ChipFind - документация

Электронный компонент: LM1086C-5.0

Скачать:  PDF   ZIP

Document Outline

LM1086
1.5A Low Dropout Positive Regulators
General Description
The LM1086 is a series of low dropout positive voltage
regulators with a maximum dropout of 1.5V at 1.5A of load
current. It has the same pin-out as National Semiconductor's
industry standard LM317.
The LM1086 is available in an adjustable version, which can
set the output voltage with only two external resistors. It is
also available in six fixed voltages: 1.8V, 2.5V, 2.85V, 3.3V,
3.45V and 5.0V. The fixed versions integrate the adjust
resistors.
The LM1086 circuit includes a zener trimmed bandgap ref-
erence, current limiting and thermal shutdown.
The LM1086 series is available in TO-220, TO-263, and LLP
packages. Refer to the LM1084 for the 5A version, and the
LM1085 for the 3A version.
Features
n
Available in 1.8V, 2.5V, 2.85V, 3.3V, 3.45V, 5V and
Adjustable Versions
n
Current Limiting and Thermal Protection
n
Output Current
1.5A
n
Line Regulation
0.015% (typical)
n
Load Regulation
0.1% (typical)
Applications
n
SCSI-2 Active Terminator
n
High Efficiency Linear Regulators
n
Battery Charger
n
Post Regulation for Switching Supplies
n
Constant Current Regulator
n
Microprocessor Supply
Connection Diagrams
TO-220
TO-263
LLP
10094802
Top View
10094804
Top View
10094866
Pins 6, 7, and 8 must be tied together.
Top View
Basic Functional Diagram, Adjustable Version
10094865
Application Circuit
10094852
1.2V to 15V Adjustable Regulator
November 2002
LM1086
1.5A
Low
Dropout
Positive
Regulators
2002 National Semiconductor Corporation
DS100948
www.national.com
Ordering Information
Package
Temperature Range
Part Number
Transport Media
NSC Drawing
3-lead TO-263
-40C to +125C
LM1086IS-ADJ
Rails
TS3B
LM1086ISX-ADJ
Tape and Reel
LM1086IS-1.8
Rails
LM1086ISX-1.8
Tape and Reel
LM1086IS-2.85
Rails
LM1086ISX-2.85
Tape and Reel
LM1086IS-3.3
Rails
LM1086ISX-3.3
Tape and Reel
LM1086IS-3.45
Rails
LM1086ISX-3.45
Tape and Reel
LM1086IS-5.0
Rails
LM1086ISX-5.0
Tape and Reel
0C to +125C
LM1086CS-ADJ
Rails
LM1086CSX-ADJ
Tape and Reel
LM1086CS-2.5
Rails
LM1086CSX-2.5
Tape and Reel
LM1086CS-2.85
Rails
LM1086CSX-2.85
Tape and Reel
LM1086CS-3.3
Rails
LM1086CSX-3.3
Tape and Reel
LM1086CS-5.0
Rails
LM1086CSX-5.0
Tape and Reel
3-lead TO-220
-40C to +125C
LM1086IT-ADJ
Rails
T03B
LM1086IT-1.8
Rails
LM1086IT-2.85
Rails
LM1086IT-3.3
Rails
LM1086IT-5.0
Rails
0C to +125C
LM1086CT-ADJ
Rails
LM1086CT-2.85
Rails
LM1086CT-3.3
Rails
LM1086CT-5.0
Rails
8-Lead LLP
-40C to +125C
LM1086ILD-ADJ
Rails
LDC008AA
LM1086ILDX-ADJ
Tape and Reel
LM1086ILD-1.8
Rails
LM1086ILDX-1.8
Tape and Reel
LM1086ILD-2.5
Rails
LM1086ILDX-2.5
Tape and Reel
LM1086ILD-2.85
Rails
LM1086ILDX-2.85
Tape and Reel
LM1086ILD-3.3
Rails
LM1086ILDX-3.3
Tape and Reel
LM1086ILD-5.0
Rails
LM1086ILDX-5.0
Tape and Reel
LM1086
www.national.com
2
Simplified Schematic
10094834
LM1086
www.national.com
3
Absolute Maximum Ratings
(Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
Maximum Input-to-Output Voltage Differential
LM1086-ADJ
29V
LM1086-1.8
27V
LM1086-2.5
27V
LM1086-2.85
27V
LM1086-3.3
27V
LM1086-3.45
27V
LM1086-5.0
25V
Power Dissipation (Note 2)
Internally Limited
Junction Temperature (T
J
)(Note 3)
150C
Storage Temperature Range
-65C to 150C
Lead Temperature
260C, to 10 sec
ESD Tolerance (Note 4)
2000V
Operating Ratings
(Note 1)
Junction Temperature Range (T
J
) (Note 3)
"C" Grade
Control Section
0C to 125C
Output Section
0C to 150C
"I" Grade
Control Section
-40C to 125C
Output Section
-40C to 150C
Electrical Characteristics
Typicals and limits appearing in normal type apply for T
J
= 25C. Limits appearing in Boldface type apply over the entire junc-
tion temperature range for operation.
