ChipFind - документация

Электронный компонент: V54C3256404VAB

Скачать:  PDF   ZIP
www.docs.chipfind.ru
background image
MOSEL VITELIC
1
V54C3256(16/80/40)4V(T/S/B)
256Mbit SDRAM
3.3 VOLT, TSOP II / SOC BGA / WBGA
PACKAGE 16M X 16, 32M X 8, 64M X 4
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
PRELIMINARY
6
7PC
7
8PC
System Frequency (f
CK
)
166 MHz
143 MHz
143 MHz
125 MHz
Clock Cycle Time (t
CK3
)
6 ns
7 ns
7 ns
8 ns
Clock Access Time (t
AC3
) CAS Latency = 3
5.4 ns
5.4 ns
5.4 ns
6 ns
Clock Access Time (t
AC2
) CAS Latency = 2
5.4 ns
5.4 ns
6 ns
6 ns
Features
4 banks x 4Mbit x 16 organization
4 banks x 8Mbit x 8 organization
4 banks x16Mbit x 4 organization
High speed data transfer rates up to 166 MHz
Full Synchronous Dynamic RAM, with all signals
referenced to clock rising edge
Single Pulsed RAS Interface
Data Mask for Read/Write Control
Four Banks controlled by BA0 & BA1
Programmable CAS Latency: 2, 3
Programmable Wrap Sequence: Sequential or
Interleave
Programmable Burst Length:
1, 2, 4, 8 for Sequential Type
1, 2, 4, 8 for Interleave Type
Multiple Burst Read with Single Write Operation
Automatic and Controlled Precharge Command
Random Column Address every CLK (1-N Rule)
Power Down Mode
Auto Refresh and Self Refresh
Refresh Interval: 8192 cycles/64 ms
Available in 54 Pin TSOP II, 60 Ball WBGA and
SOC BGA
LVTTL Interface
Single +3.3 V
0.3 V Power Supply
Description
The V54C3256(16/80/40)4V(T/S/B) is a four
bank Synchronous DRAM organized as 4 banks x
4Mbit x 16, 4 banks x 8Mbit x 8, or 4 banks x 16Mbit
x 4. The V54C3256(16/80/40)4V(T/S/B) achieves
high speed data transfer rates up to 166 MHz by
employing a chip architecture that prefetches multi-
ple bits and then synchronizes the output data to a
system clock
All of the control, address, data input and output
circuits are synchronized with the positive edge of
an externally supplied clock.
Operating the four memory banks in an inter-
leaved fashion allows random access operation to
occur at higher rate than is possible with standard
DRAMs. A sequential and gapless data rate of up to
166 MHz is possible depending on burst length,
CAS latency and speed grade of the device.
Device Usage Chart
Operating
Temperature
Range
Package Outline
Access Time (ns)
Power
Temperature
Mark
T/S/B
6
7PC
7
8PC
Std.
L
0
C to 70
C
Blank
background image
2
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
256Mbit SDRAM Part Numbers
Part Number
Configuration
Process
Package
V54C3256164VAT
16M x 16
0.17um
TSOP
V54C3256804VAT
32M x 8
0.17um
TSOP
V54C3256404VAT
64M x 4
0.17um
TSOP
V54C3256164VBT
16M x 16
0.14um
TSOP
V54C3256804VBT
32M x 8
0.14um
TSOP
V54C3256404VBT
64M x 4
0.14um
TSOP
V54C3256164VAB
16M x 16
0.17um
WBGA
V54C3256804VAB
32M x 8
0.17um
WBGA
V54C3256404VAB
64M x 4
0.17um
WBGA
V54C3256164VBS
16M x 16
0.14um
SOC BGA
V54C3256804VBS
32M x 8
0.14um
SOC BGA
V54C3256404VBS
64M x 4
0.14um
SOC BGA
background image
3
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
54 Pin Plastic TSOP-II
PIN CONFIGURATION
Top View
Pin Names
CLK
Clock Input
CKE
Clock Enable
CS
Chip Select
RAS
Row Address Strobe
CAS
Column Address Strobe
WE
Write Enable
A
0
A
12
Address Inputs
BA0, BA1
Bank Select
I/O
1
I/O
16
Data Input/Output
LDQM, UDQM
Data Mask
V
CC
Power (+3.3V)
V
SS
Ground
V
CCQ
Power for I/O's (+3.3V)
V
SSQ
Ground for I/O's
NC
Not connected
V 54 C 3 25616 4 V A L T
Mosel Vitelic
Manufactured
SYNCHRONOUS
DRAM FAMILY
C=CMOS Family
3.3V, LVTTL INTERFACE
16Mx16(8K Refresh)
4 Banks
V=LVTTL
Component Rev Level A=0.17um
Special
Feature
L=Low Power
TSOP Component
Package
Speed
6 ns
7 ns
8 ns
Device
Number
B=0.14um
Description
Pkg.
Pin Count
TSOP-II
T
54
V
CC
I/O
1
V
CCQ
I/O
2
I/O
3
V
SSQ
I/O
4
I/O
5
V
CCQ
I/O
6
I/O
7
V
SSQ
I/O
8
V
CC
LDQM
WE
CAS
RAS
CS
BA0
BA1
A
10
A
0
A
1
A
2
A
3
V
CC
V
SS
I/O
16
V
SSQ
I/O
15
I/O
14
V
CCQ
I/O
13
I/O
12
V
SSQ
I/O
11
I/O
10
V
CCQ
I/O
9
V
SS
NC
UDQM
CLK
CKE
A
12
A
11
A
9
A
8
A
7
A
6
A
5
A
4
V
SS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
356164V-01
background image
4
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
54 Pin Plastic TSOP-II
PIN CONFIGURATION
Top View
Pin Names
CLK
Clock Input
CKE
Clock Enable
CS
Chip Select
RAS
Row Address Strobe
CAS
Column Address Strobe
WE
Write Enable
A
0
A
12
Address Inputs
BA0, BA1
Bank Select
I/O
1
I/O
8
Data Input/Output
DQM
Data Mask
V
CC
Power (+3.3V)
V
SS
Ground
V
CCQ
Power for I/O's (+3.3V)
V
SSQ
Ground for I/O's
NC
Not connected
V 54 C 3 25680 4 V A L T
Mosel Vitelic
Manufactured
SYNCHRONOUS
DRAM FAMILY
C=CMOS Family
3.3V, LVTTL INTERFACE
32Mx8(8K Refresh)
4 Banks
V=LVTTL
Component Rev Level A=0.17um
Special
Feature
L=Low Power
TSOP Component
Package
Speed
6 ns
7 ns
8 ns
Device
Number
B=0.14um
Description
Pkg.
Pin Count
TSOP-II
T
54
V
CC
I/O
1
V
CCQ
NC
I/O
2
V
SSQ
NC
I/O
3
V
CCQ
NC
I/O
4
V
SSQ
NC
V
CC
NC
WE
CAS
RAS
CS
BA0
BA1
A
10
A
0
A
1
A
2
A
3
V
CC
V
SS
I/O
8
V
SSQ
NC
I/O
7
V
CCQ
NC
I/O
6
V
SSQ
NC
I/O
5
V
CCQ
NC
V
SS
NC
DQM
CLK
CKE
A
12
A
11
A
9
A
8
A
7
A
6
A
5
A
4
V
SS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
356804V-01
background image
5
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
54 Pin Plastic TSOP-II
PIN CONFIGURATION
Top View
Pin Names
V
CC
NC
V
CCQ
NC
I/O
1
V
SSQ
NC
NC
V
CCQ
NC
I/O
2
V
SSQ
NC
V
CC
NC
WE
CAS
RAS
CS
BA0
BA1
A
10
A
0
A
1
A
2
A
3
V
CC
V
SS
NC
V
SSQ
NC
I/O
4
V
CCQ
NC
NC
V
SSQ
NC
I/O
3
V
CCQ
NC
V
SS
NC
DQM
CLK
CKE
A
12
A
11
A
9
A
8
A
7
A
6
A
5
A
4
V
SS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
356404V-01
CLK
Clock Input
CKE
Clock Enable
CS
Chip Select
RAS
Row Address Strobe
CAS
Column Address Strobe
WE
Write Enable
A
0
A
12
Address Inputs
BA0, BA1
Bank Select
I/O
1
I/O
4
Data Input/Output
DQM
Data Mask
V
CC
Power (+3.3V)
V
SS
Ground
V
CCQ
Power for I/O's (+3.3V)
V
SSQ
Ground for I/O's
NC
Not connected
V 54 C 3 25640 4 V A L T
Mosel Vitelic
Manufactured
SYNCHRONOUS
DRAM FAMILY
C=CMOS Family
3.3V, LVTTL INTERFACE
64Mx4(8K Refresh)
4 Banks
V=LVTTL
Component Rev Level A=0.17um
Special
Feature
L=Low Power
TSOP Component
Package
Speed
6 ns
7 ns
8 ns
Device
Number
B=0.14um
Description
Pkg.
Pin Count
TSOP-II
T
54
background image
6
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
V 54 C 3 256XX 4 V B L S
Mosel Vitelic
Manufactured
SYNCHRONOUS
DRAM FAMILY
C=CMOS Family
3.3V, LVTTL INTERFACE
256Mb(8K Refresh)
4 Banks
V=LVTTL
Component Rev Level A=0.17um
Special
Feature
L=Low Power
SOC BGA
Device
Number
Speed
6 ns
7 ns
8 ns
B=0.14um
for 0.14um only
Component Package
Description
Pkg.
Pin Count
SOC BGA
S
60
DQ10
VDDQ
NC
NC
NC
NC
A12
A11
VDDQ
DQ11
A8
A6
A4
VSSQ
DQ9
DQ8
VSS
DQMH
CLK
CKE
A9
VSSQ
DQ13
DQ12
A7
A5
VSS
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
DQ14
DQ15
VSS
NC
VDDQ
NC
NC
NC
NC
A12
A11
VDDQ
DQ5
A8
A6
A4
VSSQ
DQ4
NC
VSS
DQM
CLK
CKE
A9
VSSQ
DQ6
NC
A7
A5
VSS
NC
DQ7
VSS
1
2
1
2
X16
X8
NC
VDDQ
NC
NC
NC
NC
A12
A11
VDDQ
NC
A8
A6
A4
VSSQ
DQ2
NC
VSS
DQM
CLK
CKE
A9
VSSQ
DQ3
NC
A7
A5
VSS
NC
NC
VSS
1
2
X4
VDDQ
DQ1
NC
VDD
WE#
RAS#
NC
BA1
DQ0
NC
A0
A2
VDD
NC
VSSQ
NC
NC
CAS#
NC
CS#
BA0
NC
VSSQ
NC
A10
A1
A3
VDDQ
VDD
NC
1
2
X4
VDDQ
DQ3
NC
VDD
WE#
RAS#
NC
BA1
DQ1
NC
A0
A2
VDD
NC
VSSQ
NC
NC
CAS#
NC
CS#
BA0
NC
VSSQ
DQ2
A10
A1
A3
VDDQ
VDD
DQ0
1
2
X8
VDDQ
DQ6
DQ7
VDD
WE#
RAS#
NC
BA1
DQ2
DQ3
A0
A2
VDD
DQ5
VSSQ
NC
DQML
CAS#
NC
CS#
BA0
DQ1
VSSQ
DQ4
A10
A1
A3
VDDQ
VDD
DQ0
1
2
X16
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
TOP VIEW
(See Ball through the Package)
(60-Ball SOC BGA)
256 Mb SDRAM Ball Assignment
PIN A1 INDEX
background image
7
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
V 54 C 3 256XX 4 V A L B
Mosel Vitelic
Manufactured
SYNCHRONOUS
DRAM FAMILY
C=CMOS Family
3.3V, LVTTL INTERFACE
256Mb(8K Refresh)
4 Banks
V=LVTTL
Component Rev Level A=0.17um
Special
Feature
L=Low Power
WBGA Component
Package for 0.17um only
Device
Number
Speed
6 ns
7 ns
8 ns
B=0.14um
Description
Pkg.
Pin Count
WBGA
B
60
background image
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
8
V54C3256(16/80/40)4V(T/S/B) Rev1.6 September
Capacitance*
T
A
= 0 to 70
C, V
CC
= 3.3 V
0.3 V, f = 1 Mhz
*
Note:
Capacitance is sampled and not 100% tested.
Absolute Maximum Ratings*
Operating temperature range .................. 0 to 70 C
Storage temperature range ................-55 to 150 C
Input/output voltage.................. -0.3 to (V
CC
+0.3) V
Power supply voltage .......................... -0.3 to 4.6 V
Power dissipation ..............................................1 W
Data out current (short circuit).......................50 mA
*Note:
Stresses above those listed under "Absolute Maximum
Ratings" may cause permanent damage of the device.
Exposure to absolute maximum rating conditions for
extended periods may affect device reliability.
Symbol
Parameter
Max. Unit
C
I1
Input Capacitance (A0 to A12)
5
pF
C
I2
Input Capacitance
RAS, CAS, WE, CS, CLK, CKE, DQM
5
pF
C
IO
Output Capacitance (I/O)
6.5
pF
C
CLK
Input Capacitance (CLK)
4
pF
Block Diagram
Row decoder
Memory array
Bank 0
8192 x 512
x 16 bit
C
o
l
u
mn
dec
oder
S
ens
e
ampl
i
f
i
e
r
&
I(
O
)
bus
Row decoder
Memory array
Bank 1
8192 x 512
x16 bit
C
o
l
u
mn d
e
c
o
der
S
e
ns
e
ampl
i
f
i
e
r
&
I(
O
)

