ChipFind - документация

Электронный компонент: LM211D

Скачать:  PDF   ZIP
Order this document by LM311/D
Device
Operating
Temperature Range
Package
LM311
LM211
SEMICONDUCTOR
TECHNICAL DATA
HIGH PERFORMANCE
VOLTAGE COMPARATORS
ORDERING INFORMATION
LM211D
LM311D
LM311N
TA = 25
to +85
C
TA = 0
to +70
C
SO8
SO8
Plastic DIP
D SUFFIX
PLASTIC PACKAGE
CASE 751
(SO8)
N SUFFIX
PLASTIC PACKAGE
CASE 626
8
1
8
1
Gnd
Inputs
VEE
VCC
Output
Balance/Strobe
Balance
(Top View)
1
2
3
4
8
7
6
5
PIN CONNECTIONS
+
1
MOTOROLA ANALOG IC DEVICE DATA
Highly Flexible Voltage
Comparators
The ability to operate from a single power supply of 5.0 V to 30 V or
15 V
split supplies, as commonly used with operational amplifiers, makes the
LM211/LM311 a truly versatile comparator. Moreover, the inputs of the
device can be isolated from system ground while the output can drive loads
referenced either to ground, the VCC or the VEE supply. This flexibility makes
it possible to drive DTL, RTL, TTL, or MOS logic. The output can also switch
voltages to 50 V at currents to 50 mA. Thus the LM211/LM311 can be used to
drive relays, lamps or solenoids.
Typical Comparator Design Configurations
Split Power Supply with Offset Balance
Single Supply
GroundReferred Load
Load Referred to Positive Supply
Strobe Capability
Output
VEE
Inputs
VCC
RL
1
2
3
4
5
6
7
8
5.0 k
3.0 k
VCC
VCC
VCC
VCC
VCC
Output
Output
Output
Output
Output
RL
RL
RL
RL
RL
Inputs
Inputs
Inputs
Inputs
Inputs
VEE
VEE
VEE
VEE
VEE
2
3
2
3
2
3
2
3
2
3
4
4
4
4
4
7
8
1
Input polarity is reversed when
Gnd pin is used as an output.
7
1
8
8
7
6
1
1.0 k
TTL Strobe
1
7
8
Load Referred to Negative Supply
1
7
8
Input polarity is reversed when
Gnd pin is used as an output.
+
+
+
+
+
+
Motorola, Inc. 1996
Rev 5
LM311 LM211
2
MOTOROLA ANALOG IC DEVICE DATA
MAXIMUM RATINGS
(TA = +25
C, unless otherwise noted.)
Rating
Symbol
LM211
LM311
Unit
Total Supply Voltage
VCC +
VEE
36
36
Vdc
Output to Negative Supply Voltage
VO VEE
50
40
Vdc
Ground to Negative Supply Voltage
VEE
30
30
Vdc
Input Differential Voltage
VID
30
30
Vdc
Input Voltage (Note 2)
Vin
15
15
Vdc
Voltage at Strobe Pin
VCC to VCC5
VCC to VCC5
Vdc
Power Dissipation and Thermal Characteristics
Plastic DIP
PD
625
mW
Derate Above TA = +25
C
1/
JA
5.0
mW/
C
Operating Ambient Temperature Range
TA
25 to +85
0 to +70
C
Operating Junction Temperature
TJ(max)
+150
+150
C
Storage Temperature Range
Tstg
65 to +150
65 to +150
C
ELECTRICAL CHARACTERISTICS
(VCC = +15 V, VEE = 15 V, TA = 25
C, unless otherwise noted [Note 1].)
Ch
i i
S
b l
LM211
LM311
U i
Characteristic
Symbol
Min
Typ
Max
Min
Typ
Max
Unit
Input Offset Voltage (Note 3)
VIO
mV
RS
50 k
, TA = +25
C
0.7
3.0
2.0
7.5
RS
50 k
, Tlow
TA
Thigh*
4.0
10
Input Offset Current (Note 3) TA = +25
C
IIO
1.7
10
1.7
50
nA
Tlow
TA
Thigh*
20
70
Input Bias Current TA = +25
C
IIB
45
100
45
250
nA
Tlow
TA
Thigh*
150
300
Voltage Gain
AV
40
200
40
200
V/mV
Response Time (Note 4)
200
200
ns
Saturation Voltage
VOL
V
VID
5.0 mV, IO = 50 mA, TA = 25
C
0.75
1.5
VID
10 mV, IO = 50 mA, TA = 25
C
0.75
1.5
VCC
4.5 V, VEE = 0, Tlow
TA
Thigh*
VID
6
6.0 mV, Isink
8.0 mA
0.23
0.4
VID
6
10 mV, Isink
8.0 mA
0.23
0.4
Strobe "On" Current (Note 5)
IS
3.0
3.0
mA
Output Leakage Current
VID
5.0 mV, VO= 35 V, TA = 25
C, Istrobe= 3.0 mA
0.2
10
nA
VID
10 mV, VO= 35 V, TA = 25
C, Istrobe= 3.0 mA
0.2
50
nA
VID
5.0 mV, VO= 35 V, Tlow
TA
Thigh*
0.1
0.5
A
Input Voltage Range (Tlow
TA
Thigh*)
VICR
14.5
14.7 to
13.8
+13.0
14.5
14.7 to
13.8
+13.0
V
Positive Supply Current
ICC
+2.4
+6.0
+2.4
+7.5
mA
Negative Supply Current
IEE
1.3
5.0
1.3
5.0
mA
* Tlow
= 25
C for LM211
Thigh = +85
C for LM211
= 0
C for LM311
= +70
C for LM311
NOTES: 1. Offset voltage, offset current and bias current specifications apply for a supply voltage range from a single 5.0 V supply up to
15 V supplies.
2. This rating applies for
15 V supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the
negative supply voltage or 30 V below the positive supply, whichever is less.
3. The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1.0 mA load. Thus,
these parameters define an error band and take into account the "worst case" effects of voltage gain and input impedance.
4. The response time specified is for a 100 mV input step with 5.0 mV overdrive.
5. Do not short the strobe pin to ground; it should be current driven at 3.0 mA to 5.0 mA.
LM311 LM211
3
MOTOROLA ANALOG IC DEVICE DATA
Figure 1. Circuit Schematic
Figure 2. Input Bias Current
versus Temperature
Figure 3. Input Offset Current
versus Temperature
Figure 4. Input Bias Current versus
Differential Input Voltage
Figure 5. Common Mode Limits
versus Temperature
TA, TEMPERATURE (
C)
TA, TEMPERATURE (
C)
DIFFERENTIAL INPUT VOLTAGE (V)
I IB
, INPUT
BIAS CURRENT
(nA)
I IO
, INPUT