Symbol
Parameter
Conditions
Min
(Note 6)
Typ
(Note 5)
Max
(Note 6)
Units
V
REF
Reference Voltage
LM1086-ADJ
I
OUT
= 10mA, V
IN
-V
OUT
= 3V
10mA
I
OUT
I
FULL LOAD
,
1.5V
V
IN
-V
OUT
15V (Note 7)
1.238
1.225
1.250
1.250
1.262
1.270
V
V
V
OUT
Output Voltage
(Note 7)
LM1086-1.8
I
OUT
= 0mA, V
IN
= 5V
0
I
OUT
I
FULL LOAD
, 3.3V
V
IN
18V
1.782
1.764
1.8
1.8
1.818
1.836
V
LM1086-2.5
I
OUT
= 0mA, V
IN
= 5V
0
I
OUT
I
FULL LOAD
, 4.0V
V
IN
18V
2.475
2.450
2.50
2.50
2.525
2.55
V
LM1086-2.85
I
OUT
= 0mA, V
IN
= 5V
0
I
OUT
I
FULL LOAD
, 4.35V
V
IN
18V
2.82
2.79
2.85
2.85
2.88
2.91
V
V
LM1086-3.3
I
OUT
= 0mA, V
IN
= 5V
0
I
OUT
I
FULL LOAD
, 4.75V
V
IN
18V
3.267
3.235
3.300
3.300
3.333
3.365
V
V
LM1086-3.45
I
OUT
= 0mA, V
IN
= 5V
0
I
OUT
I
FULL LOAD
, 4.95V
V
IN
18V
3.415
3.381
3.45
3.45
3.484
3.519
V
V
LM1086-5.0
I
OUT
= 0mA, V
IN
= 8V
0
I
OUT
I
FULL LOAD
, 6.5V
V
IN
20V
4.950
4.900
5.000
5.000
5.050
5.100
V
V
V
OUT
Line Regulation
(Note 8)
LM1086-ADJ
I
OUT
=10mA, 1.5V
(V
IN
-V
OUT
)
15V
0.015
0.035
0.2
0.2
%
%
LM1086-1.8
I
OUT
= 0mA, 3.3V
V
IN
18V
0.3
0.6
6
6
mV
LM1086-2.5
I
OUT
= 0mA, 4.0V
V
IN
18V
0.3
0.6
6
6
mV
LM1086
www.national.com
4
Electrical Characteristics
(Continued)
Typicals and limits appearing in normal type apply for T
J
= 25C. Limits appearing in Boldface type apply over the entire junc-
tion temperature range for operation.
