ChipFind - документация

Электронный компонент: MTL003

Скачать:  PDF   ZIP
background image
MTL003
SXGA Flat Panel Controller
sales@myson.com.tw
www.myson.com.tw
Rev. 1.1 September 2002
Page 1 of 60
Myson Century, Inc.
Taiwan:
No. 2, Industry East Rd. III,
Science-Based Industrial Park, Hsin-Chu, Taiwan
Tel: 886-3-5784866 Fax: 886-3-5784349

USA:
4020 Moorpark Avenue Suite 115
San Jose, CA, 95117
Tel: 408-243-8388 Fax: 408-243-3188
FEATURES
General
Auto configuration of sampling clock frequency, phase, H/V center, as well as white balance.
Auto detection of present or non-present or over range sync signals and their polarities.
Composite sync separation and odd/even field detection of interlaced video.
On-chip output PLL provide clock frequency fine-tune (inverse, duty cycle and delay).
Selection of serial 2-wire I
2
C or 8-bit direct host interface to 8-bit MCU.
3.3V supplier, 5V I/O tolerance in 256-pin PQFP or 272-pin BGA package.
Input Processor
Single RGB (24-bit) or Dual RGB (48-bit) input rates up to 150MHz.
Support both non-interlaced and interlaced RGB graphic input signals.
YUV 4:2:2 or YUV 4:1:1 (CCIR601) interlaced video input.
Glue-less connection to Philips SAA711x digital video decoder.
Built-in YUV to RGB color space converter.
Compliant with digital LVDS/PanelLink TMDS input interface.
PC input resolution up to SXGA 1280x1024 @85Hz.
Video Processor
Independent programmable Horizontal and Vertical scaling ratios from 1/32 to 32
Flexible de-interlacing unit for digital YUV video input data.
Zoom to full screen resolution of de-interlaced YUV video data stream.
Built-in programmable gain control for white balance alignments.
Built-in programmable 8-bit or 10-bit gamma correction table.
Built-in programmable temporal color dithering.
Built-in programmable interpolation look-up table.
Support smooth panning under viewing window change.
Output Processor
Single pixel (18/24-bit) or Dual pixel (36/48-bit) per clock digital RGB output.
Built-in output timing generator with programmable clock and H/V sync.
Support VGA/SVGA/XGA/SXGA display resolution.
Overlay input interface with external OSD controller.
Double scan capability for interlaced input.
Memory Interface
Support 48/24 bit bus width, SDRAM/SGRAM x2 or x3 configuration.
Optional display through internal line buffer without external frame-buffer memory.
Support power down mode.
GENERAL DESCRIPTION
The MTL003 Flat Panel Display (FPD) Controller is an input format converter for TFT-LCD Monitor or LCD TV
application which accepts 15-pin D-sub RGB graphic signals (through ADC), YUV signals from digital video
decoder or digital RGB graphic signals from PanelLink TMDS receiver. It includes a RGB/YUV input processor,
configurable frame-buffer memory interface, video scaling up/down processor, OSD input interface and output
display processor in 256-pin PQFP or 272-pin BGA package.



background image
MTL003
Page 2 of 60
BLOCK DIAGRAM


APPLICATIONS



YUV
Input
YUV
to
RGB
RGB
Input
Scale
Down
Frame
Buffer
Control
Ditherin
g
Host
Interface
Mode
Detect
Auto
Calibration
OSD
&
Output
MUX
Digital
video
PC
RGB
To 8-bit MCU
To external OSD
RGB
output
MTL003
FPD Monitor
Controller
MTV212
8-bit MCU
MTV130
OSD
SDRAM/
SGRAM
LVDS/PanelLink
TMDS Receiver
TFT-LCD
Flat Panel
Digital
Video
Decoder
ADC1
ADC2
Composite/
S-Video
D-sub RGB
graphic signals
To SDRAM/SGRAM
Scale
Up
Gain
Contr
ol
Gamma
Correct
Output &
Memory
Timing
Generator
background image
MTL003
Page 3 of 60
1. PIN CONNECTION

Note: Pin connection of 272-pin BGA to be defined later
PVSS *193
PVSS *194
MWE# *195
MCAS# *196
MRAS# *197
DQM1 *198
DQM0 *199
DVSS *200
DVDD *201
MD7 *202
MD6 *203
MD5 *204
MD4 *205
MD3 *206
MD2 *207
MD1 *208
MD0 *209
PVDD *210
MD31 *211
MD30 *212
MD29 *213
MD28 *214
MD27 *215
MD26 *216
MD25 *217
MD24 *218
PVSS *219
AD0 *220
AD1 *221
AD2 *222
AD3 *223
AD4 *224
AD5 *225
AD6 *226
AD7 *227
HCS# *228
PVDD *229
ALE *230
PVSS *231
HWR# *232
HRD# *233
EXTMCLK *234
RST# *235
BUSSEL *236
IRQ *237
GPIO7 *238
GPIO6 *239
GPIO5 *240
GPIO4 *241
GPIO3 *242
GPIO2 *243
GPIO1 *244
GPIO0 *245
EXTDCLK *246
CLAMP *247
HSYNC/CS*248
VSYNC *249
TMDSSEL *250
TDIE/SOG*251
PVDD *252
IPCLK *253
NC *254
PVSS *255
PVSS *256
MTL003
(256-pin PQFP)
64*
PVDD
63* AVDD
62* AVDD
61* XI
60* XO
59* AVSS
58* AVSS
57* PVSS
56* B2IN0
55* B2IN1
54* B2IN2
53* B2IN3
52* B2IN4
51* B2IN5
50* B2IN6
49* B2IN7
48* PVDD
47* G2IN0
46* G2IN1
45* G2IN2
44* G2IN3
43* G2IN4
42* G2IN5
41* G2IN6
40* G2IN7
39* PVSS
38* R2IN0
37* R2IN1
36* R2IN2
35* R2IN3
34* R2IN4
33* R2IN5
32* R2IN6
31* R2IN7
30* DVDD
29* RGBSEL
28* DVSS
27* B1IN0
26* B1IN1
25* B1IN2
24* B1IN3
23* B1IN4
22* B1IN5
21* B1IN6
20* B1IN7
19* DVDD
18* G1IN0/UVIN0
17* G1IN1/UVIN1
16* G1IN2/UVIN2
15* G1IN3/UVUN3
14* G1IN4/UVIN3
13* G1IN5/UVUN5
12* G1IN6/UVUN6
11* G1IN7/UVIN7
10* DVSS
9* R1IN0/YIN0
8* R1IN1/YIN1
7* R1IN2/YIN2
6* R1IN3/YIN3
5* R1IN4/YIN4
4* R1IN5/YIN5
3* R1IN6/YIN6
2* R1IN7/YIN7
1* PVDD
128* PVSS
127* PVSS
126* OCLK
125* PVDD
124* DDEN
123* DVSYNC
122* DHSYNC
121* DVDD
120* R1OUT0
119* R1OUT1
118* R1OUT2
117* R1OUT3
116* R1OUT4
115* R1OUT5
114* R1OUT6
113* R1OUT7
112* DVSS
111* G1OUT0
110* G1OUT1
109* G1OUT2
108* G1OUT3
107* G1OUT4
106* G1OUT5
105* G1OUT6
104* G1OUT7
103* B1OUT0
102* B1OUT1
101* B1OUT2
100* B1OUT3
99* B1OUT4
98* B1OUT5
97* B1OUT6
96* B1OUT7
95* DVSS
94* DDCLK1
93* DDCLK2
92* DVDD
91* R2OUT0
90* R2OUT1
89* R2OUT2
88* R2OUT3
87* R2OUT4
86* R2OUT5
85* R2OUT6
84* R2OUT7
83* PVDD
82* G2OUT0
81* G2OUT1
80* G2OUT2
79* G2OUT3
78* G2OUT4
77* G2OUT5
76* G2OUT6
75* G2OUT7
74* B2OUT0
73* B2OUT1
72* B2OUT2
71* B2OUT3
70* B2OUT4
69* B2OUT5
68* B2OUT6
67* B2OUT7
66* PVSS
65* PVSS
PVDD *129
PVSS *130
OSDRED *131
OSDGRN *132
OSDBLU *133
OSDEN *134
OSDINT *135
OVSYNC *136
DVSS *137
OHSYNC *138
DVDD *139
MD23 *140
MD22 *141
MD21 *142
MD20 *143
MD19 *144
MD18 *145
MD17 *146
MD16 *147
DQM2/MA9 *148
DQM3/MA10 *149
DVSS *150
MD47 *151
MD46 *152
MD45 *153
MD44 *154
MD43 *155
MD42 *156
MD41 *157
MD40 *158
DVDD *159
MD15 *160
MD14 *161
MD13 *162
MD12 *163
MD11 *164
MD10 *165
MD9 *166
MD8 *167
MCS# *168
DVSS *169
MD39 *170
MD38 *171
MD37 *172
MD36 *173
MD35 *174
MD34 *175
MD33 *176
MD32 *177
MCKE *178
DVDD *179
MCK *180
PVSS *181
BA/MA11 *182
MA8 *183
MA7 *184
MA6 *185
MA5 *186
MA4 *187
MA3 *188
MA2 *189
MA1 *190
MA0 *191
PVDD *192
background image
MTL003
Page 4 of 60
2. PIN DESCRIPTION

ADC1 Input Interface (YUV or RGB or TMDS Input Data)
Name
Type Pin#
Description
VSYNC
I
249
Vertical sync input
HSYNC/CS
I
248
Horizontal or Composite sync input
RGBSEL
O
29
Input select. 1:RGB input, 0:YUV input
TMDSSEL
O
250
TMDS input select, active high
CLAMP
O
247
Clamp pulse output for ADC
IPCLK
I
253
Input pixel clock
R1IN[7:0]/YIN[7:0]
I
2-9
Red or Y channel or TMDS input data (Single/Dual ADC)
G1IN[7:0]/UVIN[7:0]
I
11-18
Green or UV channel or TMDS input data (Single/Dual ADC)
B1IN[7:0]
I
20-27
Blue channel or TMDS input data (Single/Dual ADC)
TDIE/SOG
I
251
TMDS digital input enable or Sync On Green input

ADC2 Input Interface (RGB Data)
Name
Type Pin#
Description
R2IN[7:0]
I
31-38
Red channel input data (Dual ADC)
or Control bit for YUV video input
Bit 4: VPHREF, Video input Horizontal reference signal
Bit 3: VPVS, Video input VSYNC signal
Bit 2: VPODD, Video input ODD/EVEN field signal
Bit 1: VPHS, Video input HSYNC signal
Bit 0: VPCLK, Video input clock signal
G2IN[7:0]
I
40-47
Green channel input data (Dual ADC)
B2IN[7:0]
I
49-56
Blue channel input data (Dual ADC)

Display Output Interface
Name
Type Pin#
Description
DDEN
O
124
Display data output enable for LCD panel
DVSYNC
O
123
Display Vertical sync output
DHSYNC
O
122
Display Horizontal sync output
DDCLK1
O
94
Display output clock for odd data
DDCLK2
O
93
Display output clock for even data
R1OUT[7:0]
O
113-120 Red output even data , bit[7:2] for 6-bit panel
G1OUT[7:0]
O
104-111 Green output even data , bit[7:2] for 6-bit panel
B1OUT[7:0]
O
96-103
Blue output even data , bit[7:2] for 6-bit panel
R2OUT[7:0]
O
84-91
Red output odd data , bit[7:2] for 6-bit panel
G2OUT[7:0]
O
75-82
Green output odd data , bit[7:2] for 6-bit panel
B2OUT[7:0]
O
67-74
Blue output odd data , bit[7:2] for 6-bit panel

Memory Interface
Name
Type Pin#
Description
MCK
O
180
Memory output clock
MCKE
O
178
Memory clock enable
MCS#
O
168
Memory chip select, active low.
MRAS#
O
197
Memory row address strobe, active low
MCAS#
O
196
Memory column address strobe, active low
MWE#
O
195
Memory write enable, active low
DQM[1:0]
O
198-199 Memory data mask byte enable
BA/MA11
O
182
Memory bank address or Memory address line
DQM3/MA10
O
149
SGRAM data mask byte enable or SDRAM address line
DQM2/MA9
O
148
SGRAM data mask byte enable or SDRAM address line
background image
MTL003
Page 5 of 60
MA[8:0]
O
183-191 Memory address line
MD[47:40]
I/O
151-158 Memory Blue (B1) data
MD[39:32]
I/O
170-177 Memory Green (G1) data
MD[31:24]
I/O
211-218 Memory Red (R1) data
MD[23:16]
I/O
140-147 Memory Blue (B0) data
MD[15:8]
I/O
160-167 Memory Green (G0) data
MD[7:0]
I/O
202-209 Memory Red (R0) data

