ChipFind - документация

Электронный компонент: CR6CM-12

Скачать:  PDF   ZIP
Feb.1999
MITSUBISHI SEMICONDUCTOR
THYRISTOR
CR6CM
MEDIUM POWER USE
NON-INSULATED TYPE, GLASS PASSIVATION TYPE
CR6CM
APPLICATION
Switching mode power supply, ECR, regulator for autocycle, motor control
I
T (AV)
........................................................................... 6A
V
DRM
..............................................................400V/600V
I
GT
..........................................................................10mA
Unit
V
V
V
V
V
MAXIMUM RATINGS
12
600
720
480
600
480
Symbol
I
T (RMS)
I
T (AV)
I
TSM
I
2t
P
GM
P
G (AV)
V
FGM
V
RGM
I
FGM
T
j
T
stg
--
Parameter
RMS on-state current
Average on-state current
Surge on-state current
I
2t
for fusing
Peak gate power dissipation
Average gate power dissipation
Peak gate forward voltage
Peak gate reverse voltage
Peak gate forward current
Junction temperature
Storage temperature
Weight
Conditions
Commercial frequency, sine half wave, 180
conduction, T
c
=88
C
60Hz sine half wave 1 full cycle, peak value, non-repetitive
Value corresponding to 1 cycle of half wave 60Hz, surge on-state
current
Typical value
Unit
A
A
A
A
2
s
W
W
V
V
A
C
C
g
Ratings
9.4
6
90
34
5
0.5
6
10
2
40 ~ +125
40 ~ +125
2.0
Symbol
V
RRM
V
RSM
V
R (DC)
V
DRM
V
D (DC)
Parameter
Repetitive peak reverse voltage
Non-repetitive peak reverse voltage
DC reverse voltage
Repetitive peak off-state voltage
DC off-state voltage
8
400
500
320
400
320
Voltage class
TYPE
NAME
VOLTAGE
CLASS
10.5 MAX
4.5
2.5
2.5
0.8
1.0
3.60.2
1.3
0.5
2.6
12.5 MIN
3.8 MAX
16 MAX
7.0
3.20.2
4.5
2 3
1
4
Measurement point of
case temperature
OUTLINE DRAWING
Dimensions
in mm
TO-220
2 4
1
3
1
2
3
4
CATHODE
ANODE
GATE
ANODE
Feb.1999
MITSUBISHI SEMICONDUCTOR
THYRISTOR
CR6CM
MEDIUM POWER USE
NON-INSULATED TYPE, GLASS PASSIVATION TYPE
V
1. The contact thermal resistance R
th (c-f)
is 1.0
C/W with greased.
ELECTRICAL CHARACTERISTICS
Test conditions
T
j
=125
C, V
RRM
applied
T
j
=125
C, V
DRM
applied
T
c
=25
C, I
TM
=20A, instantaneous value
T
j
=25
C, V
D
=6V, I
T
=1A
T
j
=125
C, V
D
=1/2V
DRM
T
j
=25
C, V
D
=6V, I
T
=1A
T
j
=25
C, V
D
=12V
Junction to case
V
1
Unit
mA
mA
V
V
V
mA
mA
C/W
Typ.
--
--
--
--
--
--
15
--
Symbol
I
RRM
I
DRM
V
TM
V
GT
V
GD
I
GT
I
H
R
th (j-c)
Parameter
Repetitive peak reverse current
Repetitive peak off-state current
On-state voltage
Gate trigger voltage
Gate non-trigger voltage
Gate trigger current
Holding current
Thermal resistance
Limits
Min.
--
--
--
--
0.2
--
--
--
Max.
