ChipFind - документация

Электронный компонент: BCWALT1

Скачать:  PDF   ZIP
LESHAN RADIO COMPANY, LTD.
M91/6
1
3
2
General Purpose Transistors
NPN Silicon
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
CollectorEmitter Voltage
V
CEO
32
Vdc
CollectorBase Voltage
V
CBO
32
Vdc
EmitterBase Voltage
V
EBO
5.0
Vdc
Collector Current -- Continuous
I
C
100
mAdc
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
Total Device Dissipation FR 5 Board, (1)
P
D
225
mW
T
A
= 25C
Derate above 25C
1.8
mW/C
Thermal Resistance, Junction to Ambient
R
JA
556
C/W
Total Device Dissipation
P
D
300
mW
Alumina Substrate, (2) T
A
= 25C
Derate above 25C
2.4
mW/C
Thermal Resistance, Junction to Ambient
R
JA
417
C/W
Junction and Storage Temperature
T
J
, T
stg
55 to +150
C
DEVICE MARKING
BCW60ALT1 = AA, BCW60BLT1 = AB, BCW60DLT1 = AD
ELECTRICAL CHARACTERISTICS
(T
A
= 25C unless otherwise noted.)
Characteristic
Symbol
Min
Max
Unit
OFF CHARACTERISTICS
CollectorEmitter Breakdown Voltage
(I
C
= 2.0mAdc, I
E
= 0 )
V
(BR)CEO
32
--
Vdc
EmitterBase Breakdown Voltage
(I
E
= 1.0
Adc, I
C
= 0)
V
(BR)EBO
5.0
--
Vdc
Collector Cutoff Current
I
CES
(V
CE
= 32 Vdc, )
--
20
nAdc
(V
CE
= 32 Vdc, T
A
= 150C)
--
20
Adc
Emitter Cutoff Current
(I
EB
= 4.0 Vdc, I
C
= 0)
I
EBO
--
20
nAdc
1. FR 5 = 1.0 x 0.75 x 0.062 in.
2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.
BCW60ALT1
BCW60BLT1
BCW60DLT1
CASE 31808, STYLE 6
SOT23 (TO236AB)
2
EMITTER
3
COLLECTOR
1
BASE
LESHAN RADIO COMPANY, LTD.
M92/6
ELECTRICAL CHARACTERISTICS
(T
A
= 25C unless otherwise noted) (Continued)
Characteristic
Symbol
Min
Max
Unit
ON CHARACTERISTICS
DC Current Gain
h
FE
--
( I
C
= 10
Adc, V
CE
= 5.0 Vdc )
BCW60A
20
--
BCW60B
30
--
BCW60D
100
--
( I
C
= 2.0 mAdc, V
CE
= 5.0 Vdc )
h
FE
--
BCW60A
120
220
BCW60B
175
310
BCW60D
380
630
( I
C
= 50 mAdc, V
CE
= 1.0 Vdc )
h
FE
--
BCW60A
60
--
BCW60B
70
--
BCW60D
100
--
AC Current Gain
h
FE
--
( V
CE
= 5.0Vdc, I
C
= 2.0 mAdc,
BCW60A
125
250
f= 1.0 kHz )
BCW60B
175
350
BCW60D
350
700
CollectorEmitter Saturation Voltage
V
CE(sat)
Vdc
( I
C
= 50 mAdc, I
B
= 1.25 mAdc )
--
0.55
( I
C
= 10 mAdc, I
B
= 0.25 mAdc )
--
0.35
BaseEmitter Saturation Voltage
V
BE(sat)
Vdc
( I
C
= 50 mAdc, I
B
= 1.25 mAdc )
0.7
1.05
( I
C
= 50 mAdc, I
B
= 0.25 mAdc )
0.6
0.85
BaseEmitter On Voltage
V
BE(on)
Vdc
( I
C
= 2.0 mAdc, V
CE
= 5.0 Vdc )
0.6
0.75
SM
SMALLSIGNAL CHARACTERISTICS
CurrentGain -- Bandwidth Product
