NONLINEARITY (LSB) 0.8
0.4
0.2
0
1.0
0.4
2
4
5
1597 G09
0.6
0.6
0.8
0.2
3
6
7
V
REF
= 10V
V
REF
= 2.5V
V
REF
= 10V
V
REF
= 2.5V
9
LTC1591/LTC1597
TYPICAL PERFOR A CE CHARACTERISTICS
U
W
(LTC1597)
Differential Nonlinearity vs
Supply Voltage in Bipolar Mode
SUPPLY VOLTAGE (V)
1.0
DIFFERENTIAL NONLINEARITY (LSB) 0.8
0.4
0.2
0
1.0
0.4
2
4
5
1597 G10
0.6
0.6
0.8
0.2
3
6
7
V
REF
= 10V
V
REF
= 10V
V
REF
= 2.5V
V
REF
= 2.5V
FREQUENCY (Hz)
100
120
ATTENUATION (dB) 80
40
0
100
10k
100k
10M
1597G11
1k
1M
20
60
D15 ON
D14 ON
D13 ON
D12 ON
ALL BITS ON
D9 ON
D1 ON
D0 ON
+
30pF
3 2 1 4
6
7
22
5
LT1468
LTC1597
V
OUT
V
REF
D11 ON
D10 ON
D8 ON
D7 ON
D6 ON
D5 ON
D4 ON
D3 ON
D2 ON
ALL BITS OFF
Unipolar Multiplying Mode Frequency
Response vs Digital Code
FREQUENCY (Hz)
100
ATTENUATION (dB) 80
40
0
10
*DAC ZERO VOLTAGE OUTPUT LIMITED BY BIPOLAR
ZERO ERROR TO 96dB TYPICAL (78dB MAX, A GRADE)
1k
10k
10M
1M
1597 G12
100
100k
20
60
D15 AND D14 ON
D15 AND D13 ON
D15 AND D12 ON
D15 AND D11 ON
D15 AND D10 ON
D15 AND D9 ON
D15 AND D8 ON
D15 AND D7 ON
D15 AND D6 ON
D15 AND D5 ON
D15 AND D4 ON
D15 AND D3 ON
D15 AND D2 ON
ALL BITS ON
15pF
12pF
+
+
12pF
V
REF
V
OUT
1
2
3
4
6
7
22
5
LT1468
LT1468
LTC1597
D15 ON
*
D15 AND D0 ON
D15 AND D1 ON
CODES FROM
MIDSCALE
TO FULL SCALE
Bipolar Multiplying Mode Frequency
Response vs Digital Code
Bipolar Multiplying Mode Frequency
Response vs Digital Code
FREQUENCY (Hz)
100
ATTENUATION (dB)
80
40
0
10
1k
10k
10M
1M
1597 G13
100
100k
20
60
D14 ON
D14 AND D13 ON
D14 TO D12 ON
D14 TO D11 ON
D14 TO D10 ON
D14 TO D9 ON
D14 TO D8 ON
D14 TO D7 ON
D14 TO D6 ON
D14 TO D5 ON
D14 TO D4 ON
D14 TO D3 ON
D14 TO D2 ON
D14 TO D1 ON
ALL BITS OFF
*DAC ZERO VOLTAGE OUTPUT LIMITED BY BIPOLAR
ZERO ERROR TO 96dB TYPICAL (78dB MAX, A GRADE)
15pF
12pF
+
+
12pF
V
REF
V
OUT
1
2
3
4
6
7
22
5
LT1468
LT1468
LTC1597
D14 TO D0 ON
D15 ON
*
CODES FROM
MIDSCALE
TO ZERO SCALE
10
LTC1591/LTC1597
PI
N
FU
N
CTIO
N
S
U
U
U
LTC1591
REF (Pin 1): Reference Input and 4-Quadrant Resistor R2.
Typically
10V, accepts up to
25V. In 2-Quadrant mode
this is the reference input. In 4-quadrant mode, this pin is
driven by external inverting reference amplifier.
R
COM
(Pin 2): Center Tap Point of the Two 4-Quadrant
Resistors R1 and R2. Normally tied to the inverting input
of an external amplifier in 4-quadrant operation, otherwise
shorted to the REF pin. See Figures 1a and 2a.
R1 (Pin 3): 4-Quadrant Resistor R1. In 2-quadrant opera-
tion short to the REF pin. In 4-quadrant mode tie to R
OFS
(Pin 4).