OFFSET

CURRENT
(nA)
COMMON MODE LIMITS (V)
140
120
100
80
40
0
140
120
100
80
40
0
60
20
55
25
0
25
50
75
100
125
16
12
8.0
4.0
0
4.0
8.0
12
16
5.0
4.0
3.0
2.0
1.0
0
55
25
0
25
50
75
100
125
55
25
0
25
50
75
100
125
VCC
0.5
1.0
1.5
0.4
0.2
VEE
8
7
1
4
VEE
Gnd
Output
VCC
5.0 k
200
600
3.0 k
300
900
800
5.4 k
1.3 k
250
800
800
100
3.7 k
730
340
3.7 k
300
5
6
300
2
3
Inputs
1.3 k
1.3 k
1.3 k
Balance
Balance/Strobe
TA, TEMPERATURE (
C)
Normal
VCC = +15 V
VEE = 15 V
I IB
, INPUT
BIAS CURRENT
(nA)
Referred to Supply Voltages
VCC = +15 V
VEE = 15 V
TA = +25
C
Normal
Pins 5 & 6 Tied
to VCC
VCC = +15 V
VEE = 15 V
Pins 5 & 6 Tied
to VCC
LM311 LM211
4
MOTOROLA ANALOG IC DEVICE DATA
Figure 6. Response Time for
Various Input Overdrives
Figure 7. Response Time for
Various Input Overdrives
Figure 8. Response Time for
Various Input Overdrives
Figure 9. Response Time for
Various Input Overdrives
Figure 10. Output Short Circuit Current
Characteristics and Power Dissipation
Figure 11. Output Saturation Voltage
versus Output Current
tTLH, RESPONSE TIME (
s)
tTHL, RESPONSE TIME (
s)
tTLH, RESPONSE TIME (
s)
tTHL, RESPONSE TIME (
s)
VO, OUTPUT VOLTAGE (V)
IO, OUTPUT CURRENT (mA)
V
in
INPUT
VOL
T
AGE
(mV)
,
V
O
, OUTPUT
VOL
T
AGE
(V)
V
in
INPUT
VOL
T
AGE
(mV)
,
V
O
, OUTPUT
VOL
T
AGE
(V)
V
in
INPUT
VOL
T
AGE
(mV)
,
V
O
, OUTPUT
VOL
T
AGE
(V)
V
in
INPUT
VOL
T
AGE
(mV)
,
V
O
, OUTPUT
VOL
T
AGE
(V)
OUTPUT
SHOR
T