Host Interface
Name Type
Pin#
Description
RST#
I
235
System reset input, active low.
AD[7:0]
I/O
227-220 The address and data bus of 8-bit direct interface or
2-wire I
2
C series bus
Bit 1: SDA, serial bus data
Bit 0: SCK, serial bus clock
HWR#
I
232
Host write strobe, active low
HRD#
I
233
Host read strobe, active low
ALE
I
230
Host address latch enable for 8-bit direct bus
HCS#
I
228
Host chip select
BUSSEL
I
236
Bus mode selection. 0: I
2
C bus, 1: 8-bit direct bus
IRQ
O
237
Interrupt request output

OSD Interface
Name
Type Pin#
Description
OCLK
O
126
Clock for external OSD
OVSYNC
O
136
Vertical sync for external OSD
OHSYNC
O
138
Horizontal sync for external OSD
OSDRED
I
131
OSD red input
OSDGRN
I
132
OSD green input
OSDBLU
I
133
OSD blue input
OSDINT
I
135
OSD intensity input
OSDEN
I
134
OSD overlay enable

Other Interface
Name
Type Pin#
Description
XI
I
61
Oscillator frequency input
XO
O
60
Oscillator frequency output
EXTDCLK
I
246
External display clock input
EXTMCLK
I
234
External memory clock input
GPIO[7:0]
I/O
238-245 General purpose I/O or
Bit 7: ADVS, Vertical sync for A/D converter
Bit 6: ADHS, Horizontal sync for A/D converter
NC
-
254
No connection

3.3V Power and Ground
Name
Pin#
Description
DVDD
19, 30, 92, 121, 139, 159, 179, 201
Digital power 3.3V
DVSS
10, 28, 95, 112, 137, 150, 169, 200
Digital ground
PVDD
1, 48, 64, 83, 125, 129, 192, 210, 229, 252
Pad power 3.3V
PVSS
39, 57, 65, 66, 127, 128, 130, 181, 193, 194,
219, 231, 255, 256
Pad ground
AVDD
62, 63
Analog power 3.3V
AVSS
58, 59
Analog ground
background image
MTL003
Page 6 of 60
3. FUNCTIONAL DESCRIPTION
3.1 Input Processor

General Description
The function of Input Interface is to provide the interface between MTL003 and external input devices. It can
process both non-interlaced and interlaced RGB graphic input, YUV video input, and digital RGB input
compliant with digital LVDS/PanelLink TMDS interface. It also contains the Decimation circuit to scale down the
input image with arbitrary ratios down to 1/32 and the built-in YUV to RGB color space converter.
3.1.1 RGB Input Format
The RGB input port can work in two modes: Single Pixel mode (24 bits) and Double Pixel mode (48 bits). For
Single Pixel mode, only the ports R1IN[7:0], G1IN[7:0], and B1IN[7:0] are internally sampled. For Double Pixel
mode, besides the ports R1IN[7:0], G1IN[7:0], and B1IN[7:0], the ports R2IN[7:0], G2IN[7:0], and B2IN[7:0] are
needed additionally. The R/G/B1IN ports are sampled at the rising edge of the RGB input clock, and the
R/G/B2IN ports are sampled at the falling edge.

3.1.2 TMDS
Input
Format
The Digital RGB input port woks just in the same way as Sec3.1.1 except one more input pin is needed: Digital
Input Enable DIEN.

With a flexible single or double pixel input interface, the supported format is up to true color, including 18
bit/pixel or 24 bit/pixel in 1 or 2 pixels/clock mode.

3.1.3 YUV Input Format
The YUV input port supports interlaced video data from the most common video decoder ICs like SAA711x. The
16 bit data bus is shared with the ports R1IN[7:0] and G1IN[7:0]. The 5 bit control signals are shared with the
port R2IN[4:0]. The 16 bit data is sampled at the rising edge of the shared video clock VPCLK when the shared
data enable HREF is active. The supported formats are YUV4:1:1 and YUV4:2:2 with CCIR601 standard.

3.1.4 YUV to RGB Converter
It is used to convert YCbCr format into RGB format. The basic equations are as follows:
R = Y + 1.371(Cr 128)
G = Y 0.698(Cr 128) 0.336(Cb 128)
B = Y + 1.732(Cb - 128)

3.1.5 De-interlace
mode
For interlace input, MTL003 features several de-interlacing algorithms for processing interlaced video data
depending on what type of input images.
Static Mode
In this mode, the first and second fields are simply put together without any filtering. Two fields memory is need.
It is commonly used in still image input.
Toggle Mode
In this mode, only one field is displayed at the time. First field and second field is toggled displayed. The missing
lines are calculated from duplicating the neighbor lines. For moving picture, it has a good quality.
Spatial Mode
In this mode, two fields are toggled displayed, just like Toggle mode. The missing lines are calculated from
interpolating the neighbor lines. This mode has a average good quality for still and moving picture.
3.1.6 Sync
Processor
background image
MTL003
Page 7 of 60
The V/H SYNC processing block performs the functions of Composite signal separation/insertion, SYNC inputs
presence check, frequency counting, polarity detection and control. It contains a de-glitch circuit to filter out any
pulse shorter than one OSC period treated as noise on V/H SYNC pulses.
V/H SYNC Frequency Counter
MTL003 can measure VSYNC/HSYNC frequency counted in proper clock and save the information in registers.
Users can read out them to calculate VSYNC/HSYNC frequency as following formulas:
f
vsync
= f
osc
/ N
vsync
1/256
f
hsync
= f
osc
/ N
hsync
8

Where f
vsync
: VSYNC frequency
f
hsync
: HSYNC frequency
f
osc
: oscillator clock with 14.31818 MHz
N
vsync
: counted number of VSYNC
N
hsync
: counted number of HSYNC
V/H SYNC Presence Check
This function checks the input VSYNC, where Vpre flag is set when VSYNC is over 40Hz or cleared when
VSYNC is under 10Hz and the input HSYNC, where Hpre flag is set when HSYNC is over 10Khz or cleared
when HSYNC is under 10Hz.
V/H Polarity Detect
This function detects the input VSYNC/HSYNC high and low pulse duty cycle. If the high pulse duration is
longer than that of low pulse, the negative polarity is asserted; otherwise, positive polarity is asserted.
Composite SYNC separation/insertion
MTL003 continuously monitors the input HSYNC. If the input VSYNC can be extracted from it, a CVpre flag is
set. MTL003 can insert HSYNC pulse during Composite VSYNC's active time and the insertion frequency
can adapt to original HSYNC's.

3.1.7 Auto
Tune
Auto Tune function consists of Auto Position automatically centering the screen and Auto Calibration containing
Phase Calibration, Histogram, Min/Max Value, and Pixel Grab described as below. With this auto adjustment
support it is possible to measure the correct phase, frequency, gain, and offset of ADC. The horizontal and
vertical back porches of input image and the horizontal and vertical active regions can also be measured.
Firmware can adjust input image registers automatically by reading Auto Tune's registers in single or burst
mode.
Auto Position
MTL003 provides Horizontal/Vertical back porch and active region values. Users can use these values to set
input sample registers to aid in centering the screen automatically.
Phase Calibration
MTL003 provides Auto Calibration registers to measure the quality of current ADC's phase and frequency. The
biggest Auto Calibration registers value means the right value of ADC's phase and frequency. MTL003 has two
kinds of algorithms to calculate Auto Calibration's value. One is traditional Difference method, another is
MYSON's proprietary method. It is suggested to use the latter one for better performance
Histogram
Histogram means the total number of input pixels below/above one threshold value, for individual R, G, B colors.
This advanced function helps firmware to analyze ADC performance. Usually Firmware can use this information
to measure ADC's noise margin, adjust its offset and gain, or even aid in the mode detection.
Min/Max Value
Min/Max value means minimum or maximum pixel value within the specified input active image region for each
RGB channel. This information is usually used to adjust ADC's offset and gain.
Pixel Grab
background image
MTL003
Page 8 of 60
Pixel Grab means users can grab a single input pixel at any one point. The position of the point can be
programmed by users. This is another traditional method to measure ADC's phase and frequency.
3.2 Video Processor

General Description
MTL003 possesses a powerful and programmable video processor by providing the following functions: Scaling
Up/Down, Gain Control, Brightness Control, Gamma Correction, and Dithering Control.
The block diagram of Video Processor is as follows:
























Fig. 3.2.1 Video Processor Block Diagram


3.2.1 Scaling
MTL003 provides scaling function ranging from 1/32 to 32 for both up and down scaling, and for both horizontal
and vertical processing. Note that the up and down scaling cannot operate in the same time, because they
share the same line buffers.

For scaling up, both horizontal and vertical processing, MTL003 provides four methods:
Pass Mode: Image will be passed through without considering any scaling factor.
Duplicate Mode: Image will be scaled up/down based on scaling factor. Every point of output image
comes from the input. In this method, Output image will have the good contrast but may be non-uniformed.
Bilinear Mode: Image will be scaled up/down based on scaling factor. Every point of output image data will
be filtered by bilinear filter. In this method, output image will have the good scaling quality but may be
blurred.
Interpolation Table Mode: Image will be scaled up/down based on scaling factor. Every point of output
image data will be filtered by user defined filter.
GAIN
BRIGHTNESS
GAMMA
DITHERING
SCALING
Transition Table
Scaling Factor
Brightness Factor
Gamma Table
Gain Factor
Dithering Table
FLIP/MIRROR
background image
MTL003
Page 9 of 60
































Fig. 3.2.2 Scaling filter

Note: For scaling down, for both horizontal and vertical processing, MTL003 provides three methods: Pass
mode, Duplicate mode, and Bilinear mode.

3.2.2 Gain/Brightness
Control
MTL003 provides Gain and Brightness control to adjust the contrast and brightness of output color by
programming gain and brightness coefficients. This adjustment is applied to RGB colors individually. Auto-white
balance is possible by using this function.

3.2.3 Gamma
Correction
Gamma Correction is used to compensate the non-linearity of LCD display panel. MTL003 contains a 8/10-bits
Gamma table to fix this phenomenon. The 10 bit Gamma Table will have a better output quality, which is
commonly used together with dithering function. Of course, traditional 8-bits Gamma correction table can also
be chosen.
3.2.4 Color
Dithering
MTL003 supports true color (8 bits per color) or high color (6 bits per color) display.
In the latter case, users can turn on dithering function to avoid artificial contour due to truncation. For dithering, it
supports two methods:
Static dithering: Dithering coefficient is fixed.
Temporal dithering: Dithering coefficient will change by time.

Interpolation pixel
Input pixel
A
B
O
64
SC
32
63
32
63
SC
SC'
O = [(64-SC')*A + SC'*B]/64
[a]
[b]
[c]
[a]: duplicate filter
[b]: bilinear filter

[c]: user defined filter
background image
MTL003
Page 10 of 60

3.3 Output Processor

General Description
Output processor provides the interface for both LCD panel and OSD controller. MTL003 can work for frame-
buffer or non frame-buffer mode. If MTL003 works in frame-buffer mode, there is no restriction between input
timing and output timing. If MTL003 works in non frame-butter mode, output frame rate must be equal to input
frame rate and output display time must be equal to input display time, because of no frame buffer. Some
functions which have to use frame buffer can't work in non frame-buffer mode, such as screen write, static mode
in de-interlace, and etc.

3.3.1 Display Timing Generation
There are three display timing modes:
Frame Buffer Mode: It is applied to frame rate conversion. External frame buffer is need.
Non Frame Buffer Mode: It is a low cost solution. External frame buffer is not needed. This mode is
applied in the condition that output frame rate is equal to input frame. In this mode, some functions will be
disable.
Frame SYNC Mode: It is applied to video input. In this mode, output frame is synchronized to input frame.
The moving pictures will have smooth change.
































External Frame Buffer
Input Frame
Input Frame
Output Frame
Output Frame
x
Lock point
Frame Buffer Mode:
Non Frame Buffer Mode
background image
MTL003
Page 11 of 60




















Fig. 3.2.3 Display Timing modes

3.3.2 OSD
Overlay
MTL003 allows the integration of overlay data with the scaled output pixel stream. It provides a fully compatible
OSD interface. Individual OSD clock, OSD HSYNC and OSD VSYNC are sent to external OSD device. MTL003
receives OSD Enable, OSD Red, OSD Green, OSD Blue, and OSD Intensity from external OSD device.

3.3.3 RGB
Output
Format
MTL003 output interface consists of two pixel ports, each containing Red, Green, and Blue color information
with a resolution of 6/8 bits per color. These two ports are mapped to PORT1 and PORT2.
The control signals for output port are display horizontal sync signal (DHSYNC), display vertical sync signal
(DVSYNC) and display data enable signal (DDEN).

All the signals mentioned above are synchronous to the output clock. The output timing relative to the active
edge of the output clock is programmable.