bus
Row decoder
Memory array
Bank 2
8192 x 512
x 16 bit
Co
l
u
m
n
d
e
c
o
d
e
r
S
ens
e
ampl
i
f
i
e
r
&
I(
O
)
bus
Row decoder
Memory array
Bank 3
8192 x 512
x 16 bit
Co
l
u
m
n
d
e
c
o
d
e
r
S
ens
e ampl
i
f
i
e
r
&
I
(
O
)
bus
Input buffer
Output buffer
I/O
1
-I/O
16
Column address
counter
Column address
buffer
Row address
buffer
Refresh Counter
A0 - A12, BA0, BA1
A0 - A8, AP, BA0, BA1
Control logic & timing generator
CL
K
CK
E
CS
RA
S
CA
S
WE
LD
Q
M
Row Addresses
Column Addresses
UDQM
x16 Configuration
background image
9
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
Block Diagram
x8 Configuration
Row decoder
Memory array
Bank 0
8192 x 1024
x 8 bit
C
o
l
u
m
n
dec
ode
r
S
ens
e am
pl
i
f
i
e
r
&
I(
O
)
bus
Row decoder
Memory array
Bank 1
8192 x 1024
x 8 bit
C
o
l
u
mn
dec
oder
S
ens
e amp
l
i
f
i
e
r
&
I(
O
)
bus
Row decoder
Memory array
Bank 2
8192 x 1024
x 8 bit
C
o
l
u
mn
dec
oder
S
ens
e am
pl
i
f
i
e
r
&
I(
O
)
bus
Row decoder
Memory array
Bank 3
8192 x 1024
x 8 bit
C
o
l
u
mn dec
o
der
S
ens
e am
pl
i
f
i
e
r
&
I(
O
)
bus
Input buffer
Output buffer
I/O
1
-I/O
8
Column address
counter
Column address
buffer
Row address
buffer
Refresh Counter
A0 - A12, BA0, BA1
A0 - A9, AP, BA0, BA1
Control logic & timing generator
CL
K
CK
E
CS
RA
S
CA
S
WE
DQM
Row Addresses
Column Addresses
background image
10
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
Block Diagram
x4 Configuration
Row decoder
Memory array
Bank 0
8192 x 2048
x 4 bit
Co
l
u
m
n
d
e
c
o
d
e
r
S
ens
e am
pl
i
f
i
e
r
&
I(
O
)
bus
Row decoder
Memory array
Bank 1
8192 x 2048
x 4 bit
C
o
l
u
m
n
dec
oder
S
ens
e am
pl
i
f
i
e
r
&
I(
O
)
bus
Row decoder
Memory array
Bank 2
8192 x 2048
x 4 bit
C
o
l
u
mn
dec
oder
S
ens
e am
pl
i
f
i
e
r
&
I(
O
)
bus
Row decoder
Memory array
Bank 3
8192 x 2048
x 4 bit
C
o
l
u
mn
dec
oder
S
ens
e a
m
pl
i
f
i
e
r
&
I(
O
)
bu
s
Input buffer
Output buffer
I/O
1
-I/O
4
Column address
counter
Column address
buffer
Row address
buffer
Refresh Counter
A0 - A12, BA0, BA1
A0 - A9, A11, AP, BA0, BA1
Control logic & timing generator
CL
K
CK
E
CS
RA
S
CA
S
WE
DQM
Row Addresses
Column Addresses
background image
11
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
Signal Pin Description
Pin
Type
Signal
Polarity
Function
CLK
Input
Pulse
Positive
Edge
The system clock input. All of the SDRAM inputs are sampled on the rising edge of the
clock.
CKE
Input
Level
Active High Activates the CLK signal when high and deactivates the CLK signal when low, thereby
initiates either the Power Down mode or the Self Refresh mode.
CS
Input
Pulse
Active Low CS enables the command decoder when low and disables the command decoder when
high. When the command decoder is disabled, new commands are ignored but previous
operations continue.
RAS, CAS
WE
Input
Pulse
Active Low When sampled at the positive rising edge of the clock, CAS, RAS, and WE define the
command to be executed by the SDRAM.
A0 - A11
Input
Level
--
During a Bank Activate command cycle, A0-A12 defines the row address (RA0-RA12)
when sampled at the rising clock edge.
During a Read or Write command cycle, A0-An defines the column address (CA0-CAn)
when sampled at the rising clock edge.CAn depends from the SDRAM organization:
64M x 4 SDRAM CA0CA9, CA11.
32M x 8 SDRAM CA0CA9.
16M x 16 SDRAM CA0CA8.
In addition to the column address, A10(=AP) is used to invoke autoprecharge operation
at the end of the burst read or write cycle. If A10 is high, autoprecharge is selected and
BA0, BA1 defines the bank to be precharged. If A10 is low, autoprecharge is disabled.
During a Precharge command cycle, A10(=AP) is used in conjunction with BA0 and BA1
to control which bank(s) to precharge. If A10 is high, all four banks will BA0 and BA1 are
used to define which bank to precharge.
BA0,
BA1
Input
Level
--
Selects which bank is to be active.
DQx
Input
Output
Level
--
Data Input/Output pins operate in the same manner as on conventional DRAMs.
LDQM
UDQM
Input
Pulse
Active High The Data Input/Output mask places the DQ buffers in a high impedance state when sam-
pled high. In Read mode, DQM has a latency of two clock cycles and controls the output
buffers like an output enable. In Write mode, DQM has a latency of zero and operates as
a word mask by allowing input data to be written if it is low but blocks the write operation
if DQM is high.
VCC, VSS
Supply
Power and ground for the input buffers and the core logic.
VCCQ
VSSQ
Supply
--
--
Isolated power supply and ground for the output buffers to provide improved noise
immunity.
background image
12
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
Operation Definition
All of SDRAM operations are defined by states of control signals CS, RAS, CAS, WE, and DQM at the
positive edge of the clock. The following list shows the thruth table for the operation commands.
Notes:
1.
V = Valid , x = Don't Care, L = Low Level, H = High Level
2.
CKEn signal is input level when commands are provided, CKEn-1 signal is input level one clock before the commands
are provided.
3.
These are state of bank designated by BS0, BS1 signals.
4.
Power Down Mode can not entry in the burst cycle.
Operation
Device
State
CKE
n-1
CKE
n
CS
RAS
CAS
WE
DQM
A0-9,
A11,
A12
A10
BS0
BS1
Row Activate
Idle
3
H
X
L
L
H
H
X
V
V
V
Read
Active
3
H
X
L
H
L
H
X
V
L
V
Read w/Autoprecharge
Active
3
H
X
L
H
L
H
X
V
H
V
Write Active
3
H
X
L
H
L
L
X
V
L
V
Write with Autoprecharge
Active
3
H
X
L
H
L
L
X
V
H
V
Row Precharge
Any
H
X
L
L
H
L
X
X
L
V
Precharge All
Any
H
X
L
L
H
L
X
X
H
X
Mode Register Set
Idle
H
X
L
L
L
L
X
V
V
V
No Operation
Any
H
X
L
H
H
H
X
X
X
X
Device Deselect
Any
H
X
H
X
X
X
X
X
X
X
Auto Refresh
Idle
H
H
L
L
L
H
X
X
X
X
Self Refresh Entry
Idle
H
L
L
L
L
H
X
X
X
X
Self Refresh Exit
Idle
(Self Refr.)
L
H
H
X
X
X
X
X
X
X
L
H
H
X
Power Down Entry
Idle
Active
4
H
L
H
X
X
X
X
X
X
X
L
H
H
X
Power Down Exit
Any
(Power
Down)
L
H
H
X
X
X
X
X
X
X
L
H
H
L
Data Write/Output Enable
Active
H
X
X
X
X
X
L
X
X
X
Data Write/Output Disable
Active
H
X
X
X
X
X
H
X
X
X
background image
13
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
Power On and Initialization
The default power on state of the mode register is
supplier specific and may be undefined. The
following power on and initialization sequence
guarantees the device is preconditioned to each
users specific needs. Like a conventional DRAM,
the Synchronous DRAM must be powered up and
initialized in a predefined manner. During power on,
all VCC and VCCQ pins must be built up
simultaneously to the specified voltage when the
input signals are held in the "NOP" state. The power
on voltage must not exceed VCC+0.3V on any of
the input pins or VCC supplies. The CLK signal
must be started at the same time. After power on,
an initial pause of 200
s is required followed by a
precharge of both banks using the precharge
command. To prevent data contention on the DQ
bus during power on, it is required that the DQM and
CKE pins be held high during the initial pause
period. Once all banks have been precharged, the
Mode Register Set Command must be issued to
