ChipFind - документация

Электронный компонент: MRF134

Скачать:  PDF   ZIP
The RF MOSFET Line
RF Power Field-Effect Transistor
NChannel EnhancementMode
. . . designed for wideband largesignal amplifier and oscillator applications up
to 400 MHz range.
Guaranteed 28 Volt, 150 MHz Performance
Output Power = 5.0 Watts
Minimum Gain = 11 dB
Efficiency -- 55% (Typical)
SmallSignal and LargeSignal Characterization
Typical Performance at 400 MHz, 28 Vdc, 5.0 W
Output = 10.6 dB Gain
100% Tested For Load Mismatch At All Phase Angles
With 30:1 VSWR
Low Noise Figure -- 2.0 dB (Typ) at 200 mA, 150 MHz
Excellent Thermal Stability, Ideally Suited For Class A
Operation
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
DrainSource Voltage
V
DSS
65
Vdc
DrainGate Voltage
(R
GS
= 1.0 M
)
V
DGR
65
Vdc
GateSource Voltage
V
GS
40
Vdc
Drain Current -- Continuous
I
D
0.9
Adc
Total Device Dissipation @ T
C
= 25
C
Derate above 25
C
P
D
17.5
0.1
Watts
W/
C
Storage Temperature Range
T
stg
65 to +150
C
THERMAL CHARACTERISTICS
Rating
Symbol
Value
Unit
Thermal Resistance, Junction to Case
R
JC
10
C/W
Handling and Packaging -- MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and
packaging MOS devices should be observed.
MRF134
5.0 W, to 400 MHz
NCHANNEL MOS
BROADBAND RF POWER
FET
CASE 21107, STYLE 2
D
G
S
Order this document
by MRF134/D
SEMICONDUCTOR TECHNICAL DATA
1
REV 6
ELECTRICAL CHARACTERISTICS
(T
C
= 25
C unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
OFF CHARACTERISTICS
DrainSource Breakdown Voltage (V
GS
= 0, I
D
= 5.0 mA)
V
(BR)DSS
65
--
--
Vdc
Zero Gate Voltage Drain Current (V
DS
= 28 V, V
GS
= 0)
I
DSS
--
--
1.0
mAdc
GateSource Leakage Current (V
GS
= 20 V, V
DS
= 0)
I
GSS
--
--
1.0
Adc
ON CHARACTERISTICS
Gate Threshold Voltage (I
D
= 10 mA, V
DS
= 10 V)
V
GS(th)
1.0
3.5
6.0
Vdc
Forward Transconductance (V
DS
= 10 V, I
D
= 100 mA)
g
fs
80
110
--
mmhos
DYNAMIC CHARACTERISTICS
Input Capacitance
(V
DS
= 28 V, V
GS
= 0, f = 1.0 MHz)
C
iss
--
7.0
--
pF
Output Capacitance
(V
DS
= 28 V, V
GS
= 0, f = 1.0 MHz)
C
oss
--
9.7
--
pF
Reverse Transfer Capacitance
(V
DS
= 28 V, V
GS
= 0, f = 1.0 MHz)
C
rss
--
2.3
--
pF
FUNCTIONAL CHARACTERISTICS
Noise Figure
(V
DS
= 28 Vdc, I
D
= 200 mA, f = 150 MHz)
NF
--
2.0
--
dB
Common Source Power Gain
(V
DD
= 28 Vdc, P
out
= 5.0 W, I
DQ
= 50 mA)
f = 150 MHz (Fig. 1)
f = 400 MHz (Fig. 14)