There are two RGB output formats:
Single Pixel Mode
It is designed to support TFT panels with single pixel input. Only PORT1 is active. The frequency of DCLK1 is
equal to internal display clock.
Dual Pixel Mode
It is designed to support TFT panels with dual pixel input. PORT1 and PORT2 are used. The first pixel is at
PORT1, and the second at PORT2.
background image
MTL003
Page 12 of 60
DCLK
DDEN
R1OUT/G1OUT
/B1OUT
000
rgb0 rgb1 rgb2 rgb3 rgb4
DCLK1
DDEN
DCLK2
DCLK
R1OUT/G1OUT
/B1OUT
000
rgb0 rgb2 rgb4 rgb6 rgb8
R2OUT/G2OUT
/B2OUT
000
rgb1 rgb3 rgb5 rgb7 rgb9
SIN
G
L
E
P
O
RT
DU
AL
P
O
R
T

Fig. 3.2.4 Display Data Timing

3.4 Memory Interface

General Description
In frame buffer mode, the MTL003 connects to the external frame buffers by means of memory interface. The
external frame memory can be made for either 1M16bits SDRAM or 256K32bits SGRAM device. Due to
different applications such as VGA, SVGA, XGA as well as SXGA, the image resolution of input and output will
be limited resulting from the bandwidth of memory interface. Two configurations, 24 and 48 bits bus modes will
be supported to resolve the bandwidth constraint in most of applications. The clock for DRAM devices can be
provided from the internal PLL circuit or the external clock applied to pin EXTMCLK and its frequency can be up
to 100 MHz. The MTL003 also supplies a simple and complete memory self-testing mechanism for SDRAM and
SGRAM, which can be used to detect memory cell status and to check connection in memory interface.

3.4.1 SDRAM Configuration
In current applications, the most popular organization of SDRAM is 1M16bits. To achieve the desired
bandwidth in memory interface, 2 or 3 devices have to be constructed in parallel. The memory clock range is
from 50Mhz to 100Mhz by tuning the appropriate parameters for the internal PLL circuit. In 24 bits bus mode (2
devices), the maximum supported input image resolution can be up to 1024768 @ 60Hz. The other mode in 3
devices will provide the maximum input image resolution up to 12801024 @ 75Hz. Table 3.4.1 gives the
configuration for different input and output image format. Figure 3.4.1 shows the connection between the
MTL001 and SDRAM devices in 2 configurations.
background image
MTL003
Page 13 of 60
Unit: device
Output Resolution
Input Resolution
SVGA XGA SXGA
YUV 2 2 3
VGA (640480) 2
2
3
SVGA (800600) 2
2
3
XGA (1024768) 2
3
3
SXGA (12801024) 3
3
3

Table 3.4.1 SDRAM configuration in different input and output modes

3.4.2 SGRAM
Configuration
The SGRAM devices in 256K32bits construction are usually used to feature the wide data bus for high speed
applications. In case of SGRAM usage, the 32 bits bus of each device is divided into 2 parts to store input
image data. The memory clock is able to be set the desired range as SDRAM case as well. The maximum
supported input image resolution in 24 bits bus mode (2 devices) can be up to 800600 @ 85Hz, and the 48
bits bus mode (3 devices) can give the maximum input image resolution up to 1024768 @ 85Hz. Table 3.4.2
provides the configuration for different input and output image format. Figure 3.4.2 shows the connection
between the MTL001 and SGRAM devices in 2 configurations.
Unit: device
Output Resolution
Input Resolution
SVGA XGA SXGA
YUV 2 2 3
VGA (640480) 2
2
3
SVGA (800600) 2
2
3
XGA (1024768) 3
3
3

Table 3.4.2 SGRAM configurations in different input and output modes
background image
MTL003
Page 14 of 60







































Fig. 3.4.1 The interface between MTL003 and SDRAM
DQ7~0
DQ15~8
A8~0
LDQM
UDQM
/CS
/RAS
/CAS
CKE
/WE
MCKE
MCS
MRAS#
MCAS#
MWE#
DQM0
DQM1
MA[8:0]
SDRAM(1M16bits) 2
CLK
MCK
MD[7:0]
MD[31:24]
A10
BA
A9
DQM2/MA9
DQM3/MA10
BA/MA11
DQ7~0
DQ15~8
A8~0
LDQM
UDQM
/CS
/RAS
/CAS
CKE
/WE
CLK
A10
BA
A9
MCKE
MCS
MRAS#
MCAS#
MWE#
DQM0
DQM1
MA[8:0]
MCK
DQM2/MA9
DQM3/MA10
BA/MA11
MD[15:8]
MD[39:32]
SDRAM(1M16bits) 3
DQ7~0
DQ15~8
A8~0
LDQM
UDQM
/CS
/RAS
/CAS
CKE
/WE
MCKE
MCS#
MRAS#
MCAS#
MWE#
DQM0
DQM1
MA[8:0]
CLK
MCK
MD[7:0]
MD[31:24]
A10
BA
A9
DQM2/MA9
DQM3/MA10
BA/MA11
DQ7~0
DQ15~8
A8~0
LDQM
UDQM
/CS
/RAS
/CAS
CKE
/WE
CLK
A10
BA
A9
MCKE
MCS#
MRAS#
MCAS#
MWE#
DQM0
DQM1
MA[8:0]
MCK
DQM2/MA9
DQM3/MA10
BA/MA11
MD[15:8]
MD[39:32]
DQ7~0
DQ15~8
A8~0
LDQM
UDQM
/CS
/RAS
/CAS
CKE
/WE
CLK
A10
BA
A9
MCKE
MCS#
MRAS#
MCAS#
MWE#
DQM0
DQM1
MA[8:0]
MCK
DQM2/MA9
DQM3/MA10
BA/MA11
MD[23:16]
MD[47:40]
background image
MTL003
Page 15 of 60















































Fig. 3.4.2 The interface between MTL003 and SGRAM
SGRAM(128K32bits2 ) 3
A8~0
DQM0
DQM1
/CS
/RAS
/CAS
CKE
/WE
MCKE
MCS#
MRAS#
MCAS#
MWE#
DQM0
DQM1
MA[8:0]
DQM2
DQM3
DQM2/MA9
DQM3/MA10
DSF
BA/MA11
A9(BA)
CLK
MCK
MD[7:0]
MD[31:24]
DQ7~0
DQ15~8
DQ23~16
DQ31~24
A8~0
DQM0
DQM1
/CS
/RAS
/CAS
CKE
/WE
DQM2
DQM3
A9(BA)
CLK
DQ7~0
DQ15~8
DQ23~16
DQ31~24
DSF
MCKE
MCS#
MRAS#
MCAS#
MWE#
DQM0
DQM1
MA[8:0]
DQM2/MA9
DQM3/MA10
BA/MA11
MCK
MD[15:8]
MD[39:32]
DSF
MCKE
MCS#
MRAS#
MCAS#
MWE#
DQM0
DQM1
MA[8:0]
DQM2/MA9
DQM3/MA10
BA/MA11
MCK
A8~0
DQM0
DQM1
/CS
/RAS
/CAS
CKE
/WE
DQM2
DQM3
A9(BA)
CLK
DQ7~0
DQ15~8
DQ23~16
DQ31~24
MD[23:16]
MD[47:40]
A8~0
DQM0
DQM1
/CS
/RAS
/CAS
CKE
/WE
MCKE
MCS#
MRAS#
MCAS#
MWE#
DQM0
DQM1
MA[8:0]
DQM2
DQM3
DQM2/MA9
DQM3/MA10
DSF
BA/MA11
A9(BA)
CLK
MCK
MD[7:0]
MD[31:24]
SGRAM(128K32bits2 ) 2
DQ7~0
DQ15~8
DQ23~16
DQ31~24
A8~0
DQM0
DQM1
/CS
/RAS
/CAS
CKE
/WE
DQM2
DQM3
A9(BA)
CLK
DQ7~0
DQ15~8
DQ23~16
DQ31~24
DSF
MCKE
MCS#
MRAS#
MCAS#
MWE#
DQM0
DQM1
MA[8:0]
DQM2/MA9
DQM3/MA10
BA/MA11
MCK
MD[15:8]
MD[39:32]
background image
MTL003
Page 16 of 60
3.5 Host Interface

General Description
The main function of Host Interface is to provide the interface between MTL003 and external CPU by 2-wire I2C
Bus or Direct Bus selected by the input pin BUSSEL. It can generate all the I/O decoded control timing to control
all the registers in MTL003. The other function is Screen Write, which allows users to clear frame buffer, and
display output as well.

3.5.1 I2C Serial Bus
The I2C serial interface use 2 wires, SCK (clock) and SDA(data I/O). The SCK is used as the sampling clock
and SDA is a bi-directional signal for data. The communication must be started with a valid START condition,
concluded with STOP condition and acknowledged with ACK condition by receiver.

The I2C bus device address of MTL003 is 0111010x.
AD[0]
SCK, serial bus clock.
AD[1]
SDA, bi-directional serial bus data.

The START condition means a HIGH to LOW transition of SDA when SCK is high, the STOP condition means a
LOW to HIGH transition of SDA when SCK is high. And data of SDA only can change during SCK is low. Ref.
Fig.3.5.1.
















Fig. 3.5.1 START, STOP ,and DATA definition

The I2C interface supports Random Write, Sequential Write, Current Address Read, Random Read and
Sequential Read operations.
Random Write
For Random Write operation, it contains the slave address with R/W bit set to 0 and the word address which is
comprised of eight bits and provides to access any one of 256 bytes in the selected memory range. Upon
receipt of the word address, MTL003 responds with an Acknowledge, waits the data bits again responding an
Acknowledge, and then the master generates a stop condition. Ref. Fig.3.5.2.
SDA
SCK
START
DATA
CHANGE
DATA
CHANGE
STOP
background image
MTL003
Page 17 of 60
Fig.
3.5.2
Random
Write
Sequential Write
The initial step of Sequential Write is the same as Random Write, after the receipt of each word data, MTL003
will respond with an Acknowledge and then internal address counter will increment by one for next data write. If
the master would stop writing data, it generates stop condition. Ref. Fig. 3.5.3.

Fig. 3.5.3 Sequential Write
Current Address Read
MTL003 contains an address counter which maintains the last access address incremented by one. If the last
access address is n, the read data should access from address n+1. Upon receipt of the slave address with
R/W bit set to 1, MTL003 generates an Acknowledge and transmits eight bits data. After receiving data the
master will generate a stop condition instead of an Acknowledge. Ref. Fig. 3.5.4.
Fig. 3.5.4 Current Address Read
Random Read
S
T
A
R
T
A
C
K
SLAVE
ADDRESS
DATA
R
SDA
S
T
O
P
S
T
A
R
T
A
C
K
A
C
K
A
C
K
S
T
O
P
SLAVE
ADDRESS
WORD
ADDRESS
DATA
W
SDA
SDA
S
T
A
R
T
A
C
K
A
C
K
A
C
K
SLAVE
ADDRESS
WORD
ADDRESS
DATA n
W
DATA n+1
S
T
O
P
A
C
K
A
C
K
DATA n+x
background image
MTL003
Page 18 of 60
The operation of Random Read allows accessing any address. Before reading data operation, it must issue a
"dummy write" operation--a start condition, a slave address with R/W bit set to 0, and word address for read.
After responding an Acknowledge, MTL003 then transmits eight bits data right after the master generating the
start condition and slave address with R/W bit set to 1. After completion of receiving data, the master will
generate a stop condition instead of an Acknowledge. Ref. Fig 3.5.5.

Fig. 3.5.5 Random Read
Sequential Read
The initial step can be as either Current Address Read or Random Read. The first read data is transmitted the
same manner as other read methods. However, the master generates an Acknowledge indicating that it
requires more data to read. MTL003 continues to output data for each Acknowledge received. The output data
is sequential and the internal address counter increments by one for next read data. Ref. Fig. 3.5.6.
Fig. 3.5.6 Sequential Read
8-bit Direct Bus
The Direct Bus use AD[7:0], HWR#, HRD#, ALE, HCS# as the interface with host. ALE is used to latch read or
write address from AD[7:0] and HRD#, HWR# to access data. Ref. Fig. 3.5.7.
AD[7:0] Address and data multiplex bus.
HRD#
CPU read data strobe, Active Low.
HWR#
CPU write data strobe, Active Low.
ALE
ALE =1 latch read or write address, ALE=0 represents I/O data.
HCS#
Enable signal for CPU access, Active Low.



S
T
A
R
T
A
C
K
A
C
K
A
C
K
SLAVE
ADDRESS
WORD
ADDRESS
W
SDA
S
T
A
R
T
SLAVE
ADDRESS
R
DATA
S
T
O
P
S
T
A
R
T
A
C
K
SLAVE
ADDRESS
DATA n
R
SDA
DATA n+1
A
C
K
A
C
K
DATA n+x
S
T
O
P
AD[7:0]
DATA
ADDRESS
background image
MTL003
Page 19 of 60







Fig. 3.5.7 Direct Bus Timing

3.5.3 Interrupt
MTL003 supports one interrupt output signal (IRQ) which can be programmed to provide SYNC related or
function status related interrupts to the system. Upon receiving the interrupt request, Firmware needs to first
check the interrupt event by reading the Interrupt Flag Control registers (Reg. E8h and E9h) to decide what
events are happening. After the operation is finished, Firmware needs to clear interrupt status by writing the
same registers Reg. E8h and E9h. Furthermore, by using the Interrupt Flag Enable registers (Reg. EAh and
EBh), each interrupt event can be masked.

