ChipFind - документация

Электронный компонент: 27C1000-10

Скачать:  PDF   ZIP
FEATURES
128K x 8 organization
Single +5V power supply
+12.5V programming voltage
Fast access time: 45/55/70/90/100/120/150 ns
Totally static operation
Completely TTL compatible
1
Operating current: 30mA
Standby current: 100uA
Package type:
- 32 pin plastic DIP
- 32 pin SOP
- 32 pin PLCC
- 32 pin TSOP
REV. 6.0, AUG. 26, 2003
P/N: PM0234
GENERAL DESCRIPTION
The MX27C1000 is a 5V only, 1M-bit, One Time
Programmable Read Only Memory. It is organized as
128K words by 8 bits per word, operates from a single +
5 volt supply, has a static standby mode, and features
fast single address location programming. All program-
ming signals are TTL levels, requiring a single pulse. For
programming outside from the system, existing EPROM
programmers may be used. The MX27C1000 supports
an intelligent fast programming algorithm which can
result in programming time of less than thirty seconds.
This EPROM is packaged in industry standard 32 pin
dual-in-line packages, 32 lead PLCC , 32 lead SOP , and
32 lead TSOP packages.
PIN CONFIGURATIONS
PDIP/SOP
PLCC
TSOP
MX27C1000
1M-BIT [128K x 8] CMOS EPROM
1
4
5
9
13
14
17
20
21
25
29
32
30
A14
A13
A8
A9
A11
OE
A10
CE
Q7
A7
A6
A5
A4
A3
A2
A1
A0
Q0
Q1
Q2
GND
Q3
Q4
Q5
Q6
A12
A15
A16
VPP
VCC
PGM
NC
MX27C1000
A11
A9
A8
A13
A14
NC
PGM
VCC
VPP
A16
A15
A12
A7
A6
A5
A4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
OE
A10
CE
Q7
Q6
Q5
Q4
Q3
GND
Q2
Q1
Q0
A0
A1
A2
A3
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
MX27C1000
MX27C1000
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
VPP
A16
A15
A12
A7
A6
A5
A4
A3
A2
A1
A0
Q0
Q1
Q2
GND
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
VCC
PGM
NC
A14
A13
A8
A9
A11
OE
A10
CE
Q7
Q6
Q5
Q4
Q3
2
MX27C1000
REV. 6.0, AUG. 26, 2003
P/N: PM0234
PROGRAM INHIBIT MODE
Programming of multiple MX27C1000s in parallel with
different data is also easily accomplished by using the
Program Inhibit Mode. Except for CE and OE, all like
inputs of the parallel MX27C1000 may be common. A
TTL low-level program pulse applied to an MX27C1000
CE input with VPP = 12.5
0.5 V and PGM LOW will
program that MX27C1000. A high-level CE input inhibits
the other MX27C1000s from being programmed.
PROGRAM VERIFY MODE
Verification should be performed on the programmed bits
to determine that they were correctly programmed. The
verification should be performed with OE and CE at VIL,
PGM at VIH, and VPP at its programming voltage.
AUTO IDENTIFY MODE
The auto identify mode allows the reading out of a binary
code from an EPROM that will identify its manufacturer
and device type. This mode is intended for use by
programming equipment for the purpose of automatically
matching the device to be programmed with its
corresponding programming algorithm. This mode is
functional in the 25
C
5
C ambient temperature range
that is required when programming the MX27C1000.
BLOCK DIAGRAM
PIN DESCRIPTION
FUNCTIONAL DESCRIPTION
THE PROGRAMMING OF THE MX27C1000
When the MX27C1000 is delivered, or it is erased,
the chip has all 1M bits in the "ONE" or HIGH state.
"ZEROs" are loaded into the MX27C1000 through the
procedure of programming.
For programming, the data to be programmed is applied
with 8 bits in parallel to the data pins.
Vcc must be applied simultaneously or before Vpp, and
removed simultaneously or after Vpp. When
programming an MXIC EPROM, a 01.uF capacitor is
required across Vpp and ground to suppress spurious
voltage transients which may damage the device.
FAST PROGRAMMING
The device is set up in the fast programming mode when
the programming voltage VPP = 12.75V is applied, with
VCC = 6.25 V and PGM = VIL(or OE = VIH) (Algorithm
is shown in Figure 1). The programming is achieved
by applying a single TTL low level 100us pulse to the
PGM input after addresses and data line are stable. If
the data is not verified, an additional pulse is applied
for a maximum of 25 pulses. This process is repeated
while sequencing through each address of the device.
When the programming mode is completed, the data in
all address is verified at VCC = VPP = 5V
10%.