G
ps
11
--
14
10.6
--
--
dB
Drain Efficiency (Fig. 1)
(V
DD
= 28 Vdc, P
out
= 5.0 W, f = 150 MHz, I
DQ
= 50 mA)
50
55
--
%
Electrical Ruggedness (Fig. 1)
(V
DD
= 28 Vdc, P
out
= 5.0 W, f = 150 MHz, I
DQ
= 50 mA,
VSWR 30:1 at all Phase Angles)
No Degradation in Output Power
Figure 1. 150 MHz Test Circuit
C1, C4 -- Arco 406, 15115 pF
C2 -- Arco 403, 3.035 pF
C3 -- Arco 402, 1.520 pF
C5, C6, C7, C8, C12 -- 0.1
F Erie Redcap
C9 -- 10
F, 50 V
C10, C11 -- 680 pF Feedthru
D1 -- 1N5925A Motorola Zener
L1 -- 3 Turns, 0.310
ID, #18 AWG Enamel, 0.2
Long
L2 -- 31/2 Turns, 0.310
ID, #18 AWG Enamel, 0.25
Long
L3 -- 20 Turns, #20 AWG Enamel Wound on R5
L4 -- Ferroxcube VK200 -- 19/4B
R1 -- 68
, 1.0 W Thin Film
R2 -- 10 k
, 1/4 W
R3 -- 10 Turns, 10 k
Beckman Instruments 8108
R4 -- 1.8 k
, 1/2 W
R5 -- 1.0 M
, 2.0 W Carbon
Board -- G10, 62 mils
R3*
R4
L4
L3
L1
L2
D1
C8
C9
C10
C11
C12
C4
C3
C6
C5
R2
C2
C1
RF INPUT
RF OUTPUT
+ V
DD
= 28 V
DUT
R5
+
-
C7
R1
*Bias Adjust
2
REV 6
Figure 2. Output Power versus Input Power
Figure 3. Output Power versus Input Power
Figure 4. Output Power versus Supply Voltage
Figure 5. Output Power versus Supply Voltage
Figure 6. Output Power versus Supply Voltage
Figure 7. Output Power versus Supply Voltage
10
8
6
4
2
0
1000
800
600
400
200
0
P
in
, INPUT POWER (MILLWATTS)
P
, OUTPUT
POWER (W
A
TTS)
out
5
4
3
2
1
0
1000
800
600
400
200
0
P
in
, INPUT POWER (MILLWATTS)
P
, OUTPUT
POWER (W
A
TTS)
out
8
6
4
2
0
14
12
V
DD
, SUPPLY VOLTAGE (VOLTS)
P
, OUTPUT
POWER (W
A
TTS)
out
16
18
20
22
24
26
28
8
6
4
2
0
14
12
V
DD
, SUPPLY VOLTAGE (VOLTS)
P
, OUTPUT
POWER (W
A
TTS)
out
16
18
20
22
24
26
28
8
6
4
2
0
14
12
V
DD
, SUPPLY VOLTAGE (VOLTS)
P
, OUTPUT
POWER (W
A
TTS)
out
16
18
20
22
24
26
28
8
6
4
2
0
14
12
V
DD
, SUPPLY VOLTAGE (VOLTS)
P
, OUTPUT
POWER (W
A
TTS)
out
16
18
20
22
24
26
28
150
400
225
150
225
400
P
in
= 600 mW
300 mW
150 mW
I
DQ
= 50 mA
f = 100 MHz
P
in
= 800 mW
400 mW
200 mW
I
DQ
= 50 mA
f = 150 MHz
P
in
= 800 mW
400 mW
200 mW
I
DQ
= 50 mA
f = 225 MHz
P
in
= 800 mW
I
DQ
= 50 mA
f = 400 MHz
400 mW
200 mW
f = 100 MHz
f = 100 MHz
V
DD
= 13.5 V
I
DQ
= 50 mA
V
DD
= 28 V
I
DQ
= 50 mA
3
REV 6
Figure 8. Output Power versus Gate Voltage
Figure 9. Drain Current versus Gate Voltage
(Transfer Characteristics)
Figure 10. GateSource Voltage versus
Case Temperature
Figure 11. Maximum Available Gain