initialize the Mode Register. A minimum of eight
Auto Refresh cycles (CBR) are also required.These
may be done before or after programming the Mode
Register. Failure to follow these steps may lead to
unpredictable start-up modes.
Programming the Mode Register
The Mode register designates the operation
mode at the read or write cycle. This register is di-
vided into 4 fields. A Burst Length Field to set the
length of the burst, an Addressing Selection bit to
program the column access sequence in a burst cy-
cle (interleaved or sequential), a CAS Latency Field
to set the access time at clock cycle and a Opera-
tion mode field to differentiate between normal op-
eration (Burst read and burst Write) and a special
Burst Read and Single Write mode. The mode set
operation must be done before any activate com-
mand after the initial power up. Any content of the
mode register can be altered by re-executing the
mode set command. All banks must be in pre-
charged state and CKE must be high at least one
clock before the mode set operation. After the mode
register is set, a Standby or NOP command is re-
quired. Low signals of RAS, CAS, and WE at the
positive edge of the clock activate the mode set op-
eration. Address input data at this timing defines pa-
rameters to be set as shown in the previous table.
Read and Write Operation
When RAS is low and both CAS and WE are high
at the positive edge of the clock, a RAS cycle starts.
According to address data, a word line of the select-
ed bank is activated and all of sense amplifiers as-
sociated to the wordline are set. A CAS cycle is
triggered by setting RAS high and CAS low at a
clock timing after a necessary delay, t
RCD
, from the
RAS timing. WE is used to define either a read
(WE = H) or a write (WE = L) at this stage.
SDRAM provides a wide variety of fast access
modes. In a single CAS cycle, serial data read or
write operations are allowed at up to a 125 MHz
data rate. The numbers of serial data bits are the
burst length programmed at the mode set operation,
i.e., one of 1, 2, 4, 8. Column addresses are seg-
mented by the burst length and serial data accesses
are done within this boundary. The first column ad-
dress to be accessed is supplied at the CAS timing
and the subsequent addresses are generated auto-
matically by the programmed burst length and its
sequence. For example, in a burst length of 8 with
interleave sequence, if the first address is `2', then
the rest of the burst sequence is 3, 0, 1, 6, 7, 4, and
5.
background image
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
14
V54C3256(16/80/40)4V(T/S/B) Rev1.6 September
Address Input for Mode Set (Mode Register Operation)
Similar to the page mode of conventional
DRAM's, burst read or write accesses on any col-
umn address are possible once the RAS cycle
latches the sense amplifiers. The maximum t
RAS
or
the refresh interval time limits the number of random
column accesses. A new burst access can be done
even before the previous burst ends. The interrupt
operation at every clock cycles is supported. When
the previous burst is interrupted, the remaining ad-
dresses are overridden by the new address with the
full burst length. An interrupt which accompanies
with an operation change from a read to a write is
possible by exploiting DQM to avoid bus contention.
When two or more banks are activated
sequentially, interleaved bank read or write
operations are possible. With the programmed
burst length, alternate access and precharge
operations on two or more banks can realize fast
serial data access modes among many different
pages. Once two or more banks are activated,
column to column interleave operation can be done
between different pages.
A11
A3
A4
A2
A1
A0
A10 A9
A8
A7
A6
A5
Address Bus (Ax)
BT
Burst Length
CAS Latency
Mode Register
CAS Latency
A6
A5
A4
Latency
0
0
0
Reserve
0
0
1
Reserve
0
1
0
2
0
1
1
3
1
0
0
Reserve
1
0
1
Reserve
1
1
0
Reserve
1
1
1
Reserve
Burst Length
A2
A1
A0
Length
Sequential
Interleave
0
0
0
1
1
0
0
1
2
2
0
1
0
4
4
0
1
1
8
8
1
0
0
Reserve
Reserve
1
0
1
Reserve
Reserve
1
1
0
Reserve
Reserve
1
1
1
Reserve
Reserve
Burst
Type
A3
Type
0
Sequential
1
Interleave
Operation Mode
BA1 BA0 A11 A10 A9 A8 A7
Mode
0
0
0
0
0
0
0
Burst Read/Burst
Write
0
0
0
0
1
0
0
Burst Read/Single
Write
Operation Mode
BA0
BA1
background image
15
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
Burst Length and Sequence:
Refresh Mode
SDRAM has two refresh modes, Auto Refresh
and Self Refresh. Auto Refresh is similar to the CAS
-before-RAS refresh of conventional DRAMs. All of
banks must be precharged before applying any re-
fresh mode. An on-chip address counter increments
the word and the bank addresses and no bank infor-
mation is required for both refresh modes.
The chip enters the Auto Refresh mode, when
RAS and CAS are held low and CKE and WE are
held high at a clock timing. The mode restores word
line after the refresh and no external precharge
command is necessary. A minimum tRC time is re-
quired between two automatic refreshes in a burst
refresh mode. The same rule applies to any access
command after the automatic refresh operation.
The chip has an on-chip timer and the Self Re-
fresh mode is available. It enters the mode when
RAS, CAS, and CKE are low and WE is high at a
clock timing. All of external control signals including
the clock are disabled. Returning CKE to high en-
ables the clock and initiates the refresh exit opera-
tion. After the exit command, at least one t
RC
delay
is required prior to any access command.
DQM Function
DQM has two functions for data I/O read and
write operations. During reads, when it turns to
"high" at a clock timing, data outputs are disabled
and become high impedance after two clock delay
(DQM Data Disable Latency t
DQZ
). It also provides
a data mask function for writes. When DQM is acti-
vated, the write operation at the next clock is prohib-
ited (DQM Write Mask Latency t
DQW
= zero clocks).
Power Down
In order to reduce standby power consumption, a
power down mode is available. All banks must be
precharged and the necessary Precharge delay
(trp) must occur before the SDRAM can enter the
Power Down mode. Once the Power Down mode is
initiated by holding CKE low, all of the receiver cir-
cuits except CLK and CKE are gated off. The Power
Down mode does not perform any refresh opera-
tions, therefore the device can't remain in Power
Down mode longer than the Refresh period (tref) of
the device. Exit from this mode is performed by tak-
ing CKE "high". One clock delay is required for
mode entry and exit.
Auto Precharge
Two methods are available to precharge
SDRAMs. In an automatic precharge mode, the
CAS timing accepts one extra address, CA10, to
determine whether the chip restores or not after the
operation. If CA10 is high when a Read Command
is issued, the Read with Auto-Precharge function
is initiated. The SDRAM automatically enters the
precharge operation one clock before the last data
out for CAS latencies 2, two clocks for CAS laten-