R
OFS
(Pin 4): Bipolar Offset Resistor. Typically swings
10V, accepts up to
25V. In 2-quadrant operation tie to
R
FB
. In 4-quadrant operation tie to R1.
R
FB
(Pin 5): Feedback Resistor. Normally tied to the output
of the current to voltage converter op amp. Swings to
V
REF
. V
REF
is typically
10V.
I
OUT1
(Pin 6): DAC Current Output. Tie to the inverting
input of the current to voltage converter op amp.
AGND (Pin 7): Analog Ground. Tie to ground.
LD (Pin 8): DAC Digital Input Load Control Input. When LD
is taken to a logic high, data is loaded from the input
register into the DAC register, updating the DAC output.
WR (Pin 9):DAC Digital Write Control Input. When WR is
taken to a logic low, data is loaded from the digital input
pins into the 14-bit wide input register.
DB13 to D2 (Pins 10 to 21): Digital Input Data Bits.
DGND (Pin 22): Digital Ground. Tie to ground.
V
CC
(Pin 23): The Positive Supply Input. 4.5V
V
CC
5.5V.
Requires a bypass capacitor to ground.
DB1, DB0 (Pins 24, 25): Digital Input Data Bits.
NC (Pins 26, 27): No Connect.
CLR (Pin 28):Digital Clear Control Function for the DAC.
When CLR is taken to a logic low, it sets the DAC output
and all internal registers to zero code for the LTC1591 and
midscale code for the LTC1591-1.
LTC1597
REF (Pin 1): Reference Input and 4-Quadrant Resistor R2.
Typically
10V, accepts up to
25V. In 2-Quadrant mode
this is the reference input. In 4-quadrant mode, this pin is
driven by external inverting reference amplifier.
R
COM
(Pin 2): Center Tap Point of the Two 4-Quadrant
Resistors R1 and R2. Normally tied to the inverting input
of an external amplifier in 4-quadrant operation, otherwise
shorted to the REF pin. See Figures 1b and 2b.
R1 (Pin 3): 4-Quadrant Resistor R1. In 2-quadrant opera-
tion short to the REF pin. In 4-quadrant mode tie to R
OFS
(Pin 4).
R
OFS
(Pin 4): Bipolar Offset Resistor. Typically swings
10V, accepts up to
25V. In 2-quadrant operation tie to
R
FB
. In 4-quadrant operation tie to R1.
R
FB
(Pin 5): Feedback Resistor. Normally tied to the output
of the current to voltage converter op amp. Swings to
V
REF
. V
REF
is typically
10V.
I
OUT1
(Pin 6): DAC Current Output. Tie to the inverting
input of the current to voltage converter op amp.
AGND (Pin 7): Analog Ground. Tie to ground.
LD (Pin 8): DAC Digital Input Load Control Input. When LD
is taken to a logic high, data is loaded from the input
register into the DAC register, updating the DAC output.
WR (Pin 9):DAC Digital Write Control Input. When WR is
taken to a logic low, data is loaded from the digital input
pins into the 16-bit wide input register.
DB15 to D4 (Pins 10 to 21): Digital Input Data Bits.
DGND (Pin 22): Digital Ground. Tie to ground.
V
CC
(Pin 23): The Positive Supply Input. 4.5V
V
CC
5.5V.
Requires a bypass capacitor to ground.
DB3 to DB0 (Pins 24 to 27): Digital Input Data Bits.
CLR (Pin 28):Digital Clear Control Function for the DAC.
When CLR is taken to a logic low, it sets the DAC output
and all internal registers to zero code for the LTC1597 and
midscale code for the LTC1597-1.