f
T
125
--
MHz
(I
C
= 10 mAdc, V
CE
= 5.0 Vdc, f = 100 MHz)
Output Capacitance
C
obo
--
4.5
pF
(V
CE
= 10 Vdc, I
C
= 0, f = 1.0 MHz)
Noise Figure
NF
--
6.0
dB
(V
CE
= 5.0 Vdc, I
C
= 0.2 mAdc, R
S
= 2.0 k
, f = 1.0 kHz, BW = 200 Hz)
SWITCHING CHARACTERISTICS
TurnOn Time
t
on
--
150
ns
(I
C
= 10 mAdc, I
B1
= 1.0 mAdc)
TurnOff Time
t
off
--
800
ns
(I
B2
= 1.0 mAdc, V
BB
= 3.6 Vdc, R
1
= R
2
= 5.0 k
, R
L
= 990
)
BCW60ALT1 BCW60BLT1 BCW60DLT1
Figure 1. TurnOn Time
Figure 2. TurnOff Time
EQUIVALENT SWITCHING TIME TEST CIRCUITS
*Total shunt capacitance of test jig and connectors
10 k
+3.0 V
275
C
S
< 4.0 pF*
10 k
+3.0 V
275
C
S
< 4.0 pF*
1N916
300 ns
DUTY CYCLE = 2%
0.5 V
10 < t
1
< 500
s
DUTY CYCLE = 2%
+10.9 V
<1.0 ns
<1.0 ns
+10.9 V
t
1
9.1 V
0
LESHAN RADIO COMPANY, LTD.
M93/6
Noise Figure is Defined as:
NF = 20 log
10
(
)
1/ 2
e
n
= Noise Voltage of the Transistor referred to the input. (Figure 3)
I
n
= Noise Current of the Transistor referred to the input. (Figure 4)
K
= Boltzman's Constant (1.38 x 10
23
j/K)
T
= Temperature of the Source Resistance (K)
R
s
= Source Resistance (
)
e n
2
+4KTR
S
+I
n
2
R
S
2
4KTR
S
TYPICAL NOISE CHARACTERISTICS
(V
CE
= 5.0 Vdc, T
A
= 25C)
f, FREQUENCY (Hz)
Figure 3. Noise Voltage
f, FREQUENCY (Hz)
Figure 4. Noise Current
e
n
, NOISE VOL
T
AGE (nV)
BANDWIDTH = 1.0 Hz
R
S
0
I
C
= 1.0mA
100
A
30
A
30
A
I
n
, NOISE CURRENT (pA)
BANDWIDTH = 1.0 Hz
R
S
I
C
=1.0mA
300
A
100
A
30
A
BANDWIDTH = 1.0 Hz
BANDWIDTH = 1.0 Hz
NOISE FIGURE CONTOURS
(V
CE
= 5.0 Vdc, T
A
= 25C)
R
S
, SOURCE RESIST
ANCE (
)
R
S
, SOURCE RESIST
ANCE (
)
R
S
, SOURCE RESIST
ANCE (
)
20
10
7.0
5.0
3.0
2.0
10
20
50
100
200
500
1.0k
2.0k
5.0k
10 k
10
20
50
100
200
500
1.0k
2.0k
5.0k
10 k
100
50
20
10
5.0
2.0
1.0
0.5
0.2
0.1
500k
200k
100k
50k
20k
10k
5.0k
2.0k
1.0k
500
200
100
50
1.0M
500k
200k
100k
50k
20k
10k
5.0k
2.0k
1.0k
500
200
100
10
20
30
50
70
100
200
300
500 700 1.0K
10
20
30
50
70
100
200
300
500 700 1.0K
10
20
30
50
70
100
200
300
500 700 1.0K
2.0 dB
3.0 dB 4.0dB
6.0 dB
10 dB
2.0 dB
3.0dB
5.0 dB
8.0 dB
1.0 dB
2.0 dB
3.0 dB
5.0 dB
8.0 dB
10 Hz to 15.7Hz
10
A
1.0 dB
500k
200k
100k
50k
20k
10k
5.0k
2.0k
1.0k
500
200
100
50
BCW60ALT1 BCW60BLT1 BCW60DLT1
I
C
, COLLECTOR CURRENT (
A)
Figure 5. Narrow Band, 100 Hz
I
C
, COLLECTOR CURRENT (
A)
Figure 7. Wideband
I
C
, COLLECTOR CURRENT (
A)
Figure 6. Narrow Band, 1.0 kHz
~
~
~
~
8
10
A
LESHAN RADIO COMPANY, LTD.