Symbol
Parameter
Conditions
Min
(Note 6)
Typ
(Note 5)
Max
(Note 6)
Units
LM1086-2.85
I
OUT
= 0mA, 4.35V
V
IN
18V
0.3
0.6
6
6
mV
mV
LM1086-3.3
I
OUT
= 0mA, 4.5V
V
IN
18V
0.5
1.0
10
10
mV
mV
LM1086-3.45
I
OUT
= 0mA, 4.95V
V
IN
18V
0.5
1.0
10
10
mV
mV
LM1086-5.0
I
OUT
= 0mA, 6.5V
V
IN
20V
0.5
1.0
10
10
mV
mV
V
OUT
Load Regulation
(Note 8)
LM1086-ADJ
(V
IN
-V
OUT
) = 3V, 10mA
I
OUT
I
FULL LOAD
0.1
0.2
0.3
0.4
%
%
LM1086-1.8 ,2.5, 2.85
V
IN
= 5V, 0
I
OUT
I
FULL LOAD
3
6
12
20
mV
mV
LM1086-3.3, 3.45
V
IN
= 5V, 0
I
OUT
I
FULL LOAD
3
7
15
25
mV
mV
LM1086-5.0
V
IN
= 8V, 0
I
OUT
I
FULL LOAD
5
10
20
35
mV
mV
Dropout Voltage
(Note 9)
LM1086-ADJ, 1.8, 2.5,2.85, 3.3, 3.45, 5
V
REF
= 1%, I
OUT
= 1.5A
1.3
1.5
V
I
LIMIT
Current Limit
LM1086-ADJ
V
IN
-V
OUT
= 5V
V
IN
-V
OUT
= 25V
1.50
0.05
2.7
0.15
A
A
LM1086-1.8,2.5, 2.85, 3.3, 3.45, V
IN
= 8V
1.5
2.7
A
LM1086-5.0, V
IN
= 10V
1.5
2.7
A
Minimum Load Current
(Note 10)
LM1086-ADJ
V
IN
-V
OUT
= 25V
5.0
10.0
mA
Quiescent Current
LM1086-1.8, 2.5, 2.85, V
IN
18V
5.0
10.0
mA
LM1086-3.3, V
IN
18V
5.0
10.0
mA
LM1086-3.45, V
IN
18V
5.0
10.0
mA
LM1086-5.0, V
IN
20V
5.0
10.0
mA
Thermal Regulation
T
A
= 25C, 30ms Pulse
0.008
0.04
%/W
Ripple Rejection
f
RIPPLE
= 120Hz, C
OUT
= 25F Tantalum,
I
OUT
= 1.5A
60
75
dB
LM1086-ADJ, C
ADJ
= 25F, (V
IN
-V
O
) = 3V
LM1086-1.8, 2.5, 2.85, V
IN
= 6V
60
72
dB
LM1086-3.3, V
IN
= 6.3V
60
72
dB
LM1086-3.45, V
IN
= 6.3V
60
72
dB
LM1086-5.0 V
IN
= 8V
60
68
dB
Adjust Pin Current
LM1086
55
120
A
Adjust Pin Current
Change
10mA
I
OUT
I
FULL LOAD
,
1.5V
(V
IN
-V
OUT
)
15V
0.2
5
A
Temperature Stability
0.5
%
Long Term Stability
T
A
= 125C, 1000Hrs
0.3
1.0
%
RMS Noise
(% of V
OUT
)
10Hz
f 10kHz
0.003
%
JC
Thermal Resistance
Junction-to-Case
3-Lead TO-263: Control Section/Output
Section
3-Lead TO-220: Control Section/Output
Section
1.5/4.0
1.5/4.0
C/W
C/W
LM1086
www.national.com
5
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is
intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Power dissipation is kept in a safe range by current limiting circuitry. Refer to Overload Recovery in Application Notes. The value
JA
for the LLP package
is specifically dependent on PCB trace area, trace material, and the number of thermal vias. For improved thermal resistance and power dissipation for the LLP
package, refer to Application Note AN-1187.
Note 3: The maximum power dissipation is a function of T
J(MAX)
,
JA
, and T
A
. The maximum allowable power dissipation at any ambient temperature
is P
D
= (T
J(MAX)
T
A
)/
JA
. All numbers apply for packages soldered directly into a PC board. Refer to Thermal Considerations in the Application Notes.
Note 4: For testing purposes, ESD was applied using human body model, 1.5k
in series with 100pF.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: I
FULL LOAD
is defined in the current limit curves. The I
FULL LOAD
Curve defines current limit as a function of input-to-output voltage. Note that 15W power
dissipation for the LM1086 is only achievable over a limited range of input-to-output voltage.
Note 8: Load and line regulation are measured at constant junction temperature, and are guaranteed up to the maximum power dissipation of 15W. Power
dissipation is determined by the input/output differential and the output current. Guaranteed maximum power dissipation will not be available over the full input/output
range.
Note 9: Dropout voltage is specified over the full output current range of the device.
Note 10: The minimum output current required to maintain regulation.
