ChipFind - документация

Электронный компонент: NTE7156

Скачать:  PDF   ZIP
NTE7156
Integrated Circuit
DCCoupled Vertical Deflection Circuit
Description:
The NTE7156 is a power circuit in a 9Lead SIP type package designed for use in 90
and 110
color
deflection systems for field frequencies of 50Hz to 120Hz. This device provides a DC driven vertical
deflection output circuit, operating as a highly efficient class G system.
Features:
D
Few External Components
D
Highly Efficient Fully DCCoupled Vertical Output Bridge Circuit
D
Vertical Flyback Switch
D
Guard Circuit
D
Protection Aaginst:
ShortCircuit of the Output Pins (7 and 4)
ShortCircuit of the Output Pins to V
P
D
Temperature Protection
D
High EMC Immunity Because of Common Mode Inputs
D
A Guard Signal in Zoom Mode
Absolute Maximum Ratings:
DC Supply
Supply Voltage, V
P
NonOperating
40V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating
25V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flyback Supply Voltage, V
FB
50V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Note 1
60V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vertical Circuit
Output Current (PeaktoPeak Value, Note 2), I
O(PP)
3A
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output Voltage (Pin7), V
O(A)
52V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Note 1
62V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flyback Switch
Peak Output Current, I
M
15A
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thermal Data
Virtual Junction Temperature, T
VJ
+150
C
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Ambient Temperature Range, T
A
20
to +75
C
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage Temperature Range, T
stg
55
to +150
C
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thermal Resistance, Virtual JunctiontoAmbient, R
thVJC
40K/W
. . . . . . . . . . . . . . . . . . . . . . . . . . .
Thermal Resistance, Virtual JunctiontoCase, R
thVJA
4K/W
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ShortCircuit Time (Note 3), t
sc
1 Hour
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Note 1. A flyback supply voltage of > 50V up to 60V is allowed in application. A 22nF capacititor
in series with a 22
resistor (depending on I
O
and the inductance of the coil) has to be con-
nected between Pin7 and GND. The decoupling capacitor of V
FB
has to be connected be-
tween Pin6 and Pin3. This supply voltage line must have a resistance of 33
.
Note 2. I
O
maximum determined by current protection.
Note 3. Up to V
P
= 18V.
Electrical Characteristics: (V
P
= 17.5V, T
A
= +25
C, V
FB
= 45V, f
i
= 50Hz, I
I(sb)
= 400
A
unless otherwise specified)
Parameter
Symbol
Test Conditions
Min
Typ
Max
Unit
DC Supply
Operating Supply Voltage
V
P
9
25
V
Flyback Supply Voltage
V
FB
V
P
50
V
Note 1
V
P
60
V
Supply Current
I
P
No Load, No Signal
30
55
mA
Vertical Circuit
Output Voltage Swing (Scan)
V
O
I
diff
= 0.6mA
(PP)
, V
diff
= 1.8V
(PP)
,
I
O
= 3A
(PP)
19.8
V
Linearity Error
LE
I
O
= 3A
(PP)
, Note 4
1
3
%
I
O
= 50mA
(PP)
, Note 4
1
3
%
Output Voltage Swing (Flyback)
V
O(A)
V
O(B)
V
O
I
diff
= 0.3mA, I
O
= 1.5A
39
V
Forward Voltage of the Internal
Efficiency Diode (V
O(A)
V
FB
)
V
DF
I
O
= 1.5A, I
diff
= 0.3mA
1.5
V
Output Offset Current
|I
OS
|
I
diff
= 0, I
I(sb)
= 50
A to 500
A
30
mA
Offset Voltage at the Input of the
Feedback Amplifier (V
I(fb)
V
O(B)
)
V
OS
T
I
diff
= 0
72
V/K
DC Output Voltage
V
O(A)
I
diff
= 0, Note 5
8
V
Open Loop Voltage Gain (V
74
/V
12
)
G
VO
Note 6, Note 7
80
dB
Open Loop Voltage Gain
(V
74
/V
94
, V
12
= 0)
Note 6
80
dB
Voltage Ratio V
12
/V
94
V
R
0
dB
Frequency Response (3dB)
f
res
Open Loop, Note 8
40
Hz
Current Gain (I
O
/I
diff
)
G
I
5000
Current Gain Drift as a Function
of Temperature
G
C
T
10
4
K
Signal Bias Current
I
I(sb)
50
400
500
A
Flyback Supply Current
I
FB
During Scan
100
A
Power Supply Ripple Rejection
PSRR
Note 9
80
dB
DC Input Voltage
V
I(DC)
2.7
V
Common Mode Input Voltage
V
I(CM)
I
I(sb)
= 0
0
1.6
V
Input Bias Current
I
bias
I
I(sb)
= 0
0.1
0.5
A
Common Mode Output Current
I
O(CM)
I
I(sub)
= 300
A
(PP)
, f
i
= 50Hz,
I
diff
= 0
0.2
mA
Guard Circuit
Output Current
I
O
Not Active, V
O(guard)
= 0V
50
A
Active, V
O(guard)
= 3.6V
1.0
2.5
mA
Output Voltage on Pin8
V
O(guard)
I
O
= 100
A
4.6
5.5
V
Allowable Voltage on Pin8
Maximum Leakage Current =
10
A
40
V
Notes:
Note 1. A flyback supply voltage of > 50V up to 60V is allowed in application. A 22nF capacititor
in series with a 22
resistor (depending on I
O
and the inductance of the coil) has to be con-
nected between Pin7 and GND. The decoupling capacitor of V
FB
has to be connected be-
tween Pin6 and Pin3. This supply voltage line must have a resistance of 33
.
Note 4. The linearity error is measured without Scorrection and based on the same measurement
principle as performed on the screen. The measuring method is as follows:
Divide the output signal I
4
I
7
(V
RM
) into 22 equal parts ranging from 1 to 22 inclusive. Measure
the value of two succeeding parts called one block starting with part 2 and 3 (block 1) and ending
with part 20 and 21 (block 10). Thus part 1 and 22 are unused. The equations for linearity error
for adjacent blocks (LEAB) and linearity error for not adjacent blocks (LENAB) are given below:
LEAB =
a
k
a
(k + 1)
a
avg
; LEAB =
a
max
a
min
a
avg
Note 5. Referenced to V
P
.
Note 6. The V values within formulae relate to voltages at or across relative pin numbers, i.e.
V
74
/V
12
= voltage value across Pin7 and Pin4 divided by voltage value across Pin1 and Pin2.
Note 7. V
94
AC shortcircuited.
Note 8. Frequency response V
74
/V
94
is equal to frequency response V
74
/V
12
.
Note 9. At V
(ripple)
= 500mV eff; measured across R
M
; f
i
= 50Hz.
I
drive(pos)
I
drive(neg)
V
O(B)
V
FB
V
O(A)
V
O(guard)
V
I(fb)
V
P
Pin Connection Diagram
(Front View)
GND
9
8
7
6
5
4
3
2
1
.663
(16.85)
1
9
.130 (3.25) R
.173 (4.4)
.100 (2.54)
.017 (0.43)
.945 (24.0) Max
.788 (20.0) Max
.472
(12.0)
Seating Plane
.079
(2.0)