ChipFind - документация

Электронный компонент: 74LS393

Скачать:  PDF   ZIP
5-544
FAST AND LS TTL DATA
DUAL DECADE COUNTER;
DUAL 4-STAGE
BINARY COUNTER
The SN54 / 74LS390 and SN54 / 74LS393 each contain a pair of high-speed
4-stage ripple counters. Each half of the LS390 is partitioned into a
divide-by-two section and a divide-by five section, with a separate clock input
for each section. The two sections can be connected to count in the 8.4.2.1
BCD code or they can count in a biquinary sequence to provide a square wave
(50% duty cycle) at the final output.
Each half of the LS393 operates as a Modulo-16 binary divider, with the last
three stages triggered in a ripple fashion. In both the LS390 and the LS393,
the flip-flops are triggered by a HIGH-to-LOW transition of their CP inputs.
Each half of each circuit type has a Master Reset input which responds to a
HIGH signal by forcing all four outputs to the LOW state.
Dual Versions of LS290 and LS293
LS390 has Separate Clocks Allowing
2,
2.5,
5
Individual Asynchronous Clear for Each Counter
Typical Max Count Frequency of 50 MHz
Input Clamp Diodes Minimize High Speed Termination Effects
CONNECTION DIAGRAM DIP (TOP VIEW)
SN54 / 74LS390
SN54 / 74LS393
NOTE:
The Flatpak version
has the same pinouts
(Connection Diagram) as
the Dual In-Line Package.
14
13
12
11
10
9
1
2
3
4
5
6
8
7
VCC CP
MR
Q0 Q1
Q2
Q3
CP
MR
Q0
Q1
Q2
Q3 GND
14
13
12
11
10
9
1
2
3
4
5
6
7
16
15
8
VCC
CP0
CP0 MR
Q0 CP1
Q2
Q1
Q3
MR
Q0 CP1 Q1
Q2
Q3 GND
SN54/74LS390
SN54/74LS393
LOW POWER SCHOTTKY
ORDERING INFORMATION
SN54LSXXXJ
Ceramic
SN74LSXXXN
Plastic
SN74LSXXXD
SOIC
J SUFFIX
CERAMIC
CASE 620-09
N SUFFIX
PLASTIC
CASE 648-08
16
1
16
1
16
1
D SUFFIX
SOIC
CASE 751B-03
DUAL DECADE COUNTER;
DUAL 4-STAGE
BINARY COUNTER
J SUFFIX
CERAMIC
CASE 632-08
N SUFFIX
PLASTIC
CASE 646-06
14
1
14
1
14
1
D SUFFIX
SOIC
CASE 751A-02
5-545
FAST AND LS TTL DATA
SN54/74LS390
SN54/74LS393
PIN NAMES
LOADING (Note a)
HIGH
LOW
CP
Clock (Active LOW going edge)
Input to +16 (LS393)
0.5 U.L.
1.0 U.L.
CP0
Clock (Active LOW going edge)
Input to
2 (LS390)
0.5 U.L.
1.0 U.L.
CP1
Clock (Active LOW going edge)
Input to
5 (LS390)
0.5 U.L.
1.5 U.L.
MR
Master Reset (Active HIGH) Input
0.5 U.L.
0.25 U.L.
Q0 Q3
Flip-Flop outputs (Note b)
10 U.L.
5 (2.5) U.L.
NOTES:
a) 1 TTL Unit Load (U.L.) = 40
A HIGH/1.6 mA LOW.
b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74)
b)
Temperature Ranges.
FUNCTIONAL DESCRIPTION
Each half of the SN54 / 74LS393 operates in the Modulo 16
binary sequence, as indicated in the
16 Truth Table. The first
flip-flop is triggered by HIGH-to-LOW transitions of the CP
input signal. Each of the other flip-flops is triggered by a
HIGH-to-LOW transition of the Q output of the preceding
flip-flop. Thus state changes of the Q outputs do not occur
simultaneously. This means that logic signals derived from
combinations of these outputs will be subject to decoding
spikes and, therefore, should not be used as clocks for other
counters, registers or flip-flops. A HIGH signal on MR forces
all outputs to the LOW state and prevents counting.
Each half of the LS390 contains a
5 section that is
independent except for the common MR function. The
5
section operates in 4.2.1 binary sequence, as shown in the
5
Truth Table, with the third stage output exhibiting a 20% duty
cycle when the input frequency is constant. To obtain a
10
function having a 50% duty cycle output, connect the input
signal to CP1 and connect the Q3 output to the CP0 input; the
Q0 output provides the desired 50% duty cycle output. If the
input frequency is connected to CP0 and the Q0 output is
connected to CP1, a decade divider operating in the 8.4.2.1
BCD code is obtained, as shown in the BCD Truth Table. Since
the flip-flops change state asynchronously, logic signals
derived from combinations of LS390 outputs are also subject
to decoding spikes. A HIGH signal on MR forces all outputs
LOW and prevents counting.