cies 3 and three clocks for CAS latencies 4. If CA10
is high when a Write Command is issued, the Write
Burst
Length
Starting Address
(A2 A1 A0)
Sequential Burst Addressing
(decimal)
Interleave Burst Addressing
(decimal)
2
xx0
xx1
0, 1
1, 0
0, 1
1, 0
4
x00
x01
x10
x11
0, 1, 2, 3
1, 2, 3, 0
2, 3, 0, 1
3, 0, 1, 2
0, 1, 2, 3
1, 0, 3, 2
2, 3, 0, 1
3, 2, 1, 0
8
000
001
010
011
100
101
110
111
0 1 2 3 4 5 6 7
1 2 3 4 5 6 7 0
2 3 4 5 6 7 0 1
3 4 5 6 7 0 1 2
4 5 6 7 0 1 2 3
5 6 7 0 1 2 3 4
6 7 0 1 2 3 4 5
7 0 1 2 3 4 5 6
0 1 2 3 4 5 6 7
1 0 3 2 5 4 7 6
2 3 0 1 6 7 4 5
3 2 1 0 7 6 5 4
4 5 6 7 0 1 2 3
5 4 7 6 1 0 3 2
6 7 4 5 2 3 0 1
7 6 5 4 3 2 1 0
background image
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
16
V54C3256(16/80/40)4V(T/S/B) Rev1.6 September
with Auto-Precharge function is initiated. The
SDRAM automatically enters the precharge opera-
tion a time delay equal to t
WR
(Write recovery time)
after the last data in.
Precharge Command
There is also a separate precharge command
available. When RAS and WE are low and CAS is
high at a clock timing, it triggers the precharge
operation. Three address bits, BA0, BA1 and A10
are used to define banks as shown in the following
list. The precharge command can be imposed one
clock before the last data out for CAS latency = 2,
two clocks before the last data out for CAS latency
= 3. Writes require a time delay twr from the last
data out to apply the precharge command.
Bank Selection by Address Bits:
Burst Termination
Once a burst read or write operation has been ini-
tiated, there are several methods in which to termi-
nate the burst operation prematurely. These
methods include using another Read or Write Com-
mand to interrupt an existing burst operation, use a
Precharge Command to interrupt a burst cycle and
close the active bank, or using the Burst Stop Com-
mand to terminate the existing burst operation but
leave the bank open for future Read or Write Com-
mands to the same page of the active bank. When
interrupting a burst with another Read or Write
Command care must be taken to avoid I/O conten-
tion. The Burst Stop Command, however, has the
fewest restrictions making it the easiest method to
use when terminating a burst operation before it has
been completed. If a Burst Stop command is issued
during a burst write operation, then any residual
data from the burst write cycle will be ignored. Data
that is presented on the I/O pins before the Burst
Stop Command is registered will be written to the
memory.
A10
BA0
BA1
0
0
0
Bank 0
0
0
1
Bank 1
0
1
0
Bank 2
0
1
1
Bank 3
1
X
X
all Banks
Recommended Operation and Characteristics for LV-TTL
T
A
= 0 to 70
C; V
SS
= 0 V; V
CC
,V
CCQ
= 3.3 V
0.3 V
Note:
1.
All voltages are referenced to V
SS
.
2.
V
IH
may overshoot to V
CC
+ 2.0 V for pulse width of < 4ns with 3.3V. V
IL
may undershoot to -2.0 V for pulse width < 4.0 ns with
3.3V. Pulse width measured at 50% points with amplitude measured peak to DC reference.
Parameter
Symbol
Limit Values
Unit
Notes
min.
max.
Input high voltage
V
IH
2.0
Vcc+0.3
V
1, 2
Input low voltage
V
IL
0.3
0.8
V
1, 2
Output high voltage (I
OUT
= 4.0 mA)
V
OH
2.4
V
Output low voltage (I
OUT
= 4.0 mA)
V
OL
0.4
V
Input leakage current, any input
(0 V < V
IN
< 3.6 V, all other inputs = 0 V)
I
I(L)
5
5
A
Output leakage current
(DQ is disabled, 0 V < V
OUT
< V
CC
)
I
O(L)
5
5
A
background image
17
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
Operating Currents
(T
A
= 0 to 70
C, V
CC
= 3.3V
0.3V)
(Recommended Operating Conditions unless otherwise noted)
Notes:
7.
These parameters depend on the cycle rate and these values are measured by the cycle rate under the minimum value of t
CK
and
t
RC
. Input signals are changed one time during t
CK
.
8.
These parameter depend on output loading. Specified values are obtained with output open.
Symbol
Parameter & Test Condition
Max.
Unit
Note
-6
-7 / -7PC
-8PC
ICC1
Operating Current
t
RC
= t
RCMIN.
, t
RC
= t
CKMIN
.
Active-precharge command cycling,
without Burst Operation
1 bank operation
250
230
210
mA
7
ICC2P
Precharge Standby Current
in Power Down Mode
CS =V
IH
, CKE
V
IL(max)
t
CK
= min.
2
2
2
mA
7
ICC2PS
t
CK
= Infinity
1
1
1
mA
7
ICC2N
Precharge Standby Current
in Non-Power Down Mode
CS =V
IH
, CKE
V
IL(max)
t
CK
= min.
55
45
35
mA
ICC2NS
t
CK
= Infinity
5
5
5
mA
ICC3N
No Operating Current
t
CK
= min, CS = V
IH(min)
bank ; active state ( 4 banks)
CKE
V
IH(MIN.)
65
55
45
mA
ICC3P
CKE
V
IL(MAX.)
(Power down mode)
10
10
10
mA
ICC4
Burst Operating Current
t
CK
= min
Read/Write command cycling
170
150
120
mA
7,8
ICC5
Auto Refresh Current
t
CK
= min
Auto Refresh command cycling
270
240
220
mA
7
ICC6
Self Refresh Current
Self Refresh Mode, CKE
0.2V
3
3
3
mA
L-version
(A component rev)
1.7
1.7
1.7
mA
L-version
(B component rev)
1.0
1.0
1.0
mA
background image
18
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
AC Characteristics
1,2, 3
T
A
= 0 to 70 C; V
SS
= 0 V; V
DD
= 3.3 V 0.3 V, t
T
= 1 ns
#
Symbol
Parameter
Limit Values
Unit
Note
-6
-7PC
-7
-8PC
Min. Max. Min. Max. Min. Max. Min. Max.
Clock and Clock Enable
1
t
CK
Clock Cycle Time
CAS Latency = 3
CAS Latency = 2
6
7.5
7
7.5
7
10
8
10
s
ns
ns
2
t
CK
Clock Frequency
CAS Latency = 3
CAS Latency = 2
166
133
143
133
143
100
125
100
MHz
MHz
3
t
AC
Access Time from Clock
CAS Latency = 3
CAS Latency = 2
_
5.4
5.4
_
5.4
5.4
_
5.4
6
_
6
6
ns
ns
2, 4
4
t
CH
Clock High Pulse Width
2.5
2.5
2.5
3
ns
5
t
CL
Clock Low Pulse Width
2.5
2.5
2.5
3
ns
6
t
T
Transition Tim
0.3
1.2
0.3
1.2
0.3
1.2
0.5
10
ns
Setup and Hold Times
7
t
IS
Input Setup Time
1.5
1.5
1.5
2
ns
5
8
t
IH
Input Hold Time
0.8
0.8
0.8
1
ns
5
9
t
CKS
Input Setup Time
1.5
1.5
1.5
2
ns
5
10
t
CKH
CKE Hold Time
0.8
0.8
0.8
1
ns
5
11
t
RSC
Mode Register Set-up Time
12
14
14
16
ns
12
t
SB
Power Down Mode Entry Time
0
6
0
7
0
7
0
8
ns
Common Parameters
13
t
RCD
Row to Column Delay Time
12
15
15
20
ns
6
14
t
RP
Row Precharge Time
15
15
15
20
ns
6
15
t
RAS
Row Active Time
40
100K
42
100K
42
100K
45
100k
ns
6
16
t
RC
Row Cycle Time
60
60
60
60
ns
6
17
t
RRD
Activate(a) to Activate(b) Command Period
12
14
14
16
ns
6
18
t
CCD
CAS(a) to CAS(b) Command Period
1
1
1
1
CLK
Refresh Cycle
19
t
REF
Refresh Period (8192 cycles)
--
64
--
64
--
64
--
64
ms
20
t
SREX
Self Refresh Exit Time
1
--
1
--
1
--
1
--
CLK
background image
19
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
Notes for AC Parameters:
1.
For proper power-up see the operation section of this data sheet.
2.
AC timing tests have V
IL
= 0.8V and V
IH
= 2.0V with the timing referenced to the 1.4 V crossover point. The transition
time is measured between V
IH
and V
IL
. All AC measurements assume t
T
= 1ns with the AC output load circuit shown
in Figure 1.
4.
If clock rising time is longer than 1 ns, a time (t
T
/2 0.5) ns has to be added to this parameter.
5.
If t
T
is longer than 1 ns, a time (t
T
1) ns has to be added to this parameter.
6.
These parameter account for the number of clock cycle and depend on the operating frequency of the clock, as
follows:
the number of clock cycle = specified value of timing period (counted in fractions as a whole number)