M94/6
I
B
, BASE CURRENT (mA)
Figure 9. Collector Saturation Region
I
C
, COLLECTOR CURRENT (mA)
Figure 12. Temperature Coefficients
V
CE
, COLLECTOREMITTER VOLTAGE (VOLTS)
Figure 10. Collector Characteristics
I
C
, COLLECTOR CURRENT (mA)
Figure 11. "On" Voltages
I
C
, COLLECT
OR CURRENT (mA)
V
,
VOL
T
AGE (VOL
TS)
V
CE
, COLLECT
OR EMITTER VOL
T
AGE (VOL
TS)
V
, TEMPERA
TURE COEFFICIENTS (mV/C)
VB
for V
BE
VC
for V
CE(sat)
V
BE(on)
@ V
CE
= 1.0 V
V
CE(sat)
@ I
C
/I
B
= 10
V
BE(sat)
@ I
C
/I
B
= 10
T
J
= 25C
I
C
= 1.0 mA
50 mA
100 mA
10 mA
T
J
= 25C
*APPLIES for I
C
/ I
B
< h
FE
/ 2
T
A
= 25C
PULSE WIDTH =300
s
DUTY CYCLE<2.0%
I
B
= 500
A
100
A
200
A
300
A
400
A
55C to 25C
55C to 25C
25C to 125C
25C to 125C
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
0.1
0.2
0.5
1.0
2.0
5.0
10
20
50
100
1.6
0.8
0
0.8
1.6
2.4
0.1
0.2
0.5
1.0
2.0
5.0
10
20
50
100
1.0
0.8
0.6
0.4
0.2
0
0.002 0.0050.010.02
0.05 0.1 0.2
0.5 1.0 2.0
5.0
10
20
100
80
60
40
20
0
0
5.0
10
15
20
25
30
35
40
TYPICAL NOISE CHARACTERISTICS
BCW60ALT1 BCW60BLT1 BCW60DLT1
400
200
100
80
60
40
h
FE
, DC CURRENT GAIN
0.0040.006 0.01
0.02 0.03
0.05 0.07
0.1
0.2
0.3
0.5
0.7
1.0
2.0
3.0
5.0 7.0
10
20
30
50
70
100
I
C
, COLLECTOR CURRENT (mA)
Figure 8. DC Current Gain
V
CE
= 1.0 V
V
CE
= 10 V
T
J
= 125C
25C
55C
LESHAN RADIO COMPANY, LTD.
M95/6
TYPICAL DYNAMIC CHARACTERISTICS
C, CAP
ACIT
ANCE (pF)
I
C
, COLLECTOR CURRENT (mA)
Figure 13. TurnOn Time
I
C
, COLLECTOR CURRENT (mA)
Figure 14. TurnOff Time
I
C
, COLLECTOR CURRENT (mA)
Figure 15. CurrentGain -- Bandwidth Product
V
R
, REVERSE VOLTAGE (VOLTS)
Figure 16. Capacitance
I
C
, COLLECTOR CURRENT (mA)
Figure 17. Input Impedance
I
C
, COLLECTOR CURRENT (mA)
Figure 18. Output Admittance
t, TIME (ns)
t, TIME (ns)
f
T
, CURRENT GAIN -- BANDWIDTH PRODUCT (MHz)
h
ie
, INPUT IMPEDANCE ( k
)
h
oe
, OUTPUT ADMITT
ANCE (
mhos
)
t
d
@ V
BE(off)
= 0.5 Vdc
t
f
V
CC
= 3.0 V
I
C
/I
B
= 10
I
B1
=I
B2
T
J
= 25C
t
f
t
s
5.0 V
C
ib
C
ob
T
J
= 25C
f = 1.0MHz
V
CE
= 10 Vdc
f = 1.0 kHz
T
A
= 25C
V
CE
= 10 Vdc
f = 1.0 kHz
T
A
= 25C
h
fe
200 @ I
C
= 1.0 mA
300
200
100
70
50
30
20
10
7.0
5.0
3.0
1.0
2.0
3.0
5.0
7.0
10
20
30
50
70
100
1000
700
500
300
200
100
70
50
30
20
10
1.0
2.0
3.0
5.0
7.0
10
20
30
50
70
100
500
300
200
100
70
50
0.5
0.7
1.0
2.0
3.0
5.0 7.0
10
20
30
50
10.0
7.0
5.0
3.0
2.0
1.0
0.05
0.1
0.2
0.5
1.0
2.0
5.0
10
20
50
20
10
7.0
5.0
3.0
2.0
1.0
0.7
0.5
0.3
0.2
0.1
0.2
0.5
1.0
2.0
5.0
10
20
50
100
200
100
70
50
30
20
10
7.0
5.0
3.0
2.0
0.1
0.2
0.5
1.0
2.0
5.0
10
20
50
100
BCW60ALT1 BCW60BLT1 BCW60DLT1
V
CC
= 3.0 V
I
C
/I
B
= 10
T
J
= 25C
V
CE
=20 V
T
J
= 25C
f=100MHz
h
fe
200 @ I
C
= 1.0 mA
~
~
~
~
LESHAN RADIO COMPANY, LTD.