SN54 / 74LS390 LOGIC DIAGRAM (one half shown)
SN54 / 74LS393 LOGIC DIAGRAM (one half shown)
CP1
CP0
MR
MR
CP
K CP J
CD
Q
K CP J
CD
Q
K CP J
CD
Q
K CP J
CD
Q
K CP
J
CD
Q
K CP J
CD
Q
K CP J
CD
Q
K CP J
CD
Q
Q0
Q0
Q1
Q1
Q2
Q2
Q3
Q3
5-546
FAST AND LS TTL DATA
SN54/74LS390
SN54/74LS393
SN54 / 74LS390 BCD
TRUTH TABLE
(Input on CP0; Q0 CP1)
SN54/ 74LS390
5
TRUTH TABLE
(Input on CP1)
SN54 / 74LS393
TRUTH TABLE
COUNT
OUTPUTS
Q3 Q2 Q1 Q0
0
1
2
3
4
5
6
7
8
9
L
L
L
L
L
L
L
L
H
H
L
L
H
H
L
L
H
H
L
L
L
H
L
H
L
H
L
H
L
H
L
L
L
L
H
H
H
H
L
L
COUNT
OUTPUTS
Q3 Q2 Q1
0
1
2
3
4
L
L
L
L
H
L
H
L
H
L
L
L
H
H
L
COUNT
OUTPUTS
Q3 Q2 Q1 Q0
0
1
2
3
4
5
6
7
8
9
10
11
L
L
L
L
H
H
H
H
H
H
H
H
L
L
H
H
L
L
H
H
L
L
H
H
L
H
L
H
L
H
L
H
L
H
L
H
L
L
L
L
L
L
L
L
H
H
H
H
12
13
14
15
L
L
L
L
L
L
H
H
L
H
L
H
H
H
H
H
SN54 / 74LS390
10 (50% @ Q0)
TRUTH TABLE
(Input on CP1, Q3 to CP0)
COUNT
OUTPUTS
Q3 Q2 Q1 Q0
0
1
2
3
4
5
6
7
8
9
L
L
L
L
H
L
L
L
L
H
L
H
L
H
L
L
H
L
H
L
L
L
L
L
L
H
H
H
H
H
L
L
H
H
L
L
L
H
H
L
H = HIGH Voltage Level
L = LOW Voltage Level
GUARANTEED OPERATING RANGES
Symbol
Parameter
Min
Typ
Max
Unit
VCC
Supply Voltage
54
74
4.5
4.75
5.0
5.0
5.5
5.25
V
TA
Operating Ambient Temperature Range
54
74
55
0
25
25
125
70
C
IOH
Output Current -- High
54, 74
0.4
mA
IOL
Output Current -- Low
54
74
4.0
8.0
mA
5-547
FAST AND LS TTL DATA
SN54/74LS390
SN54/74LS393
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE
(unless otherwise specified)
Symbol
Parameter
Limits
Unit
Test Conditions
Symbol
Parameter
Min
Typ
Max
Unit
Test Conditions
VIH
Input HIGH Voltage
2.0
V
Guaranteed Input HIGH Voltage for
All Inputs
VIL
Input LOW Voltage
54
0.7
V
Guaranteed Input LOW Voltage for
All Inputs
VIL
Input LOW Voltage
74
0.8
V
Guaranteed Input LOW Voltage for
All Inputs
VIK
Input Clamp Diode Voltage
0.65
1.5
V
VCC = MIN, IIN = 18 mA
VOH
Output HIGH Voltage
54
2.5
3.5
V
VCC = MIN, IOH = MAX, VIN = VIH
or VIL per Truth Table
VOH
Output HIGH Voltage
74
2.7
3.5
V
VCC = MIN, IOH = MAX, VIN = VIH
or VIL per Truth Table
VOL
Output LOW Voltage
54, 74
0.25
0.4
V
IOL = 4.0 mA
VCC = VCC MIN,
VIN = VIL or VIH
per Truth Table
VOL
Output LOW Voltage
74
0.35
0.5
V
IOL = 8.0 mA
VIN = VIL or VIH
per Truth Table
IIH
Input HIGH Current
20
A
VCC = MAX, VIN = 2.7 V
IIH
Input HIGH Current
0.1
mA
VCC = MAX, VIN = 7.0 V
IIL
Input LOW Current
MR
0.4
mA
VCC = MAX, VIN = 0.4 V
IIL
Input LOW Current
CP, CP0
1.6
mA
VCC = MAX, VIN = 0.4 V
IL
CP1
2.4
mA
CC = MAX, VIN = 0.4 V
IOS
Short Circuit Current (Note 1)
20
100
mA
VCC = MAX
ICC
Power Supply Current
26
mA
VCC = MAX
Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.