Self Refresh Exit is a synchronous operation and begins on the 2nd positive clock edge after CKE returns high.
Self Refresh Exit is not complete until a time period equal to tRC is satisfied once the Self Refresh Exit command
is registered.
7.
Referenced to the time which the output achieves the open circuit condition, not to output voltage levels
Read Cycle
21
t
OH
Data Out Hold Time
3
3
3
3
ns
2
22
t
LZ
Data Out to Low Impedance Time
1
1
1
0
ns
23
t
HZ
Data Out to High Impedance Time
3
6
3
7
3
7
3
8
ns
7
24
t
DQZ
DQM Data Out Disable Latency
2
2
2
2
CLK
Write Cycle
25
t
WR
Write Recovery Time
2
2
2
2
CLK
26
t
DQW
DQM Write Mask Latency
0
0
0
0
CLK
#
Symbol
Parameter
Limit Values
Unit
Note
-6
-7PC
-7
-8PC
Min. Max. Min. Max. Min. Max. Min. Max.
1.4V
1.4V
tCS
tCH
tAC
tAC
tLZ
tOH
tHZ
CLK
COMMAND
OUTPUT
50 pF
I/O
Z=50 Ohm
+ 1.4 V
50 Ohm
VIH
VIL
t
T
Figure 1.
tCK
AC Characteristics
(Cont'd)
background image
20
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
Timing Diagrams
1. Bank Activate Command Cycle
2. Burst Read Operation
3. Read Interrupted by a Read
4. Read to Write Interval
4.1 Read to Write Interval
4.2 Minimum Read to Write Interval
4.3 Non-Minimum Read to Write Interval
5. Burst Write Operation
6. Write and Read Interrupt
6.1 Write Interrupted by a Write
6.2 Write Interrupted by Read
7. Burst Write & Read with Auto-Precharge
7.1 Burst Write with Auto-Precharge
7.2 Burst Read with Auto-Precharge
8. Burst Termination
8.1 Termination of a Burst Write Operation
8.2 Termination of a Burst Write Operation
9. AC- Parameters
9.1 AC Parameters for a Write Timing
9.2 AC Parameters for a Read Timing
10. Mode Register Set
11. Power on Sequence and Auto Refresh (CBR)
12. Power Down Mode
13. Self Refresh (Entry and Exit)
14. Auto Refresh (CBR)
background image
21
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
Timing Diagrams
(Cont'd)
15. Random Column Read ( Page within same Bank)
15.1 CAS Latency = 2
15.2 CAS Latency = 3
16. Random Column Write ( Page within same Bank)
16.1 CAS Latency = 2
16.2 CAS Latency = 3
17. Random Row Read ( Interleaving Banks) with Precharge
17.1 CAS Latency = 2
17.2 CAS Latency = 3
18. Random Row Write ( Interleaving Banks) with Precharge
18.1 CAS Latency = 2
18.2 CAS Latency = 3
19. Precharge Termination of a Burst
19.1 CAS Latency = 2
19.2 CAS Latency = 3
background image
22
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
1. Bank Activate Command Cycle
(CAS latency = 3)
2. Burst Read Operation
(Burst Length = 4, CAS latency = 2, 3)
ADDRESS
CLK
T0
T
T1
T
T
T
T
COMMAND
NOP
NOP
NOP
Bank A
Row Addr.
Bank A
Activate
Write A
with Auto
Bank A
Col. Addr.
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
Bank B
Activate
Bank A
Row Addr.
Bank A
Activate
t
RCD
: "H" or "L"
t
RC
Precharge
t
RRD
Bank B
Row Addr.
COMMAND
READ A
NOP
NOP
NOP
NOP
NOP
NOP
NOP
DOUT A
0
CAS latency = 2
t
CK3,
I/O's
CAS latency = 3
DOUT A
1
DOUT A
2
DOUT A
3
NOP
CLK
T0
T2
T1
T3
T4
T5
T6
T7
T8
t
CK2,
I/O's
DOUT A
0
DOUT A
1
DOUT A
2
DOUT A
3
background image
23
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
3. Read Interrupted by a Read
(Burst Length = 4, CAS latency = 2, 3)
4.1 Read to Write Interval
(Burst Length = 4, CAS latency = 3)
COMMAND
READ A
READ B
NOP
NOP
NOP
NOP
NOP
NOP
t
CK2,
I/O's
CAS latency = 2
t
CK3,
I/O's
CAS latency = 3
NOP
CLK
T0
T2
T1
T3
T4
T5
T6
T7
T8
DOUT B
0
DOUT B
1
DOUT B
2
DOUT B
3
DOUT A
0
DOUT B
0
DOUT B
1
DOUT B
2
DOUT B
3
DOUT A
0
COMMAND
NOP
READ A
NOP
NOP
NOP
NOP
WRITE B
NOP
NOP
DQM
DOUT A0
DIN B0
DIN B1
DIN B2
Must be Hi-Z before
the Write Command
I/O's
Minimum delay between the Read and Write Commands = 4+1 = 5 cycles
CLK
T0
T2
T1
T3
T4
T5
T6
T7
T8
t
DQZ
t
DQW
: "H" or "L"
background image
24
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
4.2 Minimum Read to Write Interval
(Burst Length = 4, CAS latency = 2)
4.3 Non-Minimum Read to Write Interval
(Burst Length = 4, CAS latency = 2, 3)
COMMAND
NOP
BANK A
NOP
READ A
WRITE A
NOP
NOP
NOP
DQM
DIN A0
DIN A1
DIN A2
DIN A3
Must be Hi-Z before
the Write Command
t
CK2,
I/O's
CAS latency = 2
CLK
T0
T2
T1
T3
T4
T5
T6
T7
T8
NOP
ACTIVATE
1 Clk Interval
t
DQZ
t
DQW
: "H" or "L"
NOP
READ A
NOP
NOP
READ A
NOP
WRITE B
NOP
NOP
DQM
DIN B0
DIN B1
DIN B2
t
CK1,
I/O's
CAS latency = 2
t
CK2,
I/O's
CAS latency = 3
CLK
T0
T2
T1
T3
T4
T5
T6
T7
T8
DOUT A0
COMMAND
DIN B0
DIN B1
DIN B2
DOUT A1
DOUT A0
Must be Hi-Z before
the Write Command
t
DQZ
t
DQW
: "H" or "L"
background image
25
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
5. Burst Write Operation
(Burst Length = 4, CAS latency = 2, 3)
6.1 Write Interrupted by a Write
(Burst Length = 4, CAS latency = 2, 3)
COMMAND
NOP
WRITE A
NOP
NOP
NOP
NOP
NOP
NOP
I/O's
DIN A0
DIN A1
DIN A2
DIN A3
NOP
CLK
T0
T2
T1
T3
T4
T5
T6
T7
T8
Extra data is ignored after
The first data element and the Write
are registered on the same clock edge.
termination of a Burst.
don't care
COMMAND
NOP
WRITE A
WRITE B
NOP
NOP
NOP
NOP
NOP
I/O's
DIN A
0
DIN B
0
DIN B
1
DIN B
2
NOP
DIN B
3
CLK
T0
T2
T1
T3
T4
T5
T6
T7
T8
1 Clk Interval
background image
26
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
6.2 Write Interrupted by a Read
(Burst Length = 4, CAS latency = 2, 3)
7. Burst Write with Auto-Precharge
Burst Length = 2, CAS latency = 2, 3)
COMMAND
NOP
WRITE A
READ B
NOP
NOP
NOP
NOP
NOP
NOP
t
CK2,
I/O's
CAS latency = 2
DIN A0
t
CK3,
I/O's
CAS latency = 3
DIN A0
CLK
T0
T2
T1
T3
T4
T5
T6
T7
T8
DOUT B3
DOUT B0
DOUT B1
DOUT B2
DOUT B3
don't care
don't care
don't care
DOUT B0
DOUT B1
DOUT B2
Input data must be removed from the I/O's at least one clock
cycle before the Read dataAPpears on the outputs to avoid
data contention.
COMMAND
NOP
NOP
NOP
WRITE A
Auto-Precharge
CLK
T0
T2
T1
T3
T4
T5
T6
T7
T8
NOP
BANK A
ACTIVE
NOP
NOP
DIN A0
DIN A1
I/O's
CAS latency = 3
I/O's
CAS latency = 2
Begin Autoprecharge
Bank can be reactivated after trp
*
t
WR
t
RP
DIN A0
DIN A1
t
WR
t
RP
NOP
*
background image
27
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
7.2 Burst Read with Auto-Precharge
Burst Length = 4, CAS latency = 2, 3)
COMMAND
READ A
NOP
NOP
NOP
NOP
NOP
NOP
t
CK2,
I/O's
CAS latency = 2
t
CK3,
I/O's
CAS latency = 3
CLK
T0
T2
T1
T3
T4
T5
T6
T7
T8
DOUT A3
DOUT A
tRP
tRP
*
*
*
0
DOUT A1
DOUT A2
DOUT A3
DOUT A
Begin Autoprecharge
Bank can be reactivated after tRP
0
DOUT A1
DOUT A2
NOP
NOP
background image
28
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
8.1 Termination of a Burst Read Operation
(CAS latency = 2, 3)
8.2 Termination of a Burst Write Operation
(CAS latency = 2, 3)
COMMAND
READ A
NOP
NOP
NOP
Burst
NOP
NOP
NOP
NOP
t
CK2,
I/O's
CAS latency = 2
t
CK3,
I/O's
CAS latency = 3
Stop
CLK
T0
T2
T1
T3
T4
T5
T6
T7
T8
DOUT A
0
DOUT A
1
DOUT A
2
DOUT A
3
DOUT A
0
DOUT A
1
DOUT A
2
DOUT A
3
COMMAND
NOP
WRITE A
NOP
NOP
Burst
NOP
NOP
NOP
NOP
DIN A0
DIN A1
DIN A2
Stop
CLK
T0
T2
T1
T3
T4
T5
T6
T7
T8
Input data for the Write is masked.
I/O's
CAS latency = 2,3
don't care
background image
29
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
CLK
CKE
CS
I/
O
RAS
CAS
WE