Typical Performance Characteristics
Dropout Voltage vs. Output Current
Short-Circuit Current vs. Input/Output Difference
10094863
10094837
Load Regulation vs. Temperature
Percent Change in Output Voltage vs. Temperature
10094838
10094899
LM1086
www.national.com
6
Typical Performance Characteristics
(Continued)
Adjust Pin Current vs. Temperature
Maximum Power Dissipation vs. Temperature
10094898
10094842
Ripple Rejection vs. Frequency (LM1086-Adj.)
Ripple Rejection vs. Output Current (LM1086-Adj.)
10094843
10094844
Ripple Rejection vs. Frequency (LM1086-5)
Ripple Rejection vs. Output Current (LM1086-5)
10094845
10094846
LM1086
www.national.com
7
Typical Performance Characteristics
(Continued)
Line Transient Response
Load Transient Response
10094847
10094848
Application Note
General
Figure 1 shows a basic functional diagram for the
LM1086-Adj (excluding protection circuitry) . The topology is
basically that of the LM317 except for the pass transistor.
Instead of a Darlingtion NPN with its two diode voltage drop,
the LM1086 uses a single NPN. This results in a lower
dropout voltage. The structure of the pass transistor is also
known as a quasi LDO. The advantage a quasi LDO over a
PNP LDO is its inherently lower quiescent current. The
LM1086 is guaranteed to provide a minimum dropout volt-
age 1.5V over temperature, at full load.
Output Voltage
The LM1086 adjustable version develops at 1.25V reference
voltage, (V
REF
), between the output and the adjust terminal.
As shown in figure 2, this voltage is applied across resistor
R1 to generate a constant current I1. This constant current
then flows through R2. The resulting voltage drop across R2
adds to the reference voltage to sets the desired output
voltage.
The current I
ADJ
from the adjustment terminal introduces an
output error . But since it is small (120uA max), it becomes
negligible when R1 is in the 100
range.
For fixed voltage devices, R1 and R2 are integrated inside
the devices.
Stability Consideration
Stability consideration primarily concern the phase response
of the feedback loop. In order for stable operation, the loop
must maintain negative feedback. The LM1086 requires a
certain amount series resistance with capacitive loads. This
series resistance introduces a zero within the loop to in-
crease phase margin and thus increase stability. The equiva-
lent series resistance (ESR) of solid tantalum or aluminum
electrolytic capacitors is used to provide the appropriate zero
(approximately 500 kHz).
The Aluminum electrolytic are less expensive than tantal-
ums, but their ESR varies exponentially at cold tempera-
tures; therefore requiring close examination when choosing
the desired transient response over temperature. Tantalums
are a convenient choice because their ESR varies less than
2:1 over temperature.
The recommended load/decoupling capacitance is a 10uF
tantalum or a 50uF aluminum. These values will assure
stability for the majority of applications.
The adjustable versions allows an additional capacitor to be
used at the ADJ pin to increase ripple rejection. If this is done
the output capacitor should be increased to 22uF for tantal-
ums or to 150uF for aluminum.
Capacitors other than tantalum or aluminum can be used at
the adjust pin and the input pin. A 10uF capacitor is a
reasonable value at the input. See Ripple Rejection section
regarding the value for the adjust pin capacitor.
10094865
FIGURE 1. Basic Functional Diagram for the LM1086,
excluding Protection circuitry
10094817
FIGURE 2. Basic Adjustable Regulator
LM1086
www.national.com
8
Application Note
(Continued)
It is desirable to have large output capacitance for applica-
tions that entail large changes in load current (microproces-
sors for example). The higher the capacitance, the larger the
available charge per demand. It is also desirable to provide
low ESR to reduce the change in output voltage:
V = I x ESR
It is common practice to use several tantalum and ceramic
capacitors in parallel to reduce this change in the output
voltage by reducing the overall ESR.
Output capacitance can be increased indefinitely to improve
transient response and stability.
Ripple Rejection
Ripple rejection is a function of the open loop gain within the
feed-back loop (refer to Figure 1 and Figure 2). The LM1086
exhibits 75dB of ripple rejection (typ.). When adjusted for
voltages higher than V
REF
, the ripple rejection decreases as
function of adjustment gain: (1+R1/R2) or V
O
/V
REF
. There-
fore a 5V adjustment decreases ripple rejection by a factor of
four (-12dB); Output ripple increases as adjustment voltage
increases.