AC CHARACTERISTICS
(TA = 25
C, VCC = 5.0 V)
Symbol
Parameter
Limits
Unit
Test Conditions
Symbol
Parameter
Min
Typ
Max
Unit
Test Conditions
fMAX
Maximum Clock Frequency
CP0 to Q0
25
35
MHz
CL = 15 pF
fMAX
Maximum Clock Frequency
CP1 to Q1
20
MHz
CL = 15 pF
tPLH
tPHL
Propagation Delay,
CP to Q0
LS393
12
13
20
20
ns
CL = 15 pF
tPLH
tPHL
CP0 to Q0
LS390
12
13
20
20
ns
CL = 15 pF
tPLH
tPHL
CP to Q3
LS393
40
40
60
60
ns
CL = 15 pF
tPLH
tPHL
CP0 to Q2
LS390
37
39
60
60
ns
CL = 15 pF
tPLH
tPHL
CP1 to Q1
LS390
13
14
21
21
ns
tPLH
tPHL
CP1 to Q2
LS390
24
26
39
39
ns
tPLH
tPHL
CP1 to Q3
LS390
13
14
21
21
ns
tPHL
MR to Any Output
LS390/393
24
39
ns
5-548
FAST AND LS TTL DATA
SN54/74LS390
SN54/74LS393
AC SETUP REQUIREMENTS
(TA = 25
C, VCC = 5.0 V)
Symbol
Parameter
Limits
Unit
Test Conditions
Symbol
Parameter
Min
Typ
Max
Unit
Test Conditions
tW
Clock Pulse Width
LS393
20
ns
VCC = 5.0 V
tW
CP0 Pulse Width
LS390
20
ns
VCC = 5.0 V
tW
CP1 Pulse Width
LS390
40
ns
VCC = 5.0 V
tW
MR Pulse Width
LS390/393
20
ns
CC = 5.0 V
trec
Recovery Time
LS390/393
25
ns
AC WAVEFORMS
*The number of Clock Pulses required between tPHL and tPLH measurements can be determined from the appropriate Truth Table.
*CP
Q
Q
MR & MS
CP
1.3 V
1.3 V
1.3 V
1.3 V
1.3 V
1.3 V
1.3 V
1.3 V
tPHL
tPHL
tPLH
Figure 1
Figure 2
tW
tW
trec
5-549
FAST AND LS TTL DATA
MIN
MIN
MAX
MAX
MILLIMETERS
INCHES
DIM
A
B
C
D
F
G
J
K
M
P
R
9.80
3.80
1.35
0.35
0.40
0.19
0.10
0
5.80
0.25
10.00
4.00
1.75
0.49
1.25
0.25
0.25
7
6.20
0.50
0.386
0.150
0.054
0.014
0.016
0.008
0.004
0
0.229
0.010
0.393
0.157
0.068
0.019
0.049
0.009
0.009
7
0.244
0.019
1.27 BSC
0.050 BSC
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. 751B 01 IS OBSOLETE, NEW STANDARD
751B 03.
1
8
9
16
-A-
-B-
P
16 PL
D
-T-
K
C
G
M
R X 45
F
J
8 PL
SEATING
PLANE
Case 751B-03 D Suffix
16-Pin Plastic
SO-16
B
0.25 (0.010)
M
M
T
0.25 (0.010)
B
A
M
S
S
Case 648-08 N Suffix
16-Pin Plastic
MIN
MIN
MAX
MAX
MILLIMETERS
INCHES
DIM
A
B
C
D
F
G
H
J
K
L
M
S
18.80
6.35
3.69
0.39
1.02
0.21
2.80
7.50
0
0.51
19.55
6.85
4.44
0.53
1.77
0.38
3.30
7.74
10
1.01
0.740
0.250
0.145
0.015
0.040
0.008
0.110
0.295
0
0.020
0.770
0.270
0.175
0.021
0.070
0.015
0.130
0.305
10
0.040
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L" TO CENTER OF LEADS WHEN
FORMED PARALLEL.
4. DIMENSION B" DOES NOT INCLUDE MOLD
FLASH.
5. ROUNDED CORNERS OPTIONAL.
6. 648 01 THRU 07 OBSOLETE, NEW STANDARD
648 08.
2.54 BSC
1.27 BSC
0.100 BSC
0.050 BSC
-A-
B
1
8
9
16
F
H
G
D
16 PL
S
C
-T-
SEATING
PLANE
K
J
M
L
T A
0.25 (0.010)
M
M
Case 620-09 J Suffix
16-Pin Ceramic Dual In-Line
MIN
MIN
MAX
MAX
MILLIMETERS
INCHES
DIM
19.05
6.10
0.39
1.40
0.23
0
0.39
19.55
7.36
4.19
0.53
1.77
0.27
5.08
15
0.88
0.750
0.240
0.015
0.055
0.009
0
0.015
0.770
0.290
0.165
0.021
0.070
0.011
0.200
15
0.035
1.27 BSC
2.54 BSC
7.62 BSC
0.050 BSC
0.100 BSC
0.300 BSC
A
B
C
D
E
F
G
J
K
L
M
N
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
4. DIM F MAY NARROW TO 0.76 (0.030) WHERE
THE LEAD ENTERS THE CERAMIC BODY.
5. 620 01 THRU 08 OBSOLETE, NEW STANDARD
620 09.
-B-
-A-
16 PL
-T-
C
D
E
F
G
J
K
M
N
SEATING
PLANE
16 PL
L
16
9
1
8
0.25 (0.010)
T A
M
S
0.25 (0.010)
T B
M
S
5-550
FAST AND LS TTL DATA
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different
applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
Literature Distribution Centers:
USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.