B
A
DQM
9
.
1
A
C
P
a
ra
m
e
t
e
rs
f
o
r

W
r
it
e
Ti
m
i
n
g
T2
T
3
T4
T0
T1
T6
T7
T8
T9
T5
T1
1
T1
2
T1
3
T
1
4
T1
0
T1
6
T1
7
T1
8
T
1
9
T1
5
T
2
2
T2
0
T2
1
Hi
-
Z
AP
Bur
s
t
L
engt
h
= 4,

CAS
La
t
enc
y
=
2
A
d
d
r
t
CK
S
t
CS
t
CH
t
CK
H
t
AS
t
RC
D
t
RC
t
RP
t
DS
A
c
ti
v
a
te
C
o
mma
nd
Ba
n
k
A
Wr
it
e
w
i
t
h
A
u
to P
r
ec
har
ge
C
o
m
m
and
B
ank
A
A
c
ti
v
a
te
C
o
mman
d
B
ank
B
Wr
it
e
w
i
t
h
A
u
to
P
r
ec
har
ge
C
o
mm
and
B
ank
B
A
c
ti
v
a
te
C
o
m
m
and
B
ank
A
Wr
it
e
C
o
mma
nd
Ba
n
k
A
Pr
e
c
h
a
r
g
e
C
o
m
m
and
B
ank
A
Ac
t
i
v
a
t
e
C
o
mm
and
Ba
n
k
A
t
DH
Ax
0
Ax
3
Ax
2
Ax
1
Bx
0
Bx
3
Bx
2
Bx
1
Ay
0
Ay
3
Ay
2
Ay
1
t
CK
2
t
CH
t
CL
B
egi
n A
u
to P
r
ec
har
ge
B
ank
A
Be
g
i
n
Au
t
o
Pr
e
c
h
a
r
g
e
Ba
n
k
B
t
DP
L
t
RR
D
A
c
ti
v
a
te
C
o
m
m
and
B
ank
B
RA
y
CB
x
R
A
y
RA
y
RB
x
RB
x
CAx
RB
y
RB
y
RA
z
RA
z
RA
x
RA
x
t
AH
background image
30
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
\
CLK
CKE
CS
I/O
RAS
CAS
WE
B
A
DQM
9.
2
A
C
Param
e
t
e
rs

f
o
r R
e
ad T
i
m
i
n
g
T2
T3
T
4
T0
T1
T6
T7
T8
T9
T5
T1
1
T1
2
T1
3
T1
0
Hi
-
Z
AP
Bur
s
t
Leng
t
h
= 2,
CAS
Lat
e
n
cy = 2
A
d
d
r
t
CS
t
CH
t
CK
H
t
AS
t
AH
t
RRD
t
RC
D
t
RA
S
t
LZ
A
c
ti
v
a
te
C
o
mmand
B
ank
A
A
c
ti
v
a
te
C
o
mmand
B
ank
B
A
c
ti
v
a
te
C
o
m
m
and
B
ank
A
P
r
ec
har
ge
C
o
mm
and
B
ank
A
t
CK
S
t
CK
2
Ax
0
Ax
1
R
ead
C
o
mman
d
Ba
n
k
A
R
ead w
i
th
Au
t
o
Pr
e
c
h
a
r
g
e
C
o
mmand
B
ank
B
t
RC
t
RP
t
AC
2
t
AC
2
t
OH
t
HZ
t
CH
t
CL
Bx
0
B
egi
n A
u
to
Pr
e
c
h
a
r
g
e
B
ank
B
Bx
1
t
HZ
RB
x
R
A
y
RB
x
RB
x
RA
y
CA
x
RA
x
RA
x
background image
31
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
\
1
0
.

Mode
R
e
gis
t
e
r
S
e
t
CLK
CKE
CS
RAS
CAS
WE
BA
T2
T3
T4
T0
T1
T6
T7
T8
T9
T5
T11
T12
T13
T14
T10
T16
T17
T18
T19
T15
T22
T20
T21
AP

Addr
Precharge
Command
All Banks
Mode Register
Set Command
Any
Command
Address Key
2 Clock min.
background image
32
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
\
1
1
.
P
o
w
e
r
on S
e
que
nc
e
a
n
d
Aut
o
Re
f
r
e
s
h
(
CBR)
CLK
CKE
CS
I/O
RAS
CAS
WE

BA
DQM
TT
T
T0
TT
T
TT
T
T
T
TT
T1
T
T
TT
TT
T
T
Hi-Z
AP
Addr
Precharge
Command
All Banks
t
RP
Minimum of 2 Refresh Cycles are required
1st Auto Refresh
Command
t
RC
High level
is required
2nd Auto Refresh
Command
Inputs must be
stable for 200
s
Any
Command
2 Clock min.
Mode Register
Address Key
Set Command
background image
33
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
\
1
2
. P
o
w
e
r Dow
n
Mode
Bur
s
t
L
engt
h
= 4,

CAS
La
t
enc
y
=
2
CLK
CKE
CS
I/O
RAS
CAS
WE

BA
DQM
T2
T3
T4
T0
T1
T6
T7
T8
T9
T5
T11
T12
T13
T14
T10
T16
T17
T18
T19
T15
T22
T20
T21
Hi-Z
AP
Addr
t
CKSP
RAx
RAx
Activate
Command
Bank A
Precharge
Command
Bank A
Power Down
Mode Entry
Power Down
Mode Exit
Any
Command
background image
34
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
1
3
. S
e
lf

Re
f
r
e
s
h (
E
nt
ry
a
nd E
x
it
)
BA
Addr
AP
t
CLK
CKE
CS
I/O
RAS
CAS
WE
D
QM
T2
T3
T4
T0
T1
T
T
TT
T5
T
T
TT
T
T
T
TT
TT
T
T
Hi-Z
All Banks
must be idle
Self Refresh
Entry
Begin Self Refresh
Exit Command
t
SREX
Self Refresh Exit
Command issued
Self Refresh
Exit
t
RC
CKSR
background image
35
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
\
1
4
. Aut
o
Re
f
r
e
s
h (
CBR)
Bu
r
s
t
L
engt
h
= 4,

CAS
L
a
te
n
c
y

=

2
CLK
CKE
CS
I/O
RAS
CAS
WE

BA
DQM
T2
T3
T4
T0
T1
T6
T7
T8
T9
T5
T11
T12
T13
T14
T10
T16
T17
T18
T19
T15
T22
T20
T21
Hi-Z
AP
Addr
Ax0
Ax1
Activate
Command
Read
Command
Precharge
Command
Auto Refresh
Command
Auto Refresh
Command
t
RC
t
RP
t
RC
t
CK2
All Banks
CAx
RAx
RAx
Bank A
Bank A
Ax2
Ax3
(Minimum Interval)
background image
36
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
\
)
1
5
.1
Ra
n
dom
Colum
n
Re
a
d
(
P
a
g
e
w
i
t
h
i
n
s
a
m
e
Ba
nk
)
(
1
of
2
)
Bur
s
t
Len
gt
h
=
4,
CAS
Lat
ency

= 2
CLK
CKE
CS
I/O
RAS
CAS
WE
BA
DQM
T2
T3
T4
T0
T1
T6
T7
T8
T9
T5
T11
T12
T13
T14
T10
T16
T17
T18
T19
T15
T22
T20
T21
Hi-Z
AP

Addr
Activate
Command
Bank A
CAx
Read
Command
Bank A
CAy
Read
Command
Bank A
Aw0
Aw1
Aw2
Aw3
Ax0
Ax1
Ay0
Ay1
Az0
Az1
Az2
Az3
Ay2
Ay3
CAw
Read
Command
Bank A
RAw
RAw
Precharge
Command
Bank A
Activate
Command
Bank A
CAz
Read
Command
Bank A
RAz
RAz
t
CK2
background image
37
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
\
)
1
5
.2
Ra
ndom
Colum
n
Re
a
d
(
P
a
g
e
w
i
t
h
i
n
s
a
m
e
Ba
nk
)
(
2

of
2
)
Bur
s
t
L
engt
h
= 4,

CAS
La
t
enc
y
=
3
CLK
CKE
CS
I/O
RAS
CAS
WE
BA
D
QM
T2
T3
T4
T0
T1
T6
T7
T8
T9
T5
T11
T12
T13
T14
T10
T16
T17
T18
T19
T15
T22
T20
T21
Hi-Z
AP
Addr
Activate
Command
Bank A
CAx
Read
Command
Bank A
CAy
Read
Command
Bank A
Aw0
Aw1
Aw2
Aw3
Ax0
Ax1
Ay0
Ay1
Ay2
Ay3
CAw
Read
Command
Bank A
RAw
RAw
Precharge
Command
Bank A
Activate
Command
Bank A
CAz
Read
Command
Bank A
RAz
RAz
t
CK3
background image
38
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
\
)
1
6
.1
Ra
ndom
Colum
n
Wr
it
e