3.5.4 Screen
Write
Screen Write function can be used to clear frame buffer memory and then display output as well by a fixed value
defined in Reg. C6h, C7h, C8h.

3.5.5 Bi-directional
GPIO
MTL003 supports eight General Purpose Input and Output (GPIO) pins GPIO[7:0] on chip. The GPIO[5:0] pins
are bi-directional GPIO pins, and the GPIO[7:6] pins are output only GPIO pins. There are two functions for
GPIO[7:6] pins. One is to set them as output only GPIO pins, and the other is to set them as Composite
decoded VSYNC/HSYNC for A/D converters in VGA input path. The data and I/O direction of GPIO[7:0] pins are
respectively controlled by Reg. F4h and F5h, and each bit in registers is respectively mapped to GPIO[7:0] one
by one. The following description is the process to control GPIO[0] and GPIO[6] in detail, and the control
processes of GPIO[4:1] and GPIO[7] are also the same as follows respectively.
Bi-directional GPIO control process
Setting Reg. F5h/D0 = 0 or 1 to assign GPIO[0] as output or input.
Writing data to Reg. F4h/D0 when GPIO[0] is assigned to output status, otherwise reading data from
Reg. F4h/D0 when GPIO[0] is input.
Output only GPIO control process
Setting Reg. F5h/D6 = 0 or 1 to assign GPIO[6] as output or tri-state.
Setting Reg. F6h/D0 = 1 to select output source from Reg. F4h/D6 or setting it as 0 to make GPIO[6]
pin to output ADHS which is HSYNC signal decoded from VGA input Composite signal by the MTL003.
Writing data to F4h/D6 when GPIO[6] is assigned to output only GPIO pin, that is, F6h/D0 = 0 and
F5h/D6 = 0. If F6h/D0 is set to 1, the GPIO[6] pin outputs ADHS for AD converters in VGA input path.

3.5.6 Update Register Contents
I/O write operation to some consecutive register set can have the "Double Buffer" effect by setting the
Reg. C2h/D4. Written data is first stored in an intermediate bank of latches and then transferred to the active
register set by setting Reg. C2h/D1-0.
ALE
HWR/HRD
background image
MTL003
Page 20 of 60
3.6 On-Chip PLL

General Description
The MTL003 needs three clock sources to drive synchronous circuits on chip. These clocks are generated from
the internal Phase Lock Loop (PLL) circuits with reference to the oscillator clock which is applied to pin XI and
XO by an external quartz crystal at 14.31818 MHz. First one is the same as to the oscillator clock at frequency
(14.31818 MHz) to detect and measure graphic vertical and horizontal SYNC Frequency, Polarity as well as
Presence. The second is memory clock to synchronize memory controller with the external frame buffers. The
third is the display clock for display controller on chip and output signals to LCD panel.

3.6.1 Reference
Clock
It is the counting basis of counter values in SYNC Processor such as VS and HS period count registers; that is,
the read back values from these registers must multiply the period of this clock to estimate VS and HS
frequency. Incorporating with polarity and frequency information of VS and HS, it can show the input graphic
image mode and pixel clock frequency.
3.6.2 Memory
Clock
Depending on the bandwidth of applications, DRAM types and configurations, the memory clock changes from
50 MHz to 100 MHz by way of adjusting a set of appropriate values for M, N as well as R. The formula to
calculate desired frequency of memory clock is as follows:
f
mclk
= f
osc
M/N1/R

Where f
mclk
: the desired memory clock
f
osc
: oscillator clock with 14.31818 MHz
M
: post-divider ratio
N
: pre-divider ratio
R
: optional divider ratio
3.6.3 Display
Clock
This clock is the synchronous clock for LCD panel. According to the LCD panel resolution of applications, the
display clock range is from 24MHz to 200MHz by means of choosing a set of appropriate values for M, N as well
as R. The computing formula is exactly the same as that in memory clock.
background image
MTL003
Page 21 of 60
4. REGISTER DESCRIPTION
INPUT CONTROL REGISTERS
Address Mode Registers
Reset
value
00h
R/W
Input Image Vertical Active Line Start - Low
00h
01h
R/W
Input Image Vertical Active Line Start - High
00h
02h
R/W
Input Image Vertical Active Lines - Low
00h
03h
R/W
Input Image Vertical Active Lines - High
00h
04h
R/W
Input Image Horizontal Active Pixel Start - Low
00h
05h
R/W
Input Image Horizontal Active Pixel Start - High
00h
06h
R/W
Input Image Horizontal Active Pixels - Low
00h
07h
R/W
Input Image Horizontal Active Pixels - High
00h
10h
R/W
Input Image Control Register 0
00h
11h
R/W
Input Image Control Register 1
00h
12h
R/W
Input Image Control Register 2
00h
13h
R/W
Input Image Control Register 3
00h
1Ch
R/W
HS1 Sample Window Forward Extend
00h
1Dh
R/W
HS1 Sample Window Backward Extend
00h
1Fh
RO
Input Image Status Register
-
20h
R/W
Input Image Back Porch Guard Band
00h
21h
R/W
Input Image Front Porch Guard Band
00h

FRAME SYNC REGISTERS
Address Mode Registers
Reset
value
28h
R/W
Frame Sync Control
00h
2Ch
R/W
Input Image Vertical Lock Position - Low
00h
2Dh
R/W
Input Image Vertical Lock Position - High
00h
2Eh
R/W
Input Image Horizontal Lock Position - Low
00h
2Fh
R/W
Input Image Horizontal Lock Position - High
00h

AUTO CALIBRATION REGISTERS
Address Mode Registers
Reset
value
30h
R/W
Auto Calibration Control 0
80h
31h
R/W
Auto Calibration Control 1
00h
34h
RO
Auto Calibration RED Value - Byte 0
-
35h
RO
Auto Calibration RED Value - Byte 1
-
36h
RO
Auto Calibration RED Value - Byte 2
-
37h
RO
Auto Calibration RED Value - Byte 3
-
38h
RO
Auto Calibration GREEN Value - Byte 0
-
39h
RO
Auto Calibration GREEN Value - Byte 1
-
3Ah
RO
Auto Calibration GREEN Value - Byte 2
-
3Bh
RO
Auto Calibration GREEN Value - Byte 3
-
3Ch
RO
Auto Calibration BLUE Value - Byte 0
-
3Dh
RO
Auto Calibration BLUE Value - Byte 1
-
3Eh
RO
Auto Calibration BLUE Value - Byte 2
-
3Fh
RO
Auto Calibration BLUE Value - Byte 3
-
40h
R/W
Pixel Grab V Reference Position Low
00h
41h
R/W
Pixel Grab V Reference Position High
00h
background image
MTL003
Page 22 of 60
42h
R/W
Pixel Grab H Reference Position Low
00h
43h
R/W
Pixel Grab H Reference Position High
00h
44h
R/W
Histogram Reference Color - RED
00h
45h
R/W
Histogram Reference Color - GREEN
00h
46h
R/W
Histogram Reference Color - BLUE
00h

SYNC PROCESSOR REGISTERS
Address Mode Registers
Reset
value
48h
R/W
SYNC Processor Control
00h
49h
R/W
Auto Position Control
00h
4Ah
R/W
Auto Position Reference Color - RED
00h
4Bh
R/W
Auto Position Reference Color - GREEN
00h
4Ch
R/W
Auto Position Reference Color - BLUE
00h
4Eh
R/W
Clamp Pulse Control 0
00h
4Fh
R/W
Clamp Pulse Control 1
00h
50h
RO
Input VS Period Count by REFCLK - Low
-
51h
RO
Input VS Period Count by REFCLK - High
-
52h
RO
Input V Back Porch Count by Input HS - Low
-
53h
RO
Input V Back Porch Count by Input HS - High
-
54h
RO
Input V Active Lines Count by Input HS - Low
-
55h
RO
Input V Active Lines Count by Input HS - High
-
58h
RO
Input HS Period Count by REFCLK - Low
-
59h
RO
Input HS Period Count by REFCLK - High
-
5Ah
RO
Input H Back Porch Count by Input Pixel Clock - Low
-
5Bh
RO
Input H Back Porch Count by Input Pixel Clock - High
-
5Ch
RO
Input H Active Pixels Count by Input Pixel Clock - Low
-
5Dh RO Input H Active Pixels Count by Input Pixel Clock - High
-

DISPLAY CONTROL REGISTERS
Address Mode Registers
Reset
value
60h
R/W
Display Vertical Total - Low
00h
61h
R/W
Display Vertical Total - High
00h
62h
R/W
Display Vertical SYNC End- Low
00h
63h
R/W
Display Vertical SYNC End - High
00h
64h
R/W
Display Vertical Active Start - Low
00h
65h
R/W
Display Vertical Active Start - High
00h
66h
R/W
Display Vertical Active End - Low
00h
67h
R/W
Display Vertical Active End - High
00h
68h
R/W
Display Vertical Border Start - Low
00h
69h
R/W
Display Vertical Border Start - High
00h
6Ah
R/W
Display Vertical Border End - Low
00h
6Bh
R/W
Display Vertical Border End - High
00h
70h
R/W
Display Horizontal Total - Low
00h
71h
R/W
Display Horizontal Total - High
00h
72h
R/W
Display Horizontal SYNC End - Low
00h
73h
R/W
Display Horizontal SYNC End - High
00h
74h
R/W
Display Horizontal Active Start - Low
00h
75h
R/W
Display Horizontal Active Start - High
00h
76h
R/W
Display Horizontal Active End - Low
00h
background image
MTL003
Page 23 of 60
77h
R/W
Display Horizontal Active End - High
00h
78h
R/W
Display Horizontal Border Start - Low
00h
79h
R/W
Display Horizontal Border Start - High
00h
7Ah
R/W
Display Horizontal Border End - Low
00h
7Bh
R/W
Display Horizontal Border End - High
00h
88h
R/W
Output Image Control Register 0
00h
89h
R/W
Output Image Control Register 1
00h
8Ah
R/W
Output Image Control Register 2
00h
90h
R/W
Color Gain Control - RED
80h
91h
R/W
Color Gain Control - GREEN
80h
92h
R/W
Color Gain Control - BLUE
80h
93h
R/W
Brightness Control - RED
00h
94h
R/W
Brightness Control - GREEN
00h
95h
R/W
Brightness Control - BLUE
00h
96h
R/W
Border Window Color - RED
00h
97h
R/W
Border Window Color - GREEN
00h
98h
R/W
Border Window Color - BLUE
00h
9Eh
R/W
Dithering Table Data Port
-
9Fh
R/W
Gamma Table Data Port
-
A0h
R/W
OSD Control Register
08h
A1h
R/W
OSD Adjustment Control
00h
A4h
R/W
Output Invert Control
00h
A5h
R/W
Output Tri-State Control
00h
A6h
R/W
Output Clocks Delay Adjustment
00h
A7h
R/W
Output Clocks Duty Cycle Adjustment
00h

ZOOM CONTROL REGISTERS
Address Mode Registers
Reset
value
B0h
R/W
Zoom Control Register 0
00h
B1h
R/W
Zoom Control Register 1
00h
B2h
R/W
Zoom Vertical Scale Down Integer
00h
B3h
R/W
Zoom Horizontal Scale Down Integer
00h
B4h
R/W
Zoom Vertical Scale Ratio - Low
00h
B5h
R/W
Zoom Vertical Scale Ratio - High
00h
B6h
R/W
Zoom Horizontal Scale Ratio - Low
00h
B7h
R/W
Zoom Horizontal Scale Ratio High
00h
BFh
R/W
Interpolation Table Data Port
-

HOST CONTROL REGISTERS
Address Mode Registers
Reset
value
C0h
R/W
Host Control Register 0
00h
C1h
R/W
Host Control Register 1
00h
C4h
R/W
Host Screen Write Line Length - Low
00h
C5h
R/W
Host Screen Write Line Length - High
03h
C6h
R/W
Host Fill Color - RED
00h
C7h
R/W
Host Fill Color - GREEN
00h
C8h
R/W
Host Fill Color - BLUE
00h
background image
MTL003
Page 24 of 60
CBh
RO
Host Access Mode Status
-

MEMORY CONTROL REGISTERS
Address Mode Registers
Reset
value
D0h
R/W
Memory Type Control
00h
D2h
R/W
Memory Self Test Control
00h
DBh
RO
Memory Self-Test Compare Error Address Low
-
DCh
RO
Memory Self-Test Compare Error Address Middle
-
DDh
RO
Memory Self-Test Compare Error Address High
-

CLOCK CONTROL REGISTERS
Address Mode Registers
Reset
value
E0h
R/W
Clock Control Register
00h
E1h
WO
Clock Synthesizer Value Load
-
E2h
R/W
Display Clock Synthesizer M Value
0Bh
E3h
R/W
Display Clock Synthesizer N Value
32h
E4h
R/W
Memory Clock Synthesizer M Value
0Bh
E5h
R/W
Memory Clock Synthesizer N Value
32h
E6h
R/W
Clock Synthesizer R Value
00h

INTERRUPT CONTROL REGISTERS
Address Mode Registers
Reset
value
E8h
R/W
SYNC Interrupt Flag Control
00h
E9h
R/W
General Interrupt Flag Control
00h
EAh
R/W
SYNC Interrupt Enable
00h
EBh
R/W
General Interrupt Enable
00h
ECh
R/W
HS Frequency Change interrupt Compare
00h

MISCELLANEOUS REGISTERS
Address Mode Registers
Reset
value
F1h
R/W
Power Management Control
00h
F4h
R/W
GPIO Control Register
00h
F5h
R/W
GPIO Direction Control
00h
F6h
R/W
GPIO Misc Control
00h

Input Image Vertical Active Line Start - Low (Address 00h) (R/W)

It defines the low byte of the start position of the Vertical Active Window.