CIRCUIT

CURRENT
(mA)
V
OL
, SA
TURA
TION VOL
T
AGE
(V)
P
D
, POWER DISSIP
A
TION (W)
5.0
4.0
3.0
2.0
1.0
0
0
50
100
0
0.1
0.2
0.3
0.4
0.5
0.6
5.0
4.0
3.0
2.0
1.0
0
100
50
0
0
0.1
0.2
0.3
0.4
0.5
0.6
15
10
5.0
0
5.0
10
15
0
50
100
0
1.0
2.0
0
1.0
2.0
15
10
5.0
0
5.0
10
15
0
50
100
150
125
100
75
50
25
0
0
5.0
10
15
0.90
0.75
0.60
0.45
0.30
0.15
0
0.90
0.75
0.60
0.45
0.30
0.15
0
0
8.0
16
24
32
40
48
56
TA = +25
C
TA = 55
C
TA = +25
C
TA = +125
C
5.0 mV
20 mV
2.0 mV
Vin
+5.0 V
500
VO
*
)
+5.0 V
500
VO
Vin
20 mV
5.0 mV
20 mV
5.0 mV
2.0 mV
Vin
VCC
VO
2.0 k
VEE
*
)
20 mV
5.0 mV
2.0 mV
Vin
VCC
VO
2.0 k
VEE
*
)
*
)
Power Dissipation
Short Circuit Current
2.0 mV
VCC = +15 V
VEE = 15 V
TA = +25
C
VCC = +15 V
VEE = 15 V
TA = +25
C
VCC = +15 V
VEE = 15 V
TA = +25
C
VCC = +15 V
VEE = 15 V
TA = +25
C
LM311 LM211
5
MOTOROLA ANALOG IC DEVICE DATA
8
8
Figure 12. Output Leakage Current
versus Temperature
Figure 13. Power Supply Current
versus Supply Voltage
Figure 14. Power Supply Current
versus Temperature
APPLICATIONS INFORMATION
Figure 15. Improved Method of Adding
Hysteresis Without Applying Positive
Feedback to the Inputs
Figure 16. Conventional Technique
for Adding Hysteresis
OUTPUT
LEAKAGE CURRENT
(mA)
POWER SUPPL
Y
CURRENT

(mA)
SUPPL
Y
CURRENT

(mA)
TA, TEMPERATURE (
C)
TA, TEMPERATURE (
C)
VCCVEE, POWER SUPPLY VOLTAGE (V)
100
10
1.0
0.1
0.01
25
45
65
85
105
125
3.6
3.0
2.4
1.8
1.2
0.6
0
0
5.0
10
15
20
25
30
2.2
1.8
1.4
1.0
55
25
0
25
50
75
100
125
Positive and Negative Supply Output High
Postive Supply Output Low
+15 V
82
3.0 k
33 k
5.0 k
C1
0.002
F
6
2
R1
R2
C2
Input
3
4
1
7
15 V
5
4.7 k
LM311
0.1
F
Output
+
0.1
F
+15 V
3.0 k
5.0 k
C1
6
3
R1
R2
C2
Input
2
4
1
7
15 V
5
4.7 k
LM311
0.1
F
Output
+
0.1
F
510 k
1.0 M
100
100
3.0
2.6
VCC = +15 V
VEE = 15 V
TA = +25
C
Output VO = +50 V (LM11/211 only)
Positive Supply Output Low
Positive and Negative Power Supply Output H igh
VCC = +15 V
VEE = 15 V