(
P
a
g
e
w
i
t
h
in s
a
m
e
Ba
nk
)
(
1
of
2
)
Bur
s
t
L
engt
h
= 4,

CAS
La
t
enc
y
=
2
CLK
CKE
CS
I/O
RAS
CAS
WE

BA
DQM
T2
T3
T4
T0
T1
T6
T7
T8
T9
T5
T11
T12
T13
T14
T10
T16
T17
T18
T19
T15
T22
T20
T21
Hi-Z
AP
Addr
CBx
Write
Command
Bank B
CBy
Write
Command
Bank B
Precharge
Command
Bank B
DBw0
DBw3
DBw2
DBw1
DBx1
DBx0
DBy0
DBy3
DBy2
DBy1
DBz0
DBz3
DBz2
DBz1
t
CK2
Activate
Command
Bank B
CAx
Write
Command
Bank B
RAw
RAw
Activate
Command
Bank B
CBz
Write
Command
Bank B
RBz
RBz
Activate
Command
Bank B
CBz
Write
Command
Bank B
RBz
RBz
background image
39
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
\
)
1
6
.2
Ra
ndom
Colum
n
Wr
it
e

(
P
a
g
e
w
i
t
h
in s
a
m
e
Ba
nk
)
(
2
of
2
)
Bur
s
t
L
engt
h
= 4,

CAS
La
t
enc
y
=
3
CLK
CKE
CS
I/O
RAS
CAS
WE

BA
DQM
T2
T3
T4
T0
T1
T6
T7
T8
T9
T5
T11
T12
T13
T14
T10
T16
T17
T18
T19
T15
T22
T20
T21
Hi-Z
AP
Addr
CBx
Write
Command
Bank B
CBy
Write
Command
Bank B
Precharge
Command
Bank B
DBw0
DBw3
DBw2
DBw1
DBx1
DBx0
DBy0
DBy3
DBy2
DBy1
DBz0
DBz1
t
CK3
Activate
Command
Bank B
CBz
Write
Command
Bank B
RBz
RBz
Activate
Command
Bank B
CBz
Write
Command
Bank B
RBz
RBz
background image
40
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
1
7
.
1

Ra
ndom
Row
Re
a
d
(
I
nt
e
r
l
e
a
v
i
ng Ba
nk
s
)

(
1
of
2
)
Bur
s
t
Le
ngt
h =
8,
CAS

Lat
enc
y =
2
CLK
CKE
CS
I/O
RAS
CAS
WE
A11(BS)
DQM
T2
T3
T4
T0
T1
T6
T7
T8
T9
T5
T11
T12
T13
T14
T10
T16
T17
T18
T19
T15
T22
T20
T21
Hi-Z
A10
A0 - A9
CBy
Read
Command
Bank B
Read
Command
Bank A
Bx0
Bx1
Bx2
Bx3
Bx4
Bx5
Bx6
Bx7
By0
By1
t
CK2
High
t
RCD
t
AC2
t
RP
CAx
Precharge
Command
Bank B
Ax0
Ax1
Ax2
Ax3
Ax4
Ax5
Ax6
Ax7
Activate
Command
Bank B
RBx
RBx
Activate
Command
Bank A
RAx
RAx
CBx
Read
Command
Bank B
Activate
Command
Bank B
RBy
RBy
background image
41
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
17.
2 R
a
n
d
o
m
R
o
w

R
e
ad
(I
n
t
e
r
l
e
avi
n
g
B
a
n
k
s) (2
o
f
2)
Bur
s
t
Le
ngt
h =
8,
CAS

Lat
enc
y =
3
CLK
CKE
CS
I/O
RAS
CAS
WE
A
11(BS)
DQM
T2
T3
T4
T0
T1
T6
T7
T8
T9
T5
T11
T12
T13
T14
T10
T16
T17
T18
T19
T15
T22
T20
T21
Hi-Z
A10
A0 - A9
CBy
Read
Command
Bank B
By0
t
CK3
High
t
AC3
Activate
Command
Bank B
RBx
RBx
Activate
Command
Bank A
RAx
RAx
CBx
Read
Command
Bank B
Activate
Command
Bank B
RBy
RBy
t
RCD
Precharge
Command
Bank B
CAx
Read
Command
Bank A
t
RP
Bx0
Bx1
Bx2
Bx3
Bx4
Bx5
Bx6
Bx7
Ax0
Ax1
Ax2
Ax3
Ax4
Ax5
Ax6
Ax7
Precharge
Command
Bank A
background image
42
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
1
8
.1
Ra
ndom
Row

Wri
t
e
(
I
nt
e
r
le
a
v
ing Ba
nk
s
)
(
1

of

2
)
Bu
r
s
t
Lengt
h =
8,
CAS
L
a
te
n
c
y

=
2
CLK
CKE
CS
I/O
RAS
CAS
WE
A
11(BS)
DQM
T2
T3
T4
T0
T1
T6
T7
T8
T9
T5
T11
T12
T13
T14
T10
T16
T17
T18
T19
T15
T22
T20
T21
Hi-Z
A10
A0 - A9
t
CK2
High
t
RCD
t
RP
Write
Command
Bank A
CAy
DAx0
DAx3
DAx2
DAx1
DAx4
DAx7
DAx6
DAx5
DBx0
DBx3
DBx2
DBx1
DBx4
DBx7
DBx6
DBx5
DAy0
DAy3
DAy2
DAy1
t
DPL
Write
Command
Bank A
CAX
Activate
Command
Bank A
RAx
RAx
Activate
Command
Bank B
RBx
RBx
CBx
Precharge
Command
Bank A
Write
Command
Bank B
Activate
Command
Bank A
RAy
RAy
CAy
Precharge
Command
Bank B
Write
Command
Bank A
DAy4
t
DPL
background image
43
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
1
8
.2
Ra
ndom
Row

Wri
t
e
(
I
nt
e
r
le
a
v
ing Ba
nk
s
)
(
2

of

2
)
Bu
r
s
t
Lengt
h =
8,
CAS
L
a
te
n
c
y

=
3
CLK
CKE
CS
I/O
RAS
CAS
WE
A11(BS)
DQM
T2
T3
T4
T0
T1
T6
T7
T8
T9
T5
T11
T12
T13
T14
T10
T16
T17
T18
T19
T15
T22
T20
T21
Hi-Z
A10
A0 - A9
t
CK3
High
DAx0
DAx3
DAx2
DAx1
DAx4
DAx7
DAx6
DAx5
DBx0
DBx3
DBx2
DBx1
DBx4
DBx7
DBx6
DBx5
DAy2
DAy1
DAy0
Write
Command
Bank A
CAX
Activate
Command
Bank B
RBx
RBx
Activate
Command
Bank A
RAy
RAy
DAy3
t
DPL
CBx
Write
Command
Bank B
Precharge
Command
Bank A
Write
Command
Bank A
CAy
Precharge
Command
Bank B
t
RP
t
DPL
t
RCD
Activate
Command
Bank A
RAx
RAx
background image
44
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
1
9
.1
P
r
e
c
h
a
r
ge
T
e
r
m
ina
t
ion of
a
Burs
t
(
1
of
2
)
Bur
s
t
L
engt
h =
8,

C
A
S Lat
enc
y
= 2
CLK
CKE
CS
I/O
RAS
CAS
WE
BA
DQM
T2
T3
T4
T0
T1
T6
T7
T8
T9
T5
T11
T12
T13
T14
T10
T16
T17
T18
T19
T15
T22
T20
T21
Hi-Z
AP
Addr
t
CK2
Precharge
Command
Bank A
DAx0
DAx3
DAx2
DAx1
Precharge Termination
of a Write Burst. Write
data is masked.
Ay0
Ay1
Ay2
Precharge Termination
of a Read Burst.
Precharge
Command
Bank A
t
RP
Activate
Command
Bank A
RAx
RAx
Write
Command
Bank A
CAx
CAy
Read
Command
Bank A
High
Activate
Command
Bank A
RAy
RAy
t
RP
Activate
Command
Bank A
RAz
RAz
CAz
Read
Command
Bank A
Az0
Az1
Az2
Precharge
Command
Bank A
t
RP
background image
45
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
1
9
.2
P
r
e
c
h
a
r
ge
T
e
r
m
ina
t
ion of
a
Burs
t
(
2
of
2
)
Bur
s
t
Leng
t
h
= 4,
8,