M96/6
T
J
, JUNCTION TEMPERATURE (C)
Figure 19A.
V
CC
= 30 Vdc
I
C
, COLLECT
OR CURRENT (nA)
10
4
10
3
10
2
10
1
10
0
10
1
10
2
4
2
0
+20
+40
+60
+80
+100
+120
+140
+160
I
CBO
AND
I
CEX
@ V
BE(off)
= 3.0 Vdc
I
CEO
DESIGN NOTE: USE OF THERMAL RESPONSE DATA
A train of periodical power pulses can be represented by the
model as shown in Figure 19A. Using the model and the device
thermal response the normalized effective transient thermal re-
sistance of Figure 19 was calculated for various duty cycles.
To find Z
JA(t)
, multiply the value obtained from Figure 19 by
the steady state value R
JA
.
Example:
The MPS3904 is dissipating 2.0 watts peak under the follow-
ing conditions:
t
1
= 1.0 ms, t
2
= 5.0 ms. (D = 0.2)
Using Figure 19 at a pulse width of 1.0 ms and D = 0.2, the
reading of r(t) is 0.22.
The peak rise in junction temperature is therefore
T = r(t) x P
(pk)
x R
JA
= 0.22 x 2.0 x 200 = 88C.
For more information, see AN569.
t, TIME (ms)
Figure 19. Thermal Response
r( t) TRANSIENT THERMAL RESIST
ANCE(NORMALIZED)
D = 0.5
0.02
0.05
0.1
0.2
0.01
SINGLE PULSE
DUTY CYCLE, D = t
1
/ t
2
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t
1
(SEE AN569)
Z
JA(t)
= r(t) R
JA
T
J(pk)
T
A
= P
(pk)
Z
JA(t)
FIGURE 19A
P
(pk)
t
2
t
1
1.0
0.7
0.5
0.3
0.2
0.1
0.07
0.05
0.03
0.02
0.01
0.01
0.02
0.05
0.1
0.2
0.5
1.0
2.0
5.0
10
20
50
100
200
500
1.0k
2.0k
5.0k
10k
20k
50k
100k
BCW60ALT1 BCW60BLT1 BCW60DLT1
V
CE
, COLLECTOREMITTER VOLTAGE (VOLTS)
Figure 20.
CURRENT LIMIT
THERMAL LIMIT
SECOND BREAKDOWN LIMIT
2.0
4.0
6.0
8.0
10
20
40
The safe operating area curves indicate I
C
V
CE
limits of
the transistor that must be observed for reliable operation.
Collector load lines for specific circuits must fall below the
limits indicated by the applicable curve.
The data of Figure 20 is based upon T
J(pk)
= 150C; T
C
or
T
A
is variable depending upon conditions. Pulse curves are
valid for duty cycles to 10% provided T
J(pk)
<150C. T
J(pk)
may be calculated from the data in Figure 19. At high case
or ambient temperatures, thermal limitations will reduce the
power that can be handled to values less than the limitations
imposed by second breakdown.
T
A
= 25C
T
C
= 25C
T
J
= 150C
100
s
1.0 ms
1.0 s
10
s
dc
dc
I
C
, COLLECT
OR CURRENT (mA)
400
200
100
60
40
20
10
6.0
4.0