11
LTC1591/LTC1597
Table 1
CONTROL INPUTS
CLR
WR
LD
REGISTER OPERATION
0
X
X
Reset Input and DAC Register to All 0s for LTC1591/LTC1597 and Midscale for LTC1591-1/LTC1597-1 (Asynchronous Operation)
1
0
0
Load Input Register with All 14/16 Data Bits
1
1
1
Load DAC Register with the Contents of the Input Register
1
0
1
Input and DAC Register Are Transparent
1
CLK = LD and WR Tied Together. The 14/16 Data Bits Are Loaded into the Input Register on the Falling Edge of the CLK and Then
Loaded into the DAC Register on the Rising Edge of the CLK
1
1
0
No Register Operation
TRUTH TABLE
BLOCK DIAGRA S
M
W
LTC1591
96k
12k
12k
96k
48k
96k
48k
96k
DECODER
D13
(MSB)
D11
D12
D13
D10
D9
D0
(LSB)
LOAD
V
CC
REF
R
FB
I
OUT1
AGND
CLR
28
DGND
22
1591 BD
DAC REGISTER
48k
48k
48k
48k
48k
48k
48k
12k
8
23
R1 3
R
COM
2
1
LD
9
10
D12
11
D2
21
D1
24
D0
25
NC
27
NC
26
WR
7
6
5
R
OFS
4
12k
WR
INPUT REGISTER
RST
RST
12
LTC1591/LTC1597
BLOCK DIAGRA S
M
W
LTC1597
96k
12k
12k
96k
48k
96k
48k
96k
DECODER
D15
(MSB)
D13
D14
D15
D12
D11
D0
(LSB)
LOAD
V
CC
REF
R
FB
I
OUT1
AGND
CLR
28
DGND
22
1597 BD
DAC REGISTER
48k
48k
48k
48k
48k
48k
48k
12k
8
23
R1 3
R
COM
2
1
LD
9
10
D14
11
D4
21
D3
24
D2
25
D0
27
D1
26
WR
7
6
5
R
OFS
4
12k
WR
INPUT REGISTER
RST
RST
TI I G DIAGRA
U
W
W
DATA
LD
CLR
1591/97TD
t
WR
t
DS
t
LD
t
DH
t
LWD
WR
t
CLR
13
LTC1591/LTC1597
Description
The LTC1591/LTC1597 are 14-/16-bit multiplying, current
output DACs with a full parallel 14-/16-bit digital interface.
The devices operate from a single 5V supply and provide
both unipolar 0V to 10V or 0V to 10V and bipolar
10V
output ranges from a 10V or 10V reference input. They
have three additional precision resistors on chip for bipo-
lar operation. Refer to the block diagrams regarding the
following description.
The 14-/16-bit DACs consist of a precision R-2R ladder for
the 11/13LSBs. The 3MSBs are decoded into seven seg-
ments of resistor value R. Each of these segments and the
R-2R ladder carries an equally weighted current of one
eighth of full scale. The feedback resistor R
FB
and
4-quadrant resistor R
OFS
have a value of R/4. 4-quadrant
resistors R1 and R2 have a magnitude of R/4. R1 and R2
together with an external op amp (see Figure 2) inverts the
reference input voltage and applies it to the 14-/16-bit DAC
input REF, in 4-quadrant operation. The REF pin presents
a constant input impedance of R/8 in unipolar mode and
R/12 in bipolar mode. The output impedance of the current
output pin I
OUT1
varies with DAC input code. The I
OUT1
capacitance due to the NMOS current steering switches
also varies with input code from 70pF to 115pF. An added
feature of these devices, especially for waveform genera-
tion, is a proprietary deglitcher that reduces glitch energy
to below 2nV-s over the DAC output voltage range.
Digital Section
The LTC1591/LTC1597 are 14-/16-bit wide full parallel
data bus inputs. The devices are double-buffered with two
14-/16-bit registers. The double-buffered feature permits
the update of several DACs simultaneously. The input
register is loaded directly from a 16-bit microprocessor
bus when the WR pin is brought to a logic low level. The
second register (DAC register) is updated with the data
from the input register when the LD pin is brought to a
logic high level. Updating the DAC register updates the
DAC output with the new data. To make both registers
transparent for flowthrough mode, tie WR low and LD
high. However, this defeats the deglitcher operation and
output glitch impulse may increase. The deglitcher is
activated on the rising edge of the LD pin. The versatility
of the interface also allows the use of the input and DAC
registers in a master slave or edge-triggered configura-
tion. This mode of operation occurs when WR and LD are
tied together. The asynchronous clear pin resets the
LTC1591/LTC1597 to zero scale and the LTC1591-1/
LTC1597-1 to midscale. CLR resets both the input and
DAC registers. These devices also have a power-on reset.
Table 1 shows the truth table for the LTC1591/LT1597.
Unipolar Mode
(2-Quadrant Multiplying, V
OUT
= 0V to V
REF
)
The LTC1591/LTC1597 can be used with a single op amp
to provide 2-quadrant multiplying operation as shown in
Figure 1. With a fixed 10V reference, the circuits shown
give a precision unipolar 0V to 10V output swing.