D7-0
IV_ACT_START[7:0]

Input Image Vertical Active Line Start - High
(Address 01h) (R/W)

It defines the high byte of the start position of the Vertical Active Window.

D7-3
Reserved

D2-0
IV_ACT_START[10:8]

Input Image Vertical Active Lines - Low
(Address 02h) (R/W)

It defines the low byte of the number of active lines of the Vertical Active Window.
background image
MTL003
Page 25 of 60

D7-0
IV_ACT_LEN[7:0]

Input Image Vertical Active Lines - High
(Address 03h) (R/W)

It defines the high byte of the number of active lines of the Vertical Active Window.

D7-3
Reserved

D2-0
IV_ACT_LEN[10:8]

Input Image Horizontal Active Pixel Start - Low
(Address 04h) (R/W)

It defines the low byte of the start position of the Horizontal Active Window.

D7-0
IH_ACT_START[7:0]

Input Image Horizontal Active Pixel Start - High
(Address 05h) (R/W)

It defines the high byte of the start position of the Horizontal Active Window.

D7-3
Reserved

D2-0
IH_ACT_START[10:8]

Input Image Horizontal Active Pixels - Low
(Address 06h) (R/W)

It defines the low byte of the number of active pixels of the Horizontal Active Window.

D7-0
IH_ACT_WIDTH[7:0]

Input Image Horizontal Active Pixels - High
(Address 07h) (R/W)

It defines the high byte of the number of active pixels of the Horizontal Active Window.

D7-3
Reserved

D2-0
IH_ACT_WIDTH[10:8]

Input Image Control Register 0
(Address 10h) (R/W)

D7
Horizontal Sampling Point Reference
0: from Input HSYNC.
1: from Input HREF (only for Video Decoder).

D6
Input YCBCR Format
0:
4-2-2
1:
4-1-1

background image
MTL003
Page 26 of 60
D5
Digital RGB 6 bit Mode
0:
8
bits
1:
6
bits

D4
Digital RGB Mode Select
0: RGB Input from ADC
1: RGB Input from Panel Link

D3
Input Image Format
0: RGB888
1:
YCBCR

D2
Input Clock Source
0: from Graphic PLL clock.
1: from Video Decoder clock.

D1
Input
Image
Source
0: from Graphic source through ADC.
1: from Video source through Video Decoder like SAA7111A.

D0
ADC
Configuration
0: Double Pixel mode
1: Single Pixel mode

Input Image Control Register 1
(Address 11h) (R/W)

D7
Reserved

D6-4
De-interlace mode Select
000: All Fields write mode
001: Toggle Field write mode
010:
Spatial
Filtering
write
mode

D3-1
Reserved

D0
Still mode Enable
0:
Live
mode
1:
Still
mode

Input Image Control Register 2 (Address 12h) (R/W)

D7
Input ODD Field Invert
0:
Normal
1:
Invert

D6
External Input Interlace Select
0:
Non-interlace
1:
Interlace

D5
External Input VSYNC Polarity
0:
Active
Low
1:
Active
High
background image
MTL003
Page 27 of 60
D4
External Input HSYNC Polarity
0:
Active
Low
1:
Active
High

D3
Input ODD Field Source
0: from Internal Detection
1: from External pin.

D2
Input Interlace Source
0: from Internal detection
1: from Register setting (D6)

D1
Input VSYNC Polarity Source
0: from Internal detection
1: from Register setting (D5)

D0
Input HSYNC Polarity Source
0: from Internal detection
1: from Register setting (D4)

Input Image Control Register 3 (Address 13h) (R/W)

D7-3
Reserved

D2
Sync On Green Select
0: Select Normal HSYNC/ Composite Sync
1: Select Sync On Green

D1
Input Vertical Timing based on VSYNC
0:
Leading
Edge
1:
Trailing
Edge

D0
Input Horizontal Timing based on HSYNC
0:
Leading
Edge
1:
Trailing
Edge

Input HS Pulse Width Forward Extend (Address 1Ch) (R/W)

D7-0
Input HS Pulse Width Forward Extend by IDCLK
HS1FWEXT[7:0]: Used when Interlace First/Second Field Detection.

Input HS Pulse Width Backward Extend (Address 1Dh) (R/W)

D7-0
Input HS Pulse Width Forward Extend by IDCLK
HS1BWEXT[7:0]: Used when Interlace First/Second Field Detection.

Input Image Status Register (Address 1Fh) (RO)

D7
Display VSYNC Monitor
Show Display VSYNC signal directly.

D6
Input VSYNC Monitor
Show Input VSYNC signal directly.
background image
MTL003
Page 28 of 60
D5
External Input Interlace Status
0:
Non-interlace
1:
Interlace

D4
Extracted CVSYNC Present Status
0:
Not
Present
1:
Present

D3
External Input VSYNC Present Status
0:
Not
Present
1:
Present

D2
External Input HSYNC Present Status
0:
Not
Present
1:
Present

D1
External Input VSYNC Polarity Status
0:
Active
Low
1:
Active
High

D0
External Input HSYNC Polarity Status
0:
Active
Low
1:
Active
High

Input Image Back Porch Guard Band (Address 20h) (R/W)

D7-0
Input Image Back Porch Guard Band by IDCLK
HBPGB[7:0]: Used in Auto Position detection to mask out unwanted data.


Input Image Front Porch Guard Band (Address 21h) (R/W)

D7-0
Input Image Front Porch Guard Band by IDCLK
HFPGB[7:0]: Used in Auto Position detection to mask out unwanted data.

Frame Sync Control 0 (Address 28h) (R/W)

D7-5
Reserved

D1
Frame Sync Select in Frame Buffer mode
0:
Normal
1:
Frame
Sync

D0
Frame Buffer mode Select
0: Frame Buffer mode
1: Non Frame Buffer mode

Input Image Vertical Lock Position - Low (Address 2Ch) (R/W)

It defines the low byte of the number of input lines where Display image timing
synchronizes the input image source.

D7-0
IPV_LOCK_POS[7:0]
background image
MTL003
Page 29 of 60
Input Image Vertical Lock Position - High (Address 2Dh) (R/W)

It defines the high byte of the number of input lines where Display image timing
synchronizes the input image source.

D7-3
Reserved

D2-0
IPV_LOCK_POS[10:8]

Input Image Horizontal Lock Position - Low (Address 2Eh) (R/W)

It defines the low byte of the number of input pixel clocks where Display image
timing synchronizes the input image source.

D7-0
IPH_LOCK_POS[7:0]

Input Image Horizontal Lock Position - High (Address 2Fh) (R/W)

It defines the high byte of the number of input pixel clocks where Display image
timing synchronizes the input image source.

D7-3
Reserved

D2-0
IPH_LOCK_POS[10:8]

Auto Calibration Control 0 (Address 30h) (R/W)

D7
Pixel Grab Ready Flag (RO)
0:
Ready
1:
Not
Ready

D6
Pixel Grab Update Enable
0:
Stop
updating
1:
Continue
updating

D5
Threshold
Select
Used in Histogram mode or MIN/MAX mode.
0: High bound / MAX
1: Low bound / MIN

D4
Phase Calibration Method Select
0: MYSON proprietary method
1:
Difference
Value
method

D3-2
Auto Calibration Modes Select
The measured value is available one item at a time,
selected
as
shown:
00: Phase Calibration Mode
01:
Histogram
Mode
10: MIN/MAX Mode
11: Pixel Grab Mode
background image
MTL003
Page 30 of 60
D1
Auto Calibration Burst Mode Enable
(except Pixel Grab Mode)
0:
Single
Mode
1:
Burst
Mode

D0
Auto Calibration Enable (W)
(except Pixel Grab Value)
0:
Disable
1:
Enable
Auto Calibration Ready Flag (R)
0:
Ready
1:
Not
Ready

Auto Calibration Control 1 (Address 31h) (R/W)

D7-3
Reserved

D2-0
Mask LSBs of Input Image Select
000:
No
Mask
001:
Mask
bit0
010:
Mask
bit0,1
011:
Mask
bit0,1,2
100:
Mask
bit0,1,2,3
101:
Mask
bit0,1,2,3,4
110:
Mask
bit0,1,2,3,4,5
111:
Mask
bit0,0,1,2,3,4,5,6

Auto Calibration RED Value - Byte 0 (Address 34h) (RO)

It states the byte 0 of the number of Phase Calibration RED value in one frame or
the byte 0 of the number of Histogram Red value in one frame or the Pixel Grab RED
value in one frame of Non_interlace mode or FIRST field of Interlace mode.

D7-0
CALVAL_R[7:0]

Auto Calibration RED Value - Byte 1 (Address 35h) (RO)

It states the byte 1 of the number of Phase Calibration RED value in one frame or
the byte 1 of the number of Histogram Red value in one frame or the Pixel Grab GREEN
value in one frame of Non_interlace mode or FIRST field of Interlace mode.

D7-0
CALVAL_R[15:8]

Auto Calibration RED Value - Byte 2 (Address 36h) (RO)

It states the byte 2 of the number of Phase Calibration RED value in one frame or
the byte 2 of the number of Histogram Red value in one frame or the Pixel Grab BLUE
value in one frame of Non_interlace mode or FIRST field of Interlace mode.

D7-0
CALVAL_R[23:16]

Auto Calibration RED Value - Byte 3 (Address 37h) (RO)

It states the byte 3 of the number of Phase Calibration RED value in one frame.

D7-6
Reserved
background image
MTL003
Page 31 of 60

D5-0
CALVAL_R[29:24]

Auto Calibration GREEN Value - Byte 0 (Address 38h) (RO)

It states the byte 0 of the number of Phase Calibration GREEN value in one frame
or the byte 0 of the number of Histogram GREEN value in one frame or
the Pixel Grab RED value in one frame of Non_interlace mode or SECOND
field of Interlace mode.

D7-0
CALVAL_G[7:0]

Auto Calibration GREEN Value - Byte 1 (Address 39h) (RO)

It states the byte 1 of the number of Phase Calibration GREEN value in one frame
or the byte 1 of the number of Histogram GREEN value in one frame or
the Pixel Grab GREEN value in one frame of Non_interlace mode or SECOND
field of Interlace mode.

D7-0
CALVAL_G[15:8]

Auto Calibration GREEN Value - Byte 2 (Address 3Ah) (RO)

It states the byte 2 of the number of Phase Calibration GREEN value in one frame
or the byte 2 of the number of Histogram GREEN value in one frame or
the Pixel Grab BLUE value in one frame of Non_interlace mode or SECOND
field of Interlace mode.

D7-0
CALVAL_G[23:16]

Auto Calibration GREEN Value - Byte 3 (Address 3Bh) (RO)

It states the byte 3 of the number of Phase Calibration GREEN value in one frame.

D7-6
Reserved

D5-0
CALVAL_G[29:24]

Auto Calibration BLUE Value - Byte 0 (Address 3Ch) (RO)

It states the byte 0 of the number of Phase Calibration BLUE value in one frame or
the byte 0 of the number of Histogram BLUE value in one frame or
the MIN/MAX RED value in one frame.

D7-0
CALVAL_B[7:0]

Auto Calibration BLUE Value - Byte 1 (Address 3Dh) (RO)

It states the byte 1 of the number of Phase Calibration BLUE value in one frame or
the byte 1 of the number of Histogram BLUE value in one frame or
the MIN/MAX GREEN value in one frame.

D7-0
CALVAL_B[15:8]

Auto Calibration BLUE Value - Byte 2 (Address 3Eh) (RO)
background image
MTL003
Page 32 of 60
It states the byte 2 of the number of Phase Calibration BLUE value in one frame or
the byte 2 of the number of Histogram BLUE value in one frame or
the MIN/MAX BLUE value in one frame.

D7-0
CALVAL_B[23:16]

Auto Calibration BLUE Value - Byte 3 (Address 3Fh) (RO)

It states the byte 3 of the number of Phase Calibration BLUE value in one frame.

D7-6
Reserved

D5-0
CALVAL_B[29:24]

Pixel Grab V Reference Position - Low (Address 40h) (R/W)

It states the low byte of Vertical Reference Position in Pixel Grab Mode.