CAS Lat
ency

= 3
CLK
CKE
CS
I/O
RAS
CAS
WE
BA
D
QM
T2
T3
T4
T0
T1
T6
T7
T8
T9
T5
T11
T12
T13
T14
T10
T16
T17
T18
T19
T15
T22
T20
T21
Hi-Z
AP
Addr
t
CK3
Precharge
Command
Bank A
DAx0
Precharge Termination
of a Write Burst.
Write Data
is masked
Ay0
Ay1
Ay2
Precharge Termination
Precharge
Command
Bank A
t
RP
Activate
Command
Bank A
RAx
RAx
Write
Command
Bank A
CAx
CAy
Read
Command
Bank A
High
Activate
Command
Bank A
RAy
RAy
t
RP
Activate
Command
Bank A
RAz
RAz
of a Read Burst.
background image
46
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
Complete List of Operation Commands
SDRAM Function Truth Table
CURRENT
STATE
1
CS
RAS
CAS
WE
BS
Addr
ACTION
Idle
H
L
L
L
L
L
L
L
X
H
H
H
L
L
L
L
X
H
H
L
H
H
L
L
X
H
L
X
H
L
H
L
X
X
BS
BS
BS
BS
X
Op-
X
X
X
X
RA
AP
X
Code
NOP or Power Down
NOP
ILLEGAL
2
ILLEGAL
2
Row (&Bank) Active; Latch Row Address
NOP
4
Auto-Refresh or Self-Refresh
5
Mode reg. Access
5
Row Active
H
L
L
L
L
L
L
X
H
H
H
L
L
L
X
H
L
L
H
H
L
X
X
H
L
H
L
X
X
X
BS
BS
BS
BS
X
X
X
CA,AP
CA,AP
X
AP
X
NOP
NOP
Begin Read; Latch CA; DetermineAP
Begin Write; Latch CA; DetermineAP
ILLEGAL
2
Precharge
ILLEGAL
Read
H
L
L
L
L
L
L
L
X
H
H
H
H
L
L
L
X
H
H
L
L
H
H
L
X
H
L
H
L
H
L
X
X
X
BS
BS
BS
BS
BS
X
X
X
X
CA,AP
CA,AP
X
AP
X
NOP (Continue Burst to End;>Row Active)
NOP (Continue Burst to End;>Row Active)
Burst Stop Command > Row Active
Term Burst, New Read, DetermineAP
3
Term Burst, Start Write, DetermineAP
3
ILLEGAL
2
Term Burst, Precharge
ILLEGAL
Write
H
L
L
L
L
L
L
L
X
H
H
H
H
L
L
L
X
H
H
L
L
H
H
L
X
H
L
H
L
H
L
X
X
X
BS
BS
BS
BS
BS
X
X
X
X
CA,AP
CA,AP
X
AP
X
NOP (Continue Burst to End;>Row Active)
NOP (Continue Burst to End;>Row Active)
Burst Stop Command > Row Active
Term Burst, Start Read, DetermineAP
3
Term Burst, New Write, DetermineAP
3
ILLEGAL
2
Term Burst, Precharge
3
ILLEGAL
Read
with
Auto
Precharge
H
L
L
L
L
L
L
L
X
H
H
H
H
L
L
L
X
H
H
L
L
H
H
L
X
H
L
H
L
H
L
X
X
X
BS
BS
X
BS
BS
X
X
X
X
X
X
X
AP
X
NOP (Continue Burst to End;> Precharge)
NOP (Continue Burst to End;> Precharge)
ILLEGAL
2
ILLEGAL
2
ILLEGAL
ILLEGAL
2
ILLEGAL
2
ILLEGAL
background image
47
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
SDRAM FUNCTION TRUTH TABLE(continued)
CURRENT
STATE
1
CS
RAS
CAS
WE
BS
Addr
ACTION
Write
with
Auto
Precharge
H
L
L
L
L
L
L
L
X
H
H
H
H
L
L
L
X
H
H
L
L
H
H
L
X
H
L
H
L
H
L
X
X
X
BS
BS
X
BS
BS
X
X
X
X
X
X
X
AP
X
NOP (Continue Burst to End;> Precharge)
NOP (Continue Burst to End;> Precharge)
ILLEGAL
2
ILLEGAL
2
ILLEGAL
ILLEGAL
2
ILLEGAL
2
ILLEGAL
Precharging
H
L
L
L
L
L
L
X
H
H
H
L
L
L
X
H
H
L
H
H
L
X
H
L
X
H
L
X
X
X
BS
BS
BS
BS
X
X
X
X
X
X
AP
X
NOP;> Idle after tRP
NOP;> Idle after tRP
ILLEGAL
2
ILLEGAL
2
ILLEGAL
2
NOP
4
ILLEGAL
Row
Activating
H
L
L
L
L
L
L
X
H
H
H
L
L
L
X
H
H
L
H
H
L
X
H
L
X
H
L
X
X
X
BS
BS
BS
BS
X
X
X
X
X
X
AP
X
NOP;> Row Active after tRCD
NOP;> Row Active after tRCD
ILLEGAL
2
ILLEGAL
2
ILLEGAL
2
ILLEGAL
2
ILLEGAL
Write
Recovering
H
L
L
L
L
L
L
X
H
H
H
L
L
L
X
H
H
L
H
H
L
X
H
L
X
H
L
X
X
X
BS
BS
BS
BS
X
X
X
X
X
X
AP
X
NOP
NOP
ILLEGAL
2
ILLEGAL
2
ILLEGAL
2
ILLEGAL
2
ILLEGAL
Refreshing
H
L
L
L
L
L
X
H
H
H
L
L
X
H
H
L
H
L
X
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
NOP;> Idle after tRC
NOP;> Idle after tRC
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
Mode
Register
Accessing
H
L
L
L
L
X
H
H
H
L
X
H
H
L
X
X
H
L
X
X
X
X
X
X
X
X
X
X
X
X
NOP
NOP
ILLEGAL
ILLEGAL
ILLEGAL
background image
48
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
Clock Enable (CKE) Truth Table:
Abbreviations:
RA = Row Address BS = Bank Address
CA = Column Address AP = Auto Precharge
Notes for SDRAM function truth table:
1. Current State is state of the bank determined by BS. All entries assume that CKE was active (HIGH) during the preceding clock cycle.
2. Illegal to bank in specified state; Function may be legal in the bank indicated by BS, depending on the state of that bank.
3. Must satisfy bus contention, bus turn around, and/or write recovery requirements.
4. NOP to bank precharging or in Idle state. May precharge bank(s) indicated by BS (andAP).
5. Illegal if any bank is not Idle.
6. CKE Low to High transition will re-enable CLK and other inputs asynchronously. A minimum setup time must be satisfied before any
command other than EXIT.
7. Power-Down and Self-Refresh can be entered only from the All Banks Idle State.
8. Must be legal command as defined in the SDRAM function truth table.
STATE(n)
CKE
n-1
CKE
n
CS
RAS
CAS
WE
Addr
ACTION
Self-Refresh
6
H
L
L
L
L
L
L
X
H
H
H
H
H
L
X
H
L
L
L
L
X
X
X
H
H
H
L
X
X
X
H
H
L
X
X
X
X
H
L
X
X
X
X
X
X
X
X
X
X
INVALID
EXIT Self-Refresh, Idle after tRC
EXIT Self-Refresh, Idle after tRC
ILLEGAL
ILLEGAL
ILLEGAL
NOP (Maintain Self-Refresh)
Power-Down
H
L
L
L
L
L
L
X
H
H
H
H
H
L
X
H
L
L
L
L
X
X
X
H
H
H
L
X
X
X
H
H
L
X
X
X
X
H
L
X
X
X
X
X
X
X
X
X
X
INVALID
EXIT Power-Down, > Idle.
EXIT Power-Down, > Idle.
ILLEGAL
ILLEGAL
ILLEGAL
NOP (Maintain Low-Power Mode)
All. Banks
Idle
7
H
H
H
H
H
H
H
H
L
H
L
L
L
L
L
L
L
L
X
H
L
L
L
L
L
L
X
X
X
H
H
H
L
L
L
X
X
X
H
H
L
H
L
L
X
X
X
H
L
X
X
H
L
X
X
X
X
X
X
X
X
X
X
Refer to the function truth table
Enter Power- Down
Enter Power- Down
ILLEGAL
ILLEGAL
ILLEGAL
Enter Self-Refresh
ILLEGAL
NOP
background image
49
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
Package Diagram
54-Pin Plastic TSOP-II (400 mil)
0.881 -0.01
[22.38 -0.25]
0.031
[0.80]
.004 [0.1]
54
Index Marking
M
28
1
Does not include plastic or metal protrusion of 0.15 max. per side
1
27
0.047 [1.20] MAX
0.04
0.002
[1
0.05]
Unit in inches [mm]
0.400
0.005
[10.16
0.13]
0.463
0.008
[11.76
0.20]
0.006 [0.15] MAX
+0.004
-0.002
0
5
0.024
0.008
[0.60
.020]
1
0.006
+0.01
-0.05
0.15
.008 [0.2]
54x
+0.002
-0.004
0.016
+0.05
-0.10
0.40
background image
50
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
60 PINS SOC
Package Diagram
0.30
0.35
0.40
0.012 0.014
0.016
60-Ball SOC BGA
background image
51
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
0.25+/-0.05
Min 0.10
8.50+/-0.10
1.05
0.45+/-0.05
1.00
1.00
15.5+/-0.10
0.50
1.60
0.80
Mechanical Diagram
60-Ball WBGA
All units in mm
background image
52
V54C3256(16/80/40)4V(T/S/B) Rev. 1.6 September 2002
MOSEL VITELIC
V54C3256(16/80/40)4V(T/S/B)
WORLDWIDE OFFICES
Copyright , MOSEL VITELIC Corp.
Printed in U.S.A.
The information in this document is subject to change without
notice.
MOSEL VITELIC makes no commitment to update or keep cur-
rent the information contained in this document. No part of this
document may be copied or reproduced in any form or by any
means without the prior written consent of MOSEL-VITELIC.
MOSEL VITELIC subjects its products to normal quality control
sampling techniques which are intended to provide an assurance
of high quality products suitable for usual commercial applica-
tions. MOSEL VITELIC does not do testing appropriate to provide
100% product quality assurance and does not assume any liabil-
ity for consequential or incidental arising from any use of its prod-
ucts. If such products are to be used in applications in which
personal injury might occur from failure, purchaser must do its
own quality assurance testing appropriate to such applications.
U.S. SALES OFFICES
U.S.A.
3910 NORTH FIRST STREET
S