APPLICATIO
N
S I
N
FOR
M
ATIO
N
W
U
U
U
Figure 1a. Unipolar Operation (2-Quadrant Multiplication) V
OUT
= 0V to V
REF
V
CC
LTC1591
R
FB
R
FB
R
OFS
R
OFS
5V
LD
LD
3
2
9
8
28
27
23
7
22
R1
R
COM
1
REF
4
5
0.1
F
6
I
OUT1
33pF
V
OUT
=
0V TO
V
REF
1591/97 F01a
AGND
DGND
WR
10 TO 21,
24, 25
WR
CLR
NC
CLR
V
REF
+
LT1001
14-BIT DAC
R1
R2
14
DATA
INPUTS
Unipolar Binary Code Table
DIGITAL INPUT
BINARY NUMBER
IN DAC REGISTER
V
REF
(16,383/16,384)
V
REF
(8,192/16,384) = V
REF
/
2
V
REF
(1/16,384)
0V
LSB
1111 1111 11
0000 0000 00
0000 0000 01
0000 0000 00
ANALOG OUTPUT
VOUT
MSB
1111
1000
0000
0000
26
NC
14
LTC1591/LTC1597
APPLICATIO
N
S I
N
FOR
M
ATIO
N
W
U
U
U
V
CC
LTC1597
R
FB
R
FB
R
OFS
R
OFS
5V
LD
LD
3
2
9
8
28
23
7
22
R1
R
COM
1
REF
4
5
0.1
F
6
I
OUT1
33pF
V
OUT
=
0V TO
V
REF
1591/97 F01b
AGND
DGND
WR
10 TO 21,
24 TO 27
WR
CLR
CLR
V
REF
+
LT1001
16-BIT DAC
R1
R2
16
DATA
INPUTS
Unipolar Binary Code Table
DIGITAL INPUT
BINARY NUMBER
IN DAC REGISTER
V
REF
(65,535/65,536)
V
REF
(32,768/65,536) = V
REF
/ 2
V
REF
(1/65,536)
0V
LSB
1111 1111 1111
0000 0000 0000
0000 0000 0001
0000 0000 0000
ANALOG OUTPUT
VOUT
MSB
1111
1000
0000
0000
Figure 1b. Unipolar Operation (2-Quadrant Multiplication) V
OUT
= 0V to V
REF
Bipolar Mode
(4-Quadrant Multiplying, V
OUT
= V
REF
to V
REF
)
The LTC1591/LTC1597 contain on chip all the 4-quadrant
resistors necessary for bipolar operation. 4-quadrant
multiplying operation can be achieved with a minimum of
external components, a capacitor and a dual op amp, as
shown in Figure 2. With a fixed 10V reference, the circuit
shown gives a precision bipolar 10V to 10V output
swing.
Op Amp Selection
Because of the extremely high accuracy of the 14-/16-bit
LTC1591/LTC1597, thought should be given to op amp
selection in order to achieve the exceptional performance
of which the part is capable. Fortunately, the sensitivity of
INL and DNL to op amp offset has been greatly reduced
compared to previous generations of multiplying DACs.
Op amp offset will contribute mostly to output offset and
gain and will have minimal effect on INL and DNL. For the
LTC1597, a 500
V op amp offset will cause about 0.55LSB
INL degradation and 0.15LSB DNL degradation with a 10V
full-scale range. The main effects of op amp offset will be
a degradation of zero-scale error equal to the op amp
offset, and a degradation of full-scale error equal to twice
the op amp offset. For the LTC1597, the same 500
V op
amp offset (2mV offset for LTC1591) will cause a 3.3LSB
zero-scale error and a 6.5LSB full-scale error with a 10V
full-scale range.
Op amp input bias current (I
BIAS
) contributes only a zero-
scale error equal to I
BIAS
(R
FB/
R
OFS
) = I
BIAS
(6k). For a
thorough discussion of 16-bit DAC settling time and op
amp selection, refer to Application Note 74, "
Component
and Measurement Advances Ensure 16-Bit DAC Settling
Time."
Reference Input and Grounding
For optimum performance the reference input of the
LTC1597 should be driven by a source impedance of less
than 1k
. However, these DACs have been designed to
minimize source impedance effects. An 8k
source im-
pedance degrades both INL and DNL by 0.2LSB.
As with any high resolution converter, clean grounding is
important. A low impedance analog ground plane and star
grounding should be used. AGND must be tied to the star
ground with as low a resistance as possible.