2.0
2.0
1.7
1.0
--
10
--
3.0
10
0
2 3
5 7 10
1
80
40
2 3
5 7 10
2
4
4
120
160
200
60
20
100
140
180
0
5
0
1
4
2
3
10
3
7
5
3
2
10
2
7
5
3
2
10
1
7
5
3
2
10
0
T
c
= 125C
MAXIMUM ON-STATE CHARACTERISTICS
ON-STATE CURRENT (A)
ON-STATE VOLTAGE (V)
RATED SURGE ON-STATE CURRENT
SURGE ON-STATE CURRENT (A)
CONDUCTION TIME
(CYCLES AT 60Hz)
PERFORMANCE CURVES
Feb.1999
MITSUBISHI SEMICONDUCTOR
THYRISTOR
CR6CM
MEDIUM POWER USE
NON-INSULATED TYPE, GLASS PASSIVATION TYPE
10
0
5 7 10
1
2 3 5 7 10
2
2 3 5
2 3 5
7 10
3
10
2
7
5
3
2
10
1
7
5
3
2
7
5
3
2
10
1
V
FGM
= 6V
V
GT
= 1V
I
GT
= 10mA
P
GM
= 5W
V
GD
= 0.2V
I
FGM
= 2A
P
G(AV)
= 0.5W
10
2
10
2
10
0
10
1
7
5
3
2
10
1
7
5
3
2
10
0
7
5
3
2
7
5
3
2
10
3
2 3 5 7
2 3
10
2
5 7
2
10
1
10
1
3 5 7
2 3 5 7
160
60
20
40
0
20 40
80 100 120 140
10
3
7
5
3
2
10
2
7
5
3
2
10
1
7
5
3
2
10
0
TYPICAL EXAMPLE
160
120
60
40
20
140
100
80
0
8
0
2
4
6
7
1
3
5
360
= 30 60
120
90
180
RESISTIVE,
INDUCTIVE
LOADS
MAXIMUM AVERAGE POWER DISSIPATION
(SINGLE-PHASE HALF WAVE)
AVERAGE POWER DISSIPATION (W)
AVERAGE ON-STATE CURRENT (A)
GATE TRIGGER VOLTAGE VS.
JUNCTION TEMPERATURE
GATE TRIGGER VOLTAGE
( V
)
JUNCTION TEMPERATURE (C)
ALLOWABLE CASE TEMPERATURE VS.
AVERAGE ON-STATE CURRENT
(SINGLE-PHASE HALF WAVE)
CASE TEMPERATURE (C)
AVERAGE ON-STATE CURRENT (A)
MAXIMUM TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(JUNCTION TO CASE)
TRANSIENT THERMAL IMPEDANCE (C/
W)
TIME (s)
GATE VOLTAGE (V)
GATE CURRENT (mA)
GATE TRIGGER CURRENT VS.
JUNCTION TEMPERATURE
JUNCTION TEMPERATURE (C)
1.0
0.8
0.7
0.6
0.3
0.4
0.1
0
120
40 20
20
80
0.2
0.5
0.9
0
60
40
100
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
,,,,,,,,,,,,,
TYPICAL
EXAMPLE
DISTRIBUTION
16
12
6
4
2
14
10
8
0
16
0
4
8
12
14
2
6
10
= 30
60
120
90
180
360
RESISTIVE,
INDUCTIVE
LOADS
GATE CHARACTERISTICS
100 (%)
GATE TRIGGER CURRENT (T
j
= tC)
GATE TRIGGER CURRENT (T
j
= 25C)
Feb.1999
MITSUBISHI SEMICONDUCTOR
THYRISTOR
CR6CM
MEDIUM POWER USE
NON-INSULATED TYPE, GLASS PASSIVATION TYPE
2 3
10
1
5 7 10
2
2 3 5 7 10
3
2 3 5 7 10
4
160
0
80
100
120
140
40
60
20
# 2
# 1
T
j
= 125C
TYPICAL
EXAMPLE
I
GT
(25C)
# 1 4.7mA
# 2 7.2mA
160
120
60
40
20
140
100
80
0
160
40
0
40
80
120 140
20
20
60
100
TYPICAL EXAMPLE
16
12
6
4
2
14
10
8
0
16
0
4
8
12
14
2
6
10
= 30
60
120
90
180
360
RESISTIVE LOADS
160
120
60
40
20
140
100
80
0
16
0
4
8
12
14
2
6
10
= 30
120
180
360
60
90
RESISTIVE LOADS
160
120
60
40
20
140
100
80
0
16
0
4
8
12
14
2
6
10
= 30
120
180
DC
270
90
60
360
RESISTIVE,
INDUCTIVE
LOADS
16
12
6
4
2
14
10
8
0
16
0
4
8
12
14
2
6
10
= 30
60
120
90
180
270
DC
360
RESISTIVE,
INDUCTIVE
LOADS
MAXIMUM AVERAGE POWER DISSIPATION
(SINGLE-PHASE FULL WAVE)
AVERAGE POWER DISSIPATION (W)
AVERAGE ON-STATE CURRENT (A)
MAXIMUM AVERAGE POWER DISSIPATION
(RECTANGULAR WAVE)
AVERAGE POWER DISSIPATION (W)
AVERAGE ON-STATE CURRENT (A)
ALLOWABLE AMBIENT TEMPERATURE VS.