D7-0
VGRAB_POS[7:0]

Pixel Grab V Reference Position - High (Address 41h) (R/W)

It states the high byte of Vertical Reference Position in Pixel Grab Mode.

D7-3
Reserved

D2-0
VGRAB_POS[10:8]

Pixel Grab H Reference Position - Low (Address 42h) (R/W)

It states the low byte of Horizontal Reference Position in Pixel Grab Mode.

D7-0
HGRAB_POS[7:0]

Pixel Grab H Reference Position - High (Address 43h) (R/W)

It states the high byte of Horizontal Reference Position in Pixel Grab Mode.

D7-3
Reserved

D2-0
HGRAB_POS[10:8]

Histogram Reference Color
- RED (Address 44h) (R/W)

It states the Histogram Reference RED Color in Histogram Mode.

D7-0
HIST_R[7:0]

Histogram Reference Color
- GREEN (Address 45h) (R/W)

It states the Histogram Reference GREEN Color in Histogram Mode.

D7-0
HIST_G[7:0]
Histogram Reference Color - BLUE (Address 46h) (R/W)

It states the Histogram Reference BLUE Color in Histogram Mode.
background image
MTL003
Page 33 of 60

D7-0
HIST_B[7:0]

SYNC Processor Control (Address 48h) (R/W)

D7-2
Reserved

D1-0
SYNC
Source
00: from H/V SYNC
01: from CVSYNC (Composite SYNC)
1x: Auto switch to CVSYNC when CVSYNC is present, but VSYNC not.

Auto Position Control (Address 49h) (R/W)

D7-2
Reserved

D1
Auto Position Burst Mode Enable
0:
Single
Mode
1:
Burst
Mode

D0
Auto Position Enable (W)
0:
Disable
1:
Enable
Auto Position Ready Flag (R)
0:
Ready
1:
Not
Ready

Auto Position Reference Color - RED (Address 4Ah) (R/W)

It defines the red component color for selecting between black and non-black pixels.

D7-0
REF_COLOR_RED[7:0]

Auto Position Reference Color - GREEN (Address 4Bh) (R/W)

It defines the green component color for selecting between black and non-black pixels.

D7-0
REF_COLOR_GREEN[7:0]

Auto Position Reference Color - BLUE (Address 4Ch) (R/W)

It defines the blue component color for selecting between black and non-black pixels.

D7-0
REF_COLOR_BLUE[7:0]

Clamp Pulse Control 0 (Address 4Eh) (R/W)

D7
Clamp
Pulse
Mask
0:
Normal
1: Mask out Clamp Pulse

D6
Clamp Pulse Start Reference Edge
0: From Input HSYNC trailing edge.
1: From Input HSYNC leading edge.

D5
Clamp Pulse output Polarity
background image
MTL003
Page 34 of 60
0:
Active
High
1:
Active
Low

D4-0
Clamp Pulse Start
Start of Clamp Pulse after the selected edge of Input HSYNC by Input DCLK.

Clamp Pulse Control 1 (Address 4Fh) (R/W)

D7-5
Reserved

D4-0
Clamp Pulse Width
To Adjust Clamp Pulse Width by Input DCLK.

Input VS Period Count by REFCLK - Low (Address 50h) (RO)

It states the low byte of the number of REFCLK of the Vertical Sync period measurement.

D7-0
VSPRD[7:0]

Input VS Period Count by REFCLK - High (Address 51h) (RO)

It states the high byte of the number of REFCLK of the Vertical Sync period measurement.

D7-4
Reserved

D3-0
VSPRD[11:8]

Input V Back Porch Count by Input HS - Low (Address 52h) (RO)

It states the low byte of the number of lines between the end of VSYNC and the active image.

D7-0
VBPW[7:0]

Input V Back Porch Count by Input HS - High (Address 53h) (RO)

It states the high byte of the number of lines between the end of VSYNC and the active image

D7-3
Reserved

D2-0
VBPW[10:8]

Input V Active Image Count by Input HS - Low (Address 54h) (RO)

It states the low byte of the number of the active image lines.

D7-0
VACTW[7:0]

Input V Active Image Count by Input HS - High (Address 55h) (RO)

It states the high byte of the number of the active image lines

D7-3
Reserved

D2-0
VACTW[10:8]

Input HS Period Count by REFCLK - Low (Address 58h) (RO)
background image
MTL003
Page 35 of 60

It states the low byte of the number of REFCLKs of the Horizontal Sync period measurement.

D7-0
HSPRD[7:0]

Input HS Period Count by REFCLK - High (Address 59h) (RO)

It states the high byte of the number of REFCLKs of the Horizontal Sync period measurement.

D7-5
Reserved

D4-0
HSPRD[12:8]

Input H Back Porch Count by Input Pixel Clock -Low (Address 5Ah) (RO)

It states the low byte of the number of pixels between the end of HSYNC and the active image.

D7-0
HBPW[7:0]

Input H Back Porch Count by Input Pixel Clock -High (Address 5Bh) (RO)

It states the high byte of the number of pixels between the end of HSYNC and the active image.

D7-3
Reserved

D2-0
HBPW[10:8]

Input H Active Image Count by Input Pixel Clock-Low(Address 5Ch) (RO)

It states the low byte of the number of the Horizontal active image pixels.

D7-0
HACTW[7:0]

Input H Active Image Count by Input Pixel Clock-High(Address 5Dh)(RO)

It states the high byte of the number of the Horizontal active image pixels.

D7-3
Reserved

D2-0
HACTW[10:8]

Display Vertical Total - Low
(Address 60h) (R/W)

It defines the low byte of the number of lines per display frame.

D7-0
DV_TOTAL[7:0]

Display Vertical Total - High
(Address 61h) (R/W)

It defines the high byte of the number of lines per display frame.
background image
MTL003
Page 36 of 60
D7-3
Reserved

D2-0
DV_TOTAL[10:8]

Display Vertical SYNC End - Low (Address 62h) (R/W)

It defines the low byte of Vertical SYNC end position in lines.

D7-0
DV_SYNC_END[7:0]

Display Vertical VSYNC End - High
(Address 63h) (R/W)

It defines the high byte of Vertical SYNC end position in lines.

D7-3
Reserved

D2-0
DV_SYNC_END[10:8]

Note: Display Vertical SYNC Start is always equal 0.

Display Vertical Active Start - Low
(Address 64h) (R/W)

It defines the low byte of Vertical Active region start position in lines.

D7-0
DV_ACT_START[7:0]

Display Vertical Active Start - High
(Address 65h) (R/W)

It defines the high byte of Vertical Active region start position in lines.

D7-3
Reserved

D2-0
DV_ACT_START[10:8]

Display Vertical Active End - Low
(Address 66h) (R/W)

It defines the low byte of Vertical Active region end position in lines.

D7-0
DV_ACT_END[7:0]

Display Vertical Active End - High
(Address 67h) (R/W)

It defines the high byte of Vertical Active region end position in lines.

D7-3
Reserved

D2-0
DV_ACT_END[10:8]

Display Vertical Border Start - Low
(Address 68h) (R/W)

It defines the low byte of Vertical Border start position in lines.

D7-0
DV_BOR_START[7:0]
background image
MTL003
Page 37 of 60
Display Vertical Border Start - High (Address 69h) (R/W)

It defines the high byte of Vertical Border start position in lines.

D7-3
Reserved

D2-0
DV_BOR_START[10:8]

Display Vertical Border End - Low (Address 6Ah) (R/W)

It defines the low byte of Vertical Border end position in lines.

D7-0
DV_BOR_END[7:0]

Display Vertical Border End - High (Address 6Bh) (R/W)

It defines the high byte of Vertical Border end position in lines.

D7-3
Reserved

D2-0
DV_BOR_END[10:8]

Display Horizontal Total - Low
(Address 70h) (R/W)

It defines the low byte of the number of display clock cycles per display line.

D7-0
DH_TOTAL[7:0]

Display Horizontal Total - High
(Address 71h) (R/W)

It defines the high byte of the number of display clock cycles per display line.

D7-3
Reserved

D2-0
DH_TOTAL[10:8]

Display Horizontal SYNC End - Low (Address 72h) (R/W)

It defines the low byte of Horizontal SYNC end position in display clock cycles.

D7-0
DH_SYNC_END[7:0]

Display Horizontal SYNC End - High
(Address 73h) (R/W)

It defines the high byte of Horizontal SYNC end position in display clock cycles.

D7-3
Reserved

D2-0
DH_SYNC_END[10:8]

Note: Display Horizontal SYNC Start is always equal 0.
background image
MTL003
Page 38 of 60
Display Horizontal Active Start - Low (Address 74h) (R/W)

It defines the low byte of Horizontal Active region start position in display clock cycles.

D7-0
DH_ACT_START[7:0]

Display Horizontal Active Start - High
(Address 75h) (R/W)

It defines the high byte of Horizontal Active region start position in display clock cycles.

D7-3
Reserved

D2-0
DH_ACT_START[10:8]

Display Horizontal Active End - Low
(Address 76h) (R/W)

It defines the low byte of Horizontal Active region end position in display clock cycles.

D7-0
DH_ACT_END[7:0]

Display Horizontal Active End - High
(Address 77h) (R/W)

It defines the high byte of Horizontal Active region end position in display clock cycles.

D7-3
Reserved

D2-0
DH_ACT_END[10:8]

Display Horizontal Border Start - Low
(Address 78h) (R/W)

It defines the low byte of Horizontal Border start position in display clock cycles.

D7-0
DH_BOR_START[7:0]

Display Horizontal Border Start - High (Address 79h) (R/W)

It defines the high byte of Horizontal Border start position in display clock cycles.

D7-3
Reserved

D2-0
DH_BOR_START[10:8]

Display Horizontal Border End - Low (Address 7Ah) (R/W)

It defines the low byte of Horizontal Border end position in display clock cycles.

D7-0
DH_BOR_END[7:0]

Display Horizontal Border End - High (Address 7Bh) (R/W)

It defines the high byte of Horizontal Border end position in display clock cycles.

D7-3
Reserved

D2-0
DH_BOR_END[10:8]
Output Image Control Register 0 (Address 88h) (R/W)
background image
MTL003
Page 39 of 60

D7-3
Reserved

D2
Output Pixel 18 bit RGB Mode Select
0: 24 bit RGB
1: 18 bit RGB

D1
Output Dual Pixel Data Exchange
0:
Normal
1:
Exchange

D0
Output Dual Pixel Select
0:
Dual
Pixel
1:
Single
Pixel

Output Image Control Register 1 (Address 89h) (R/W)

D7-6
Reserved

D5
RGB Brightness Control Enable
0:
Disable
1:
Enable

D4
RGB Gain Control Enable
0:
Disable
1:
Enable

D3-2
Reserved

D1
Border Window Function
0:
OFF
1: ON

D0
Output Blank Screen
0:
Normal
1: Output Pixel masked as BLACK color

Output Image Control Register 2 (Address 8Ah) (R/W)

D7
Reserved
D6
Temporal
Dithering
Enable
0:
Static
Dithering
1:
Temporal
Dithering

D5
Dithering Table R/W Access Enable
0:
Disable
1:
Enable

D4
Dithering
Enable
0:
Disable
1:
Enable

D3
Reserved
D2
10 bit Gamma Table Enable
0: 8 bit Gamma Table
background image
MTL003
Page 40 of 60
1: 10 bit Gamma Table

D1
Gamma Table R/W Access Enable
0:
Disable
1:
Enable

D0
Gamma
Correction
Function
0:
OFF
1: ON

Color Gain Control - RED (Address 90h) (R/W)

It can be used to adjust the gain of RED component of the Display Image.

D7-0
RGAIN[7:0]
0(00h) ~ x1(80h) ~ x1.992185(FFh)

Color Gain Control - GREEN (Address 91h) (R/W)

It can be used to adjust the gain of GREEN component of the Display Image.

D7-0
GGAIN[7:0]
0(00h) ~ x1(80h) ~ x1.992185(FFh)

Color Gain Control - BLUE (Address 92h) (R/W)

It can be used to adjust the gain of BLUE component of the Display Image.

D7-0
BGAIN[7:0]
0(00h) ~ x1(80h) ~ x1.992185(FFh)

Color Brightness Control - RED (Address 93h) (R/W)

It can be used to adjust the brightness of RED component of the Display Image.

D7-0
RBRIGHT[7:0]
-128(80h) ~ 0(00h) ~127(7Fh)

Color Brightness Control - GREEN (Address 94h) (R/W)

It can be used to adjust the brightness of GREEN component of the Display Image.

D7-0
GBRIGHT[7:0]
-128(80h) ~ 0(00h) ~127(7Fh)

Color Brightness Control - BLUE (Address 95h) (R/W)

It can be used to adjust the brightness of BLUE component of the Display Image.

D7-0
BBRIGHT[7:0]
-128(80h) ~ 0(00h) ~127(7Fh)
background image
MTL003
Page 41 of 60
Border Window Color - RED (Address 96h) (R/W)

When the Display Image is not expanded to full screen, it can be specified as the
RED component of the border color.