However, the adjustable version allows this degradation of
ripple rejection to be compensated. The adjust terminal can
be bypassed to ground with a capacitor (C
ADJ
). The imped-
ance of the C
ADJ
should be equal to or less than R1 at the
desired ripple frequency. This bypass capacitor prevents
ripple from being amplified as the output voltage is in-
creased.
1/(2
*
f
RIPPLE
*
C
ADJ
)
R
1
Load Regulation
The LM1086 regulates the voltage that appears between its
output and ground pins, or between its output and adjust
pins. In some cases, line resistances can introduce errors to
the voltage across the load. To obtain the best load regula-
tion, a few precautions are needed.
Figure 3 shows a typical application using a fixed output
regulator. Rt1 and Rt2 are the line resistances. V
LOAD
is less
than the V
OUT
by the sum of the voltage drops along the line
resistances. In this case, the load regulation seen at the
R
LOAD
would be degraded from the data sheet specification.
To improve this, the load should be tied directly to the output
terminal on the positive side and directly tied to the ground
terminal on the negative side.
When the adjustable regulator is used (Figure 4), the best
performance is obtained with the positive side of the resistor
R1 tied directly to the output terminal of the regulator rather
than near the load. This eliminates line drops from appearing
effectively in series with the reference and degrading regu-
lation. For example, a 5V regulator with 0.05
resistance
between the regulator and load will have a load regulation
due to line resistance of 0.05
x I
L
. If R1 (=125
) is con-
nected near the load the effective line resistance will be
0.05
(1 + R2/R1) or in this case, it is 4 times worse. In
addition, the ground side of the resistor R2 can be returned
near the ground of the load to provide remote ground sens-
ing and improve load regulation.
3.0 Protection Diodes
Under normal operation, the LM1086 regulator does not
need any protection diode. With the adjustable device, the
internal resistance between the adjustment and output ter-
minals limits the current. No diode is needed to divert the
current around the regulator even with a capacitor on the
adjustment terminal. The adjust pin can take a transient
signal of
25V with respect to the output voltage without
damaging the device.
When an output capacitor is connected to a regulator and
the input is shorted, the output capacitor will discharge into
the output of the regulator. The discharge current depends
on the value of the capacitor, the output voltage of the
regulator, and rate of decrease of V
IN
. In the LM1086 regu-
lator, the internal diode between the output and input pins
can withstand microsecond surge currents of 10A to 20A.
With an extremely large output capacitor (
1000 f), and
with input instantaneously shorted to ground, the regulator
could be damaged. In this case, an external diode is recom-
mended between the output and input pins to protect the
regulator, shown in Figure 5.
10094818
FIGURE 3. Typical Application using Fixed Output
Regulator
10094819
FIGURE 4. Best Load Regulation using Adjustable
Output Regulator
LM1086
www.national.com
9
Application Note
(Continued)
Overload Recovery
Overload recovery refers to regulator's ability to recover from
a short circuited output. A key factor in the recovery process
is the current limiting used to protect the output from drawing
too much power. The current limiting circuit reduces the
output current as the input to output differential increases.
Refer to short circuit curve in the curve section.
During normal start-up, the input to output differential is
small since the output follows the input. But, if the output is
shorted, then the recovery involves a large input to output
differential. Sometimes during this condition the current lim-
iting circuit is slow in recovering. If the limited current is too
low to develop a voltage at the output, the voltage will
stabilize at a lower level. Under these conditions it may be
necessary to recycle the power of the regulator in order to
get the smaller differential voltage and thus adequate start
up conditions. Refer to curve section for the short circuit
current vs. input differential voltage.
Thermal Considerations
ICs heats up when in operation, and power consumption is
one factor in how hot it gets. The other factor is how well the
heat is dissipated. Heat dissipation is predictable by knowing
the thermal resistance between the IC and ambient (
JA
).
Thermal resistance has units of temperature per power
(C/W). The higher the thermal resistance, the hotter the IC.