SYMBOL
PIN NAME
A0~A16
Address Input
Q0~Q7
Data Input/Output
CE
Chip Enable Input
OE
Output Enable Input
PGM
Programmable Enable Input
VPP
Program Supply Voltage
NC
No Internal Connection
VCC
Power Supply Pin (+5V)
GND
Ground Pin
CONTROL
LOGIC
OUTPUT
BUFFERS
Q0~Q17
CE
PGM
OE
A0~A16
ADDRESS
INPUTS
Y-DECODER
X-DECODER
Y-SELECT
1M BIT
CELL
MAXTRIX
VCC
GND
VPP
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3
MX27C1000
REV. 6.0, AUG. 26, 2003
P/N: PM0234
the primary device-selecting function, while OE be made
a common connection to all devices in the array and
connected to the READ line from the system control
bus. This assures that all deselected memory devices
are in their low-power standby mode and that the output
pins are only active when data is desired from a particular
memory device.
SYSTEM CONSIDERATIONS
During the switch between active and standby
conditions, transient current peaks are produced on the
rising and falling edges of Chip Enable. The magnitude
of these transient current peaks is dependent on the
output capacitance loading of the device. At a minimum,
a 0.1 uF ceramic capacitor (high frequency, low inherent
inductance) should be used on each device between
VCC and GND to minimize transient effects. In addition,
to overcome the voltage drop caused by the inductive
effects of the printed circuit board traces on EPROM
arrays, a 4.7 uF bulk electrolytic capacitor should be
used between VCC and GND for each eight devices.
The location of the capacitor should be close to where
the power supply is connected to the array.
To activate this mode, the programming equipment must
force 12.0
0.5 V on address line A9 of the device.
Two identifier bytes may then be sequenced from the
device outputs by toggling address line A0 from VIL to
VIH. All other address lines must be held at VIL during
auto identify mode.
Byte 0 ( A0 = VIL) represents the manufacturer code,
and byte 1 (A0 = VIH), the device identifier code. For
the MX27C1000, these two identifier bytes are given in
the Mode Select Table. All identifiers for manufacturer
and device codes will possess odd parity, with the MSB
(DQ7) defined as the parity bit.
READ MODE
The MX27C1000 has two control functions, both of which
must be logically satisfied in order to obtain data at the
outputs. Chip Enable (CE) is the power control and
should be used for device selection. Output Enable (OE)
is the output control and should be used to gate data
to the output pins, independent of device selection.
Assuming that addresses are stable, address access
time (tACC) is equal to the delay from CE to output (tCE).
Data is available at the outputs tQE after the falling edge
of OE, assuming that CE has been LOW and addresses
have been stable for at least tACC - tQE.
STANDBY MODE
The MX27C1000 has a CMOS standby mode which
reduces the maximum VCC current to 100 uA. It is
placed in CMOS standby when CE is at VCC
0.3 V.
The MX27C1000 also has a TTL-standby mode which
reduces the maximum VCC current to 1.5 mA. It is
placed in TTL-standby when CE is at VIH. When in
standby mode, the outputs are in a high-impedance
state, independent of the OE input.
TWO-LINE OUTPUT CONTROL FUNCTION
To accommodate multiple memory connections, a two-
line control function is provided to allow for:
1. Low memory power dissipation,
2. Assurance that output bus contention will not
occur.
It is recommended that CE be decoded and used as
4
MX27C1000
REV. 6.0, AUG. 26, 2003
P/N: PM0234
NOTES:
1. VH = 12.0 V
0.5 V
2. X = Either VIH or VIL
3. A1 - A8 = A10 - A16 = VIL(For auto select)
4. See DC Programming Characteristics for VPP voltage during programming.
MODE SELECT TABLE
PINS
MODE
CE
OE
PGM
A0
A9
VPP
OUTPUTS
Read
VIL
VIL
X
X
X
VCC
DOUT
Output Disable
VIL
VIH
X
X
X
VCC
High Z
Standby (TTL)
VIH
X
X
X
X
VCC
High Z
Standby (CMOS)
VCC
0.3V
X
X
X
X
VCC
High Z
Program
VIL
VIH
VIL
X
X
VPP
DIN
Program Verify
VIL
VIL
VIH
X
X
VPP
DOUT
Program Inhibit
VIH
X
X
X
X
VPP
High Z
Manufacturer Code(3)
VIL
VIL
X
VIL
VH
VCC
C2H
Device Code(27C1000)(3)
VIL
VIL
X
VIH
VH
VCC
0EH
5
MX27C1000
REV. 6.0, AUG. 26, 2003
P/N: PM0234
START
ADDRESS = FIRST LOCATION
VCC = 6.25V
VPP = 12.75V
X = 0
PROGRAM ONE 100us PULSE
INCREMENT X
X = 25?
VERIFY BYTE
LAST ADDRESS
VCC = VPP = 5.25V
DEVICE PASSED
VERIFY ALL BYTES
?
DEVICE FAILED
INCREMENT ADDRESS
INTERACTIVE
SECTION
VERIFY SECTION
FAIL
PASS
YES
PASS
NO
YES
NO
FAIL
FIGURE 1. FAST PROGRAMMING FLOW CHART
FAIL
?