15
LTC1591/LTC1597
APPLICATIO
N
S I
N
FOR
M
ATIO
N
W
U
U
U
V
CC
LTC1591-1
R
FB
R
FB
R
OFS
R
OFS
5V
LD
LD
3
2
9
8
28
23
7
22
R1
R
COM
1
REF
4
5
0.1
F
6
I
OUT1
33pF
V
OUT
=
V
REF
TO V
REF
1591/97 F02a
AGND
DGND
+
1/2 LT1112
WR
10 TO 21,
24, 25
WR
CLR
CLR
V
REF
+
1/2 LT1112
14-BIT DAC
R1
R2
14
DATA
INPUTS
Bipolar Offset Binary Code Table
DIGITAL INPUT
BINARY NUMBER
IN DAC REGISTER
V
REF
(8,191/8,192)
V
REF
(1/8,192)
0V
V
REF
(1/8,192)
V
REF
LSB
1111 1111
11
0000 0000
01
0000 0000
00
1111 1111
11
0000 0000
00
ANALOG OUTPUT
V
OUT
MSB
1111
1000
1000
0111
0000
27
NC
26
NC
Figure 2a. Bipolar Operation (4-Quadrant Multiplication) V
OUT
= V
REF
to V
REF
V
CC
LTC1597-1
R
FB
R
FB
R
OFS
R
OFS
5V
LD
LD
3
2
9
8
28
23
7
22
R1
R
COM
1
REF
4
5
0.1
F
6
I
OUT1
33pF
V
OUT
=
V
REF
TO V
REF
1591/97 F02b
AGND
DGND
+
1/2 LT1112
WR
10 TO 21,
24 TO 27
WR
CLR
CLR
V
REF
+
1/2 LT1112
16-BIT DAC
R1
R2
16
DATA
INPUTS
Bipolar Offset Binary Code Table
DIGITAL INPUT
BINARY NUMBER
IN DAC REGISTER
V
REF
(32,767/32,768)
V
REF
(1/32,768)
0V
V
REF
(1/32,768)
V
REF
LSB
1111 1111 1111
0000 0000 0001
0000 0000 0000
1111 1111 1111
0000 0000 0000
ANALOG OUTPUT
V
OUT
MSB
1111
1000
1000
0111
0000
Figure 2b. Bipolar Operation (4-Quadrant Multiplication) V
OUT
= V
REF
to V
REF
16
LTC1591/LTC1597
TYPICAL APPLICATIO
N
S
U
V
CC
LTC1597
R
FB
R
FB
R
OFS
R
OFS
5V
LD
LD
3
2
9
8
28
23
7
22
R1
R
COM
1
REF
4
5
0.1
F
6
I
OUT1
33pF
V
OUT
=
0V TO V
REF
1591/97 F06
AGND
DGND
+
1/2 LT1112
WR
10 TO 21,
24 TO 27
WR
CLR
CLR
V
REF
+
1/2 LT1112
16-BIT DAC
R1
R2
16
DATA
INPUTS
Noninverting Unipolar Operation (2-Quadrant Multiplication) V
OUT
= 0V to V
REF
17
LTC1591/LTC1597
TYPICAL APPLICATIO
N
S
U
16-Bit V
OUT
DAC Programmable Unipolar/Bipolar Configuration
V
CC
LTC1597
R
FB
R
FB
R
OFS
R
OFS
5V
LD
LD
3
3
LTC203AC
2
1
6
4
2
UNIPOLAR/
BIPOLAR
15V
14
15
16
2
9
8
28
23
7
22
R1
R
COM
1
REF
4
5
0.1
F
6
I
OUT1
15pF
V
OUT
1591/97 F04
AGND
DGND
+
LT1001
+
LT1468
WR
10 TO 21,
24 TO 27
WR
CLR
CLR
+
LT1468
16-BIT DAC
R1
R2
16
DATA
INPUTS
LT1236A-10
18
LTC1591/LTC1597
TYPICAL APPLICATIO
N
S
U
V
CC
LTC1597
R
FB
R
FB
R
OFS
R
OFS
5V
LD
3
2
9
8
28
23
7
22
R1
R
COM
1
REF
4
5
0.1
F
6
I
OUT1
15pF
1591/97 F05
AGND
DGND
+
WR
10 TO 21,
24 TO 27
CLR
+
LT1468
16-BIT DAC
R1
R2
16
DATA
INPUTS
LT1001
6
4
2
15V
LT1236A-10
LOWPASS
FILTER
(M)(f
C
)
2
n
f
O
=
SIN ROM
LOOKUP
TABLE
PARALLEL
DELTA
PHASE
REGISTER
M
PHASE
REGISTER
PHASE
TRUNCATION
16 BITS
PHASE ACCUMULATOR
FREQUENCY CONTROL
n = 24 TO 32 BITS
CLOCK
n
n
n
n
n
SERIAL
OR BYTE
LOAD
REGISTER
f
O
Digital Waveform Generator
19
LTC1591/LTC1597
PACKAGE DESCRIPTIO
N
U
G Package
28-Lead Plastic SSOP (0.209)
(LTC DWG # 05-08-1640)
Dimensions in inches (millimeters) unless otherwise noted.