The LM1086 specifies the thermal resistance for each pack-
age as junction to case (
JC
). In order to get the total
resistance to ambient (
JA
), two other thermal resistance
must be added, one for case to heat-sink (
CH
) and one for
heatsink to ambient (
HA
). The junction temperature can be
predicted as follows:
T
J
= T
A
+ P
D
(
JC
+
CH
+
HA
) = T
A
+ P
D
JA
T
J
is junction temperature, T
A
is ambient temperature, and
P
D
is the power consumption of the device. Device power
consumption is calculated as follows:
I
IN
= I
L
+ I
G
P
D
= (V
IN
-V
OUT
) I
L
+ V
IN
I
G
Figure 6 shows the voltages and currents which are present
in the circuit.
Once the device power is determined, the maximum allow-
able (
JA(max)
) is calculated as:
JA (max)
= T
R(max)
/P
D
= T
J(max)
- T
A(max)
)/P
D
The LM1086 has different temperature specifications for two
different sections of the IC: the control section and the output
section. The Electrical Characteristics table shows the junc-
tion to case thermal resistances for each of these sections,
while the maximum junction temperatures (T
J(max)
) for each
section is listed in the Absolute Maximum section of the
datasheet. T
J(max)
is 125C for the control section, while
T
J(max)
is 150C for the output section.
JA (max)
should be calculated separately for each section as
follows:
JA
(max, CONTROL SECTION) = (125C for T
A(max)
)/P
D
JA
(max, OUTPUT SECTION) = (150C for T
A(max)
)/P
D
The required heat sink is determined by calculating its re-
quired thermal resistance (
HA(max)
).
HA(max)
=
JA(max)
- (
JC
+
CH
)
HA (max)
should be calculated twice as follows:
HA (max)
=
JA
(max, CONTROL SECTION) - (
JC
(CON-
TROL SECTION) +
CH
)
HA (max)
=
JA
(max, OUTPUT SECTION) - (
JC
(OUTPUT
SECTION) +
CH
)
If thermal compound is used,
CH
can be estimated at 0.2
C/W. If the case is soldered to the heat sink, then a
CH
can
be estimated as 0 C/W.
After,
HA (max)
is calculated for each section, choose the
lower of the two
HA (max)
values to determine the appropri-
ate heat sink.
If PC board copper is going to be used as a heat sink, then
Figure 7 can be used to determine the appropriate area
(size) of copper foil required.
10094815
FIGURE 5. Regulator with Protection Diode
10094816
FIGURE 6. Power Dissipation Diagram
10094864
FIGURE 7. Heat sink thermal Resistance vs. Area
LM1086
www.national.com
10
Typical Applications
10094849
5V to 3.3V, 1.5A Regulator
10094850
Adjustable
@
5V
10094852
1.2V to 15V Adjustable Regulator
10094853
5V Regulator with Shutdown
10094854
Battery Charger
10094855
Adjustable Fixed Regulator
10094856
Regulator with Reference
10094857
High Current Lamp Driver Protection
LM1086
www.national.com
11
Typical Applications
(Continued)
10094859
Battery Backup Regulated Supply
10094860
Ripple Rejection Enhancement
10094861
Automatic Light control
10094858
Remote Sensing
LM1086
www.national.com
12
Typical Applications
(Continued)
10094851
SCSI-2 Active termination
LM1086
www.national.com
13
Physical Dimensions
inches (millimeters)
unless otherwise noted
3-Lead TO-263
NS Package Number TS3B
3-Lead TO-220
NS Package Number T03B
LM1086
www.national.com
14
Physical Dimensions
inches (millimeters) unless otherwise noted (Continued)
8-Lead LLP
NS Package Number LDC008AA
LIFE SUPPORT POLICY
NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:
1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and
whose failure to perform when properly used in
accordance with instructions for use provided in the
labeling, can be reasonably expected to result in a
significant injury to the user.
2. A critical component is any component of a life
support device or system whose failure to perform
can be reasonably expected to cause the failure of
the life support device or system, or to affect its
safety or effectiveness.
National Semiconductor
Corporation
Americas
Email: support@nsc.com
National Semiconductor
Europe
Fax: +49 (0) 180-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English
Tel: +44 (0) 870 24 0 2171
Franais Tel: +33 (0) 1 41 91 8790
National Semiconductor
Asia Pacific Customer
Response Group
Tel: 65-2544466
Fax: 65-2504466
Email: ap.support@nsc.com
National Semiconductor
Japan Ltd.
Tel: 81-3-5639-7560
Fax: 81-3-5639-7507
www.national.com
LM1086
1.5A
Low
Dropout
Positive
Regulators
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.