D7-0
BCR[7:0]

Border Window Color - GREEN (Address 97h) (R/W)


When the Display Image is not expanded to full screen, it can be specified as the
GREEN component of the border color.

D7-0
BCG[7:0]

Border Window Color - BLUE (Address 98h) (R/W)

When the Display Image is not expanded to full screen, it can be specified as the
BLUE component of the border color.

D7-0
BCB[7:0]

Dithering Table Data Port (Address 9Eh) (R/W)

Since the Dithering Table is downloadable, this data port is the entry address.

D7-0
DITHER_PORT[7:0]

Gamma Table Data Port (Address 9Fh) (R/W)

Since the Gamma Table is downloadable, this data port is the entry address.

D7-0
GAMMA_PORT[7:0]

OSD Control Registers (Address A0h) (R/W)

D7
OSD Output Clock Select
0: from Internal Display Dot Clock
1: from Internal Display Dot Clock x 2

D6-4
Reserved

D3
OSD
Function
0:
OFF
1: ON

D2
OSD Intensity Enable (For MOTOROLA)
0
:
OFF
1: ON

D1-0
OSD TYPE Select
00: OSDRGB = {R0000000, G0000000, B0000000}
01: OSDRGB = {RR000000, GG000000, BB000000}
10: OSDRGB = {RRRR0000, GGGG0000, BBBB0000}
11: OSDRGB = {RRRRRRRR, GGGGGGGG, BBBBBBBB}
R = OSDR, G = OSDG, B = OSDB
OSD Adjustment Control (Address A1h) (R/W)
background image
MTL003
Page 42 of 60

D7
OSD Output HS Invert
0: Normal
1: Invert.

D6
OSD Output DCLK Invert
0: Normal
1: Invert.

D5-4
OSD Output HS Delay
4 steps to change, each of them is 1ns delay/step.
D3
OSD Input Data Sample Clock Invert
0:
Normal.
1: Invert.

D2-0
OSD Input Data Sample Clock Delay
8 steps to change, each of them is 1ns delay/step.

Output Invert Control (Address A4h) (R/W)

D7
Reserved

D6
RGB Data Invert Enable
0:
Disable
1:
Enable

D5
Display DCLK2 Invert
0:
Normal
1:
Invert

D4
Display DCLK1 Invert
0:
Normal
1:
Invert

D3
Reserved

D2
Display Data Enable (DDEN) Invert
0:
Normal
1:
Invert

D1
Display VSYNC Invert
0:
Normal
1:
Invert

D0
Display HSYNC Invert
0:
Normal
1:
Invert

Output Tri_state Control (Address A5h) (R/W)

D7
Display Data R2OUT, G2OUT, B2OUT Output Disable
0:
Normal
1:
Tri_stated
D6
Display Data R1OUT, G1OUT, B1OUT Output Disable
0:
Normal
background image
MTL003
Page 43 of 60
1:
Tri_stated

D5
Display DCLK2 Output Disable
0:
Normal
1:
Tri_stated

D4
Display DCLK1 Output Disable
0:
Normal
1:
Tri_stated

D3
OSD OCLK / OVSYNC / OHSYNC Output Disable
0:
Normal
1:
Tri_stated

D2
Display Data Enable (DDEN) Output Disable
0:
Normal
1:
Tri_stated

D1
Display VSYNC Output Disable
0:
Normal
1:
Tri_stated

D0
Display HSYNC Output Disable
0:
Normal
1:
Tri_stated

Output Clocks Delay Adjustment (Address A6h) (R/W)

D7-4
Display DCLK2 delay adjustment
16 steps to adjust, Typical 1ns delay/step

D3-0
Display DCLK1 delay adjustment
16 steps to adjust, Typical 1ns delay/step

Output Clocks Duty Cycle Adjustment (Address A7h) (R/W)

D7
Display DCLK2 duty cycle Increase/Decrease
0:
Decrease
1:
Increase

D6-4
Display DCLK2 duty cycle adjustment
8 steps to adjust, Typical 0.5ns delay/step

D3
Display DCLK1 duty cycle Increase/Decrease
0:
Decrease
1:
Increase

D2-0
Display DCLK1 duty cycle adjustment
8 steps to adjust, Typical 0.5ns delay/step

Zoom Control Register 0 (Address B0h) (R/W)

D7
Vertical Scale Mode
0:
Scale
Up
1:
Scale
Down
background image
MTL003
Page 44 of 60
D6-4
Vertical Scale Select
0XX:
PASS
mode
10X:
DUPLICATE
mode
110:
BILINEAR
mode
111:
INTERPOLATION TABLE mode (only for Scale Up)

D3
Horizontal Scale Mode
0:
scale
up
1:
scale
down

D2-0
Horizontal Scale Select
0xx:
PASS
mode
10x:
DUPLICATE
mode
110:
BILINEAR
mode
111: INTERPOLATION TABLE mode

Zoom Control Register 1 (Address B1h) (R/W)

D7-1
Reserved

D0
Interpolation Table R/W Access Enable
0:
Disable
1:
Enable

Zoom Vertical Scale Down Integer Ratio Region (Address B2h) (R/W)

It defines vertical scale down integer ratio value region

D7-3
Reserved

D2-0
ZVDIV[2:0]
0 : scale down ratio = 1-1/2(exclude 1)
1 : scale down ratio = 1/2-1/4(exclude 1/2)
2: scale down ratio = 1/4-1/8(exclude 1/4)
3: scale down ratio = 1/8-1/16(exclude 1/8)
4: scale down ratio = 1/16-1/32(exclude 1/16)

Zoom Horizontal Scale Down Integer Ratio Region (Address B3h) (R/W)

It defines horizontal scale down integer ratio value region.

D7-3
Reserved

D2-0
ZHDIV[2:0]
0 : scale down ratio = 1-1/2(exclude 1)
1 : scale down ratio = 1/2-1/4(exclude 1/2)
2: scale down ratio = 1/4-1/8(exclude 1/4)
3: scale down ratio = 1/8-1/16(exclude 1/8)
4: scale down ratio = 1/16-1/32(exclude 1/16)
background image
MTL003
Page 45 of 60
Zoom Vertical Scale Ratio Low (Address B4h) (R/W)

It defines the low byte of vertical scale ratio value for scale up and down.

D7-0
ZVSF[7:0]

Zoom Vertical Scale Ratio - High (Address B5h) (R/W)

It defines the low byte of vertical scale ratio value for scale up and down.

D7-0
ZVSF[15:8]

For Scale Up ZVSF = CEIL[(input_height 1)/ (output_height 1)* 2^16]IV
For Scale Down ZVSF = CEIL{[(input_height' 1)/ (output_height 1)-1]* 2^16}
,where input_height' = input_height / 2^ZVDIV. The means of ZVDIV is referenced to Reg. B2h.


Zoom Horizontal Scale Ratio - Low (Address B6h) (R/W)

It defines the low byte of horizontal scale ratio value for scale up and down.

D7-0
ZHSF[7:0]

Zoom Horizontal Scale Ratio - High (Address B7h) (R/W)

It defines the high byte of horizontal scale ratio value for scale up and down.

D7-0
ZHSF[15:8]

For Scale Up ZHSF = ROUND[(Input_width 1)/ (output_width 1)* 2^16]
For Scale Down ZVSF = ROUND{[(input_width' 1)/ (output_width 1)-1]* 2^16}
,where input_width' = input_width / 2^ZHDIV. The means of ZHDIV is referenced to Reg. B3h.

Interpolation Table Data Port (Address BFh) (R/W)

It defines the entry address of the Interpolation table data port.

D7-0
TFPORT[7:0]

Host Control Register 0 (Address C0h) (R/W)

D7
Host Screen Write Stop Enable (WO)
0:
Disable
1:
Enable

D6-1
Force to 001010

D0
Host Screen Write Start Enable (W)
0:
Disable
1:
Enable
Host Screen Write Ready Flag (R)
0:
Ready
1:
Not
Ready
background image
MTL003
Page 46 of 60
Host Control Register 1 (Address C1h) (R/W)

D7
Reserved

D6
I2C Bus Address No Increment
0:
Normal
1:
No
Increment

D5
Double Buffer load Select
0:
Immediately
1: Delay to Display VSYNC

D4
Registers Double Buffer function Enable
0:
Disable
1:
Enable

D3-2
Reserved

D1
Display Registers Double Buffer Load (WO)

D0
Input Registers Double Buffer Load (WO)

Host Screen Write Line Length - Low (Address C4h) (R/W)

It defines the low byte of the vertical line length for Host Screen Write.

D7-0
HS_LEN[7:0]

Host Screen Write Line Length - High (Address C5h) (R/W)

It defines the high byte of the vertical line length for Host Screen Write.

D7-3
Reserved

D2-0
HS_LEN[10:8]

Host Fill RED Color (Address C6h) (R/W)

It defines Fill Red color for Host Screen Write.

D7-0
HFR[7:0]

Host Fill GREEN Color (Address C7h) (R/W)

It defines Fill Green color for Host Screen Write.

D7-0
HFG[7:0]

Host Fill BLUE Color (Address C8h) (R/W)

It defines Fill Blue color for Host Screen Write.

D7-0
HFB[7:0]
background image
MTL003
Page 47 of 60
Host Access Mode Status (Address CBh) (RO)

D7-1
Reserved

D0
Host
Access
Mode
0: 2-wire Serial mode (IIC)
1: 8-bit Parallel mode

Memory Type Control (Address D0h) (R/W)

It defines the Memory type and size.

D7-2
Reserved

D1-0
00: 16M SDRAM X 3
01: 16M SDRAM X 2
10: 8M SGRAM X 3
11: 8M SGRAM X 2

Memory Self Test Control (Address D2h) (R/W)

It controls the operation of Memory Self Test Mode.

D7-3
Reserved

D2
Memory Self Test mode Result Status (RO)
0:
Success
1:
Fail

D1
Memory Self Test mode Finish Status (RO)
0:
Finish
1:
Not
Finish

D0
Memory Self Test mode Enable
0:
Disable
1: Enable

Memory Self-Test Compare Error Address Low (Address DBh) (RO)


It defines the low byte of Memory Base Address for Memory Self-Test comparing error report.

D7-0
MSFTBA
[7:0]

Memory Self-Test Compare Error Address Middle (Address DCh) (RO)

It defines the middle byte of Memory Base Address for Memory Self-Test comparing error report.

D7-0
MSFTBA
[15:8]

Memory Self-Test Compare Error Address High (Address DDh) (RO)


It defines the high byte of Memory Base Address for Memory Self-Test comparing error report and Patterns
Number.

D7 Reserved
D6-5
Memory Self-Test Patterns Number when Comparing Error
background image
MTL003
Page 48 of 60
00: Pattern Constructed by Linear Memory Address
01: 48 Bits Pattern Toggled between 55 and AA
10: 48 Bits Pattern Toggled between AA and 55
11:
Reserved

D4-0
MSFTBA
[20:16]

Clock Synthesizer Control Register (Address E0h) (R/W)

D7-4
Reserved

D3
Memory Clock Source
0: Internal Memory Clock
1: External Memory Clock from pin EXTMCLK

D2
Display Clock Source
0: Internal Display Clock
1: External Display Clock from pin EXTDCLK

D1
Memory Clock Synthesizer Enable
0:
Enable
1:
Disable

D0
Display Clock Synthesizer Enable
0:
Enable
1:
Disable


Clock Synthesizer Value Load
(Address E1h) (WO)

D7-2
Reserved

D1
Memory Clock Synthesizer Value Load (WO)

D0
Display Clock Synthesizer Value Load (WO)

Display Clock Synthesizer M Value (Address E2h) (R/W)


D7-0
Display Clock Synthesizer M value

Display Clock Synthesizer N Value (Address E3h) (R/W)

D7-0
Display Clock Synthesizer N value

Memory Clock Synthesizer M Value (Address E4h) (R/W)

D7-0
Memory Clock Synthesizer M value

Memory Clock Synthesizer N Value (Address E5h) (R/W)

D7-0
Memory Clock Synthesizer N value
background image
MTL003
Page 49 of 60
Clock Synthesizer R Value (Address E6h) (R/W)

D7-4
Reserved

D3-2
Memory Clock Synthesizer R value
00:
No
divided
01: Divided by 2
1x: Divided by 4

D1-0
Display Clock Synthesizer R value
00:
No
divided
01: Divided by 2
1x: Divided by 4

SYNC Interrupt Flag Control (Address E8h) (R)


It contains the status of SYNC Interrupts.

D7
Display VSYNC Pulse Interrupt Status
0: No Display VSYNC pulse detected
1: Any Display VSYNC pulse detected

D6
Input VSYNC Pulse Interrupt Status
0: No Input VSYNC pulse detected
1: Any Input VSYNC pulse detected

D5
VSYNC Presence Change Status
0:
No
Change
1:
Change

D4
HSYNC Presence Change Status
0:
No
Change
1:
Change

D3
VSYNC Polarity Change Status
0:
No
Change
1:
Change

D2
HSYNC Polarity Change Status
0:
No
Change
1:
Change

D1
VSYNC Frequency Change Status
0:
No
Change
1:
Change

D0
HSYNC Frequency Change Status
0:
No
Change
1:
Change

SYNC Interrupt Flag Control (Address E8h) (W)

It is used to clear the corresponding SYNC interrupt signal when Software finishes
serving the interrupt service routine.