N28 1197
0.255
0.015*
(6.477
0.381)
1.370*
(34.789)
MAX
3
4
5
6
7
8
9
10
11
12
21
13
14
15
16
18
17
19
20
22
23
24
25
26
2
27
1
28
0.020
(0.508)
MIN
0.125
(3.175)
MIN
0.130
0.005
(3.302
0.127)
0.065
(1.651)
TYP
0.045 0.065
(1.143 1.651)
0.018
0.003
(0.457
0.076)
0.005
(0.127)
MIN
0.100
0.010
(2.540
0.254)
0.009 0.015
(0.229 0.381)
0.300 0.325
(7.620 8.255)
0.325
+0.035
0.015
+0.889
0.381
8.255
(
)
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)
N Package
28-Lead PDIP (Narrow 0.300)
(LTC DWG # 05-08-1510)
G28 SSOP 0694
0.005 0.009
(0.13 0.22)
0
8
0.022 0.037
(0.55 0.95)
0.205 0.212**
(5.20 5.38)
0.301 0.311
(7.65 7.90)
1
2 3
4
5
6 7 8
9 10 11 12
14
13
0.397 0.407*
(10.07 10.33)
25
26
22 21 20 19 18 17 16 15
23
24
27
28
0.068 0.078
(1.73 1.99)
0.002 0.008
(0.05 0.21)
0.0256
(0.65)
BSC
0.010 0.015
(0.25 0.38)
DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE
*
**
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-
tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
20
LTC1591/LTC1597
LINEAR TECHNOLOGY CORPORATION 1998
Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900
q
FAX: (408) 434-0507
q
www.linear-tech.com
TYPICAL APPLICATIO
N
U
15917f LT/TP 1298 4K PRINTED IN USA
17-Bit Sign Magnitude DAC with Bipolar Zero Error of 140
V (0.92LSB at 17 Bits) at 25
C
V
CC
15pF
LTC1597
R
FB
R
FB
R
OFS
R
OFS
5V
LD
LD
3
3
LTC203AC
2
1
6
4
2
15V
14
15
16
2
9
8
28
23
7
22
R1
R
COM
1
REF
4
5
0.1
F
6
I
OUT1
20pF
V
OUT
1591/97 F03
AGND
DGND
+
LT1468
WR
10 TO 21,
24 TO 27
SIGN
BIT
WR
CLR
CLR
+
LT1468
16-BIT DAC
R1
R2
16
DATA
INPUTS
LT1236A-10
PART NUMBER
DESCRIPTION
COMMENTS
Op Amps
LT1001
Precision Operational Amplifier
Low Offset, Low Drift
LT1112
Dual Low Power, Precision Picoamp Input Op Amp
Low Offset, Low Drift
LT1468
90MHz, 22V/
s, 16-Bit Accurate Op Amp
Precise, 1
s Settling to 0.0015%
DACs
LTC1595/LTC1596
Serial 16-Bit Current Output DACs
Low Glitch,
1LSB Maximum INL, DNL
LTC1650
Serial 16-Bit Voltage Output DAC
Low Noise and Glitch Rail-to-Rail VOUT
LTC1658
Serial 14-Bit Voltage Output DAC
Low Power, 8-Lead MSOP Rail-to-Rail VOUT
ADCs
LTC1418
14-Bit, 200ksps 5V Sampling ADC
16mW Dissipation, Serial and Parallel Outputs
LTC1604
16-Bit, 333ksps Sampling ADC
2.5V Input, SINAD = 90dB, THD = 100dB
LTC1605
Single 5V, 16-Bit 100ksps ADC
Low Power,
10V Inputs
References
LT1236
Precision Reference
Ultralow Drift, 5ppm/
C, High Accuracy 0.05%
RELATED PARTS