versus Frequency
Figure 12. Capacitance versus Voltage
Figure 13. Maximum Rated Forward Biased
Safe Operating Area
6
5
4
3
2
0
-2
0
V
GS
, GATE-SOURCE VOLTAGE (VOLTS)
P
, OUTPUT
POWER (W
A
TTS)
out
1
-
1
1
2
3
4
5
I D
, DRAIN CURRENT
(MILLAMPS)
500
0
V
GS
, GATE-SOURCE VOLTAGE (VOLTS)
1
2
3
4
5
400
300
200
100
6
7
8
1.02
-25
T
C
, CASE TEMPERATURE (
C)
0
25
50
75
100
125
150
1
0.98
0.96
0.94
0.92
0.9
V GS
, GA
TESOURCE VOL
T
AGE (NORMALIZED)
G
MAX
, MAXIMUM
A
V
AILABLE GAIN (dB)
C, CAP
ACIT
ANCE (pF)
I D
, DRAIN CURRENT
(AMPS)
50
f, FREQUENCY (MHz)
1
10
100
1000
40
30
20
10
0
V
DS
, DRAIN-SOURCE VOLTAGE (VOLTS)
0
28
24
20
16
12
8
4
0
4
8
12
16
20
24
28
V
DS
, DRAIN-SOURCE VOLTAGE (VOLTS)
1
1
2
0.7
0.5
0.3
0.2
0.1
0.07
0.05
0.03
0.02
0.01
5
10
20
50 70 100
V
DD
= 28 V
I
DQ
= 50 mA
P
in
= CONSTANT
f = 400 MHz
150 MHz
TYPICAL DEVICE SHOWN,
V
GS(th)
= 3.5 V
V
DS
= 10 V
TYPICAL DEVICE SHOWN,
V
GS(th)
= 3.5 V
V
DD
= 28 V
I
DQ
= 200 mA
100 mA
50 mA
G
MAX
=
|S
21
|
2
(1 - |S
11
|
2
) (1 - |S
22
|
2
)
V
DS
= 28 V
I
D
= 100 mAdc
V
GS
= 0 V
f = 1 MHz
C
oss
C
iss
C
rss
T
C
= 25
C
0
4
REV 6
Figure 14. 400 MHz Test Circuit
C1, C6 -- 270 pF, ATC 100 mils
C2, C3, C4, C5 -- 020 pF Johanson
C7, C9, C10, C14 -- 0.1
F Erie Redcap, 50 V
C8 -- 0.001
F
C11 -- 10
F, 50 V
C12, C13 -- 680 pF Feedthru
D1 -- 1N5925A Motorola Zener
L1 -- 6 Turns, 1/4
ID, #20 AWG Enamel
L2 -- Ferroxcube VK200 -- 19/4B
R1 -- 68
, 1.0 W Thin Film
R2 -- 10 k
, 1/4 W
R3 -- 10 Turns, 10 k
Beckman Instruments 8108
R4 -- 1.8 k
, 1/2 W
Z1 -- 1.4
x 0.166
Microstrip
Z2 -- 1.1
x 0.166
Microstrip
Z3 -- 0.95
x 0.166
Microstrip
Z4 -- 2.2
x 0.166
Microstrip
Z5 -- 0.85
x 0.166
Microstrip
Board -- Glass Teflon, 62 mils
Figure 15. LargeSignal Series Equivalent
Input/Output Impedances, Z
in
, Z
OL
*
R3*
R4
R1
C8
C9
C7
C1
C2
C3
DUT
Z1
Z2
Z3
D1
L1
C10
C11
L2
C12
C13
C14
V
DD
= 28 V
RF OUTPUT
RF INPUT
C4
C5
C6
Z4
Z5
*Bias Adjust
R2
+
-
400
225
150
f = 100 MHz
400
225
150
f = 100 MHz
Z
OL
*
Z
in
{
Z
o
= 50
V
DD
= 28 V, I
DQ
= 50 mA, P
out
= 5.0 W
{68
Shunt Resistor Gate-to-Ground
Z
OL
* = Conjugate of the optimum load impedance
Z
OL
* =
into which the device output operates at a
Z
OL
* =
given output power, voltage and frequency.
f
MHz
Z
in
{
Ohms
Z
OL
*
Ohms
100
150
225
400
21.2 - j25.4
14.6 - j22.1
9.1 - j18.8
6.4 - j10.8
20.1 - j46.7
19.2 - j38.2
17.5 - j33.5
16.9 - j26.9
5
REV 6