D7
Clear Display VSYNC Pulse Interrupt Enable
background image
MTL003
Page 50 of 60
0:
Disable
1:
Enable

D6
Clear Input VSYNC Pulse Interrupt Enable
0:
Disable
1:
Enable

D5
Clear VSYNC Presence Change Interrupt Enable
0:
Disable
1:
Enable

D4
Clear HSYNC Presence Change Interrupt Enable
0:
Disable
1:
Enable

D3
Clear VSYNC Polarity Change Interrupt Enable
0:
Disable
1:
Enable

D2
Clear HSYNC Polarity Change Interrupt Enable
0:
Disable
1:
Enable

D1
Clear VSYNC Frequency Change Interrupt Enable
0:
Disable
1:
Enable

D0
Clear HSYNC Frequency Change Interrupt Enable
0:
Disable
1:
Enable

General Interrupt Flag Control (Address E9h) (R)

It contains the status of General Interrupts.

D7-2
Reserved

D1
Auto Position Finish Status (valid for Single mode only)
0:
Not
Finish
1:
Finish

D0
Auto Calibration Finish Status (valid for Single mode only)
0:
Not
Finish
1:
Finish

General Interrupt Flag Control (Address E9h) (W)

It is used to clear the corresponding general interrupt signal when Software finishes
serving the interrupt service routine.

D7-2
Reserved

D1
Clear Auto Position Finish Interrupt Enable
0:
Disable
1:
Enable
background image
MTL003
Page 51 of 60
D0
Clear Auto Calibration Finish Interrupt Enable
0:
Disable
1:
Enable

SYNC Interrupt Flag Enable (Address EAh) (R/W)

It is used to enable SYNC Interrupt function.

D7
Display VSYNC Pulse Interrupt Enable
0:
Disable
1:
Enable

D6
Input VSYNC Pulse Interrupt Enable
0:
Disable
1:
Enable

D5
VSYNC Presence Change Interrupt Enable
0:
Disable
1:
Enable

D4
HSYNC Presence Change Interrupt Enable
0:
Disable
1:
Enable

D3
VSYNC Polarity Change Interrupt Enable
0:
Disable
1:
Enable

D2
HSYNC Polarity Change Interrupt Enable
0:
Disable
1:
Enable

D1
VSYNC Frequency Change Interrupt Enable
0:
Disable
1:
Enable

D0
HSYNC Frequency Change Interrupt Enable
0:
Disable
1:
Enable

General Interrupt Flag Enable (Address EBh) (R/W)

It is used to enable General Interrupt functions.

D7-2
Reserved

D1
Auto Position Finish Interrupt Enable
0:
Disable
1:
Enable

D0
Auto Calibration Finish Interrupt Enable
0:
Disable
1:
Enable
background image
MTL003
Page 52 of 60
HS Frequency Change Interrupt Compare (Address ECh) (R/W)

It is used to control Interrupt generation by comparing the frequency change value
when Input HS Frequency Changes.

D7-0
HSCMPREG[7:0]

Power Management Control (Address F1h) (R/W)


D7
Reserved

D6
Power Down Gamma & Interpolation Table
0:
Normal
1:
Power
Down

D5
Power Down Output Line Buffers
0:
Normal
1:
Power
Down

D4
Power Down Input Line Buffers
0:
Normal
1:
Power
Down

D3-2
Reserved

D1
Power Down all the clocks except REFCLK
0:
Normal
1:
Power
Down

D0
Software
Reset
Enable
0:
Disable
1:
Enable
GPIO Control Register (Address F4h) (R/W)

It controls the data of the GPIO pins.

D7-0
GPIO[7:0]

GPIO Direction Control (Address F5h) (R/W)

It controls the In/Out direction of the GPIO pins, where "0" means Output, and
"1" means Tri_state or Input.

D7-6
GPIO[7:6] Output Enable
0:
Output
1:
Tri_state

D5-0
GPIO[5:0] In/Out Select
0:
Output
1:
Input
background image
MTL003
Page 53 of 60

GPIO Misc Control (Address F6h) (R/W)

It defines the GPIO pins miscellaneous control.
D7-1
Reserved

D0
GPIO[7:6] Output Pins Source
0:
from
Reg.
F4h/D7-6
1:
from
ADVS/ADHS












background image
MTL003
Page 54 of 60
5. ELECTRICAL CHARACTERISTICS
5.1 DC CHARACTERISTICS

Table 5.1 Recommended Operating Conditions

SYMBOL
PARAMETER
MIN
TYP MAX UNIT
Vcc
Operation Voltage
3.0
3.3
3.6
V
Tamb
Operating Ambient Temperature
0
70
o
C
Tstg
Storage Temperature
-55
150
o
C

Table 5.2 DC Electrical Characteristics for 3.3 V Operation

SYMBOL
PARAMETER
CONDITIONS MIN
TYP MAX UNIT
VIL
Input Low Voltage
0.8
V
VIH
Input High Voltage
2.0
V
Vt-
Input Schmitt Trigger
Low Voltage at pins
SDA and SCK
1.0
Vt+
Input Schmitt Trigger
High Voltage at pins
SDA and SCK
1.7
VOL
Output Low Voltage
0.4
V
VOH
Output High Voltage
2.4
V
RI
Input Pull-up/Down
Resistance
VIL = 0v or
VIH = VCC
75
Kohm
ILI
Input Leakage Current
-10
10
uA
ILO
Output Leakage Current
-20
20
uA

5.2 AC CHARACTERISTICS
Input Interface Timing
Figure 5.2.1 Input Interface Timing


















Tids
Tidh
Tivhh
Tivhs
IPCLK
Input VS/HS
PIXIN[23:0]
background image
MTL003
Page 55 of 60
Table 5.2.1 Input Interface Timing

SYMBOL
PARAMETER
MIN MAX UNIT
Tids
Input Image Signal Setup Time for IPCLK
2
ns
Tidh
Input Image Signal Hold Time for IPCLK
3
ns
Tivhs
Input VSYNC/HSYNC Setup Time for IPCLK
2
ns
Tivhh
Input VSYNC/HSYNC Hold Time for IPCLK
3
ns

Output Interface Timing

Figure 5.2.2 Output Interface Timing


















Table 5.2.2 Output Interface Timing


SYMBOL
PARAMETER
MIN MAX UNIT
Tdvs
Display VSYNC Output Delay to DDCLK
2
ns
Tdhs
Display HSYNC Output Delay to DDCLK
0.5
ns
Tdde
Display DDEN Output Delay to DDCLK
1
ns
Tddp
Display Data Output Delay to DDCLK
1.5
ns

Note: DDCLK phase can be adjusted relative to data and control outputs using the DDCLK_INV
(Reg. A4h/D5-4) and DDCLK_DELAY[2:0] (Reg. A6h/D7-0) programming controls.




Tdde
Tdhs
Tddp
Tdvs
DDCLK
Display VS
PIXOUT1[23:0] / PIXOUT2[23:0]
Display HS
Display DDEN
background image
MTL003
Page 56 of 60
OSD Interface Timing
Figure 5.2.3 OSD Interface Timing
















Table 5.2.3 OSD Interface Timing


SYMBOL
PARAMETER
MIN MAX UNIT
Tosdd
OSD VS / HS Output Delay to OCLK
2
ns
Tosds
OSD Signal Input Setup Time for OCLK
5.5
ns
Tosdh
OSD Signal Input Hold Time for OCLK
0
ns

Note: OCLK phase can be adjusted using OCLK_INV (Reg. A1h/D3) programming control and OHSYNC
phase can be adjusted using OHSYNC_DELAY[1:0] (Reg. A1h/D5-4) programming control.
















Tosdd
Tosds
Tosdh
OCLK
Input OSDDEN / OSDRED /
OSDGRN / OSDBLU
OVSYNC / OHSYNC
background image
MTL003
Page 57 of 60
I2C Host Interface Timing
Figure 5.2.4 I2C Host Interface Timing














Table 5.2.4 I2C Host Interface Timing


SYMBOL
PARAMETER
MIN MAX UNIT
Thigh
Clock High Period
500
ns
Tlow
Clock Low Period
500
ns
Tsu:dat
Data in Setup Time
200
ns
Thd:dat
Data in Hold Time
100
ns
Tsu:sta
Start condition Setup Time
500
ns
Thd:sta
Start condition Hold Time
500
ns
Tsu:sto
Stop condition Setup Time
500
ns
Thd:sto
Stop condition Hold Time
500
ns
8-bit Direct Host Interface Timing
Figure 5.2.5 8-bit Direct Host Interface Timing

















Table
5.2.5 8-bit Direct Host Interface Timing
Tsu:dat
Thd:dat
Tsu:sta
Thd:sto
Tsu:sto
Thd:sta
Tlow
Thigh
Tqvwh
DATA IN
DATA OUT
A0-A7
A0-A7
Tavll Tllax
Tllwl
Trwpw
Twhlh
Trhdz
Trldv
Trlaz
AD(7:0)/WR
AD(7:0)/RD
ALE
WR/RD
background image
MTL003
Page 58 of 60

SYMBOL
PARAMETER
MIN MAX UNIT
Tavll
Address Valid to ALE Low
3
ns
Tllax
Address Hold After ALE Low
5
ns
Trwpw
WR/RD Pulse Width
35
ns
Tllwl
ALE Low to WR/RD Low
5
ns
Tqvwh
Data Valid to WR High
3
ns
Twhqx
Data Hold After WR
10
ns
Twhlh
WR/RD High to ALE High
0
ns
Trlaz
RD Low to Address Float
-5
ns
Trldv
RD Low to Valid Data In
30
ns
Trhdz
Data Float after RD High
0
15
ns
Memory Interface (SDRAM/SGRAM) Timing



Figure 5.2.6 Memory Interface Timing


















Table
5.2.6 Memory Interface Timing

SYMBOL
PARAMETER
MIN MAX UNIT
Tmck
Memory Clock Cycle Time
10
ns
Tmch
Memory Clock High Level Width
4.5
ns
Tmcl
Memory Clock Low Level Width
4.5
ns
Tmds
Data-in Setup Time for MCK
1
ns
Tmdh
Data-in Hold Time for MCK
2
ns
Tmod
Memory Output Delay to MCK
2
8.5
ns



MCKE, MCS#, MRAS#,
MCAS#, MWE#,
DQM[1:0], MA[11:0]
Tmch Tmcl
Tmck
Tmod
Tmds Tmdh
MCK
MD[47:0]
background image
MTL003
Page 59 of 60
6. PACKAGE DIMENSION
120/128/132/144/160/184/208/256L OFP
28 X 28 X 3.32 mm
2.6mm FOOTPRINT









































E
MILLIMETER INCH
SYMBOL
MIN. NOM. MAX. MIN. NOM. MAX.
A X
X 4.10 X X 0.161
A1 0.25
X X
0.010
X X
A2 3.20
3.32
3.60 0.126 0.131 0.142
D
30.60 BSC
1.205 BSC
D1
28.00 BSC
1.102 BSC
E
30.60 BSC
1.205 BSC
E1
28.00 BSC
1.102 BSC
R2 0.08
X 0.25
0.003 X 0.010
R1 0.08
X 0.003
X X
0 3.5 7 0 3.5
7
1
0
X
X
0
X
X
2
8 REF
8 REF
3
8 REF
8 REF
C 0.09
0.15
0.20
0.004 0.005 0.008
L 0.45
0.60
0.75
0.018 0.024 0.030
L1 1.30 0.051
REF
S 0.20
X X
0.008
X X
NOTES:
1. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.
2. SIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION.
ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE
LEAD WIDTH TO EXCEED THE MAXIMUM b DIMENSION BY MORE
THAN 0.08mm.
DAMBAR CAN NOT BE LOCATED ON THE LOWER RADIUS OR THE
FOOT. THE MINIMUM SPACE BETWEEN PROTRUSION AND AN
ADJACENT LEAD SHALL NOT BE LESS THAN 0.07 mm.
3. THE TOP PACKAGE BOOY SIZE MAY BE SMALLER THAN THE
BOTTOM PACKAGE BOOY SIZE.
GAGE PLANE
C
3
1
C
ccc
D
A-B
C
ddd
b
4X
A-B D
H
A-B D
C
aaa
4X
e
E1
E2
D1
D2
D
0.05
A2
C
;L1
MIN. NOM. MAX. MIN. NOM. MAX.
0.13 0.16 0.23 0.005 0.006 0.009
0.40 BSC.
0.016 BSC.
25.20 0.992
25.20 0.992
TOLERANCES OF FORM AND
POSITION
0.20 0.008
0.20 0.008
X 0.08 X X 0.003
X
X 0.07 X X 0.003
X
A1
B
A
bbb
M
S
S
S
SEATING PLANE
S
2