AVERAGE ON-STATE CURRENT
(RECTANGULAR WAVE)
CASE TEMPERATURE (C)
AVERAGE ON-STATE CURRENT (A)
ALLOWABLE CASE TEMPERATURE VS.
AVERAGE ON-STATE CURRENT
(SINGLE-PHASE FULL WAVE)
CASE TEMPERATURE (C)
AVERAGE ON-STATE CURRENT (A)
BREAKOVER VOLTAGE VS.
JUNCTION TEMPERATURE
JUNCTION TEMPERATURE (C)
100 (%)
BREAKOVER VOLTAGE
( T
j
= t
C
)
BREAKOVER VOLTAGE
( T
j
=
25
C
)
BREAKOVER VOLTAGE VS.
RATE OF RISE OF OFF-STATE VOLTAGE
RATE OF RISE OF OFF-STATE VOLTAGE (V/s)
100 (%)
BREAKOVER VOLTAGE
( dv/dt = vV/s
)
BREAKOVER VOLTAGE
( dv/dt = 1V/s
)
Feb.1999
MITSUBISHI SEMICONDUCTOR
THYRISTOR
CR6CM
MEDIUM POWER USE
NON-INSULATED TYPE, GLASS PASSIVATION TYPE
50
35
15
10
5
40
45
30
20
25
0
20
0
4
10
14
18
16
2
6
8
12
,,,,,,,,,,
,,,,,,,,,,
,,,,,,,,,,
,,,,,,,,,,
,,,,,,,,,,
,,,,,,,,,,
,,,,,,,,,,
,,,,,,,,,,
5.0
3.5
1.5
1.0
0.5
4.0
4.5
3.0
2.0
2.5
0
100
0
20
50
70
90
80
10
30 40
60
#
V
D
= 100V
R
L
= 16
T
a
= 25C
TYPICAL
EXAMPLE
I
GT
(25C)
# 5.2mA
160
120
60
40
20
140
100
80
0
160
40
0
40
80
120 140
20
20
60
100
TYPICAL EXAMPLE
10
2
2 3
10
1
5 7 10
0
2 3 5 7 10
1
2 3 5 7 10
2
10
4
7
5
3
2
10
3
7
5
3
2
7
5
3
2
10
1
0.1s
tw
TYPICAL EXAMPLE
80
60
30
20
10
70
50
40
0
160
0
40
80
120 140
20
60
100
,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
,,,,,,,,,
I
T
= 6A, di/dt = 5A /s,
V
D
= 300V, dv/dt = 20V/s
V
R
= 50V
TYPICAL
EXAMPLE
DISTRIBUTION
160
60
20
40
0
20 40
80 100 120 140
10
3
7
5
3
2
10
2
7
5
3
2
10
1
7
5
3
2
10
0
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
TYPICAL EXAMPLE
DISTRIBUTION
HOLDING CURRENT VS.
JUNCTION TEMPERATURE
HOLDING CURRENT (mA)
JUNCTION TEMPERATURE (C)
GATE TRIGGER CURRENT VS.
GATE CURRENT PULSE WIDTH
GATE CURRENT PULSE WIDTH (s)
100 (%)
GATE TRIGGER CURRENT
( tw
)
GATE TRIGGER CURRENT
( DC
)
REPETITIVE PEAK REVERSE VOLTAGE VS.
JUNCTION TEMPERATURE
JUNCTION TEMPERATURE (C)
TURN-ON TIME VS. GATE CURRENT
TURN-ON TIME (s)
GATE CURRENT (mA)
HOLDING CURRENT VS.
GATE TRIGGER CURRENT
HOLDING CURRENT (mA)
GATE TRIGGER CURRENT (mA)
TURN-OFF TIME VS.
JUNCTION TEMPERATURE
TURN-OFF TIME (s)
JUNCTION TEMPERATURE (C)
100 (%)
REPETITIVE PEAK REVERSE VOLTAGE (T
j
= t

C
)
REPETITIVE PEAK REVERSE VOLTAGE (T
j
= 25
C
)