ChipFind - документация

Электронный компонент: PI90LVB047AW

Скачать:  PDF   ZIP
1
PS8611B 10/04/04
Block Diagram
Features
>500 Mbps (250 MHz) switching rates
Flow-through pinout simplifies PCB layout
Low Voltage Differential Signaling with output voltages
of 350mV into:
100-ohm load (PI90LV047)
50-ohm load (PI90LVB047)
300ps typical differential skew
400ps maximum differential skew
1.7ns maximum propagation delay
3.3V power supply design
350mV differential signaling
Bus-Pin ESD protection >10kV
Interoperable with existing 5V LVDS receivers
High impedance on LVDS outputs on power down
Conforms to TIA/EIA-644 LVDS Standard
Industrial operating temperature range (40C to +85C)
Packages (Pb-free & Green Available):
16-pin SOIC (S)
16-pin TSSOP (L)
Description
The PI90LV047A/PI90LVB047A are quad flow-through differential
line drivers designed for applications requiring ultra-low power
dissipation and high data rates. The devices are designed to support
data rates in excess of 400 Mbps (200 MHz) using Low Voltage
Differential Signaling (LVDS) technology.
The PI90LV047A/PI90LVB047A accept low-voltage TTL/CMOS
input levels and translates them to low-voltage (350 mV) differential
output signals.
The PI90LVB047A doubles the output drive current to achieve Bus
LVDS signaling levels with a 50-ohm load. A doubly terminated Bus
LVDS line enables multipoint configurations. In addition, the driver
supports a 3-state
function that may be used to disable the output
stage, disabling the load current, and thus dropping the device to an
ultra low idle power state of 13mW typical. The devices have a flow-
through pinout for easy PCB layout.
The EN and EN inputs are banded together and control the 3-state
outputs. The enables are common to all four drivers.
The intended application of these devices and signaling technique
is for both point-to-point baseband (PI90LV047A) and multipoint
(PI90LVB047A) data transmission over controlled impedance media.
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
PI90LV047A/PI90LVB047A
3V LVDS Quad Flow-Through
Differential Line Drivers
s
e
l
b
a
n
E
t
u
p
n
I
s
t
u
p
t
u
O
N
E
N
E
D
N
I
D
+
T
U
O
D
T
U
O
H
n
e
p
O
r
o
L
L
L
H
H
H
L
s
t
u
p
n
i
E
L
B
A
N
E
f
o
s
n
o
it
a
n
i
b
m
o
c
r
e
h
t
o
ll
A
X
Z
Z
Truth Table
D
IN4
D
IN3
D
IN2
D
IN1
EN
EN
D
OUT1+
D
OUT1
D
OUT2+
D
OUT2
D
OUT3+
D
OUT3
D
OUT4+
D
OUT4
D1
D2
D3
D4
D
OUT1
D
OUT1+
D
OUT2+
D
OUT2
D
OUT3
D
OUT3+
D
OUT4+
D
OUT4
EN
D
IN1
D
IN2
GND
D
IN3
D
IN4
EN
V
CC
1
2
3
4
5
16
6
15
7
14
8
13
12
11
10
9
Pin Configuration
2
PS8611B 10/04/04
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
PI90LV047A/PI90LVB047A
3V LVDS Quad Flow-Through
Differential Line Drivers
l
o
b
m
y
S
r
e
t
e
m
a
r
a
P
s
n
o
i
t
i
d
n
o
C
t
s
e
T
n
i
P
.
n
i
M
.
p
y
T
.
x
a
M
s
t
i
n
U
V
1
D
O
e
d
u
ti
n
g
a
m
e
g
a
tl
o
v
t
u
p
t
u
o
l
a
it
n
e
r
e
f
fi
D
R
L
)
A
7
4
0
V
L
(
s
m
h
o
0
0
1
=
R
L
)
A
7
4
0
B
V
L
(
s
m
h
o
0
5
=
1
e
r
u
g
i
F
e
e
S
D
T
U
O
D
+
T
U
O
0
5
2
0
1
3
0
5
4
V
m
V
1
D
O
V
f
o
e
d
u
ti
n
g
a
M
n
i
e
g
n
a
h
C
1
D
O
r
o
f
s
e
t
a
t
s
t
u
p
t
u
o
y
r
a
t
n
e
m
e
l
p
m
o
c
1
5
3
V
m
V
S
O
e
g
a
tl
o
v
t
e
s
f
f
O
x
x
x
V
L
5
2
1
.
1
2
.
1
5
7
3
.
1
V
x
x
x
B
V
L
0
0
.
1
5
1
.
1
5
7
3
.
1
V
S
O
V
f
o
e
d
u
ti
n
g
a
m
n
i
e
g
n
a
h
C
S
O
r
o
f
s
e
t
a
t
s
t
u
p
t
u
o
y
r
a
t
n
e
m
e
l
p
m
o
c
1
5
2
V
m
V
H
O
e
g
a
tl
o
v
h
g
i
h
t
u
p
t
u
O
3
3
.
1
6
.
1
V
V
L
O
e
g
a
tl
o
v
w
o
l
t
u
p
t
u
O
0
9
.
0
2
0
.
1
V
H
I
e
g
a
tl
o
v
h
g
i
h
t
u
p
n
I
D
N
I
,
,
N
E
N
E
0
.
2
V
C
C
V
L
I
e
g
a
tl
o
v
w
o
l
t
u
p
n
I
D
N
G
8
.
0
I
H
I
t
n
e
r
r
u
c
h
g
i
h
t
u
p
n
I
V
N
I
V
=
C
C
V
5
.
2
r
o
0
2
2
0
2
+
A
I
L
I
t
n
e
r
r
u
c
w
o
l
t
u
p
n
I
V
N
I
=
D
N
G
V
4
.
0
r
o
0
1
2
0
1
+
A
V
L
C
e
g
a
tl
o
v
p
m
a
l
c
t
u
p
n
I
I
L
C
A
m
8
1
=
5
.
1
8
.
0
V
I
S
O
t
n
e
r
r
u
c
ti
u
c
ri
c
t
r
o
h
s
t
u
p
t
u
O
)
1
1
(
D
,
d
e
l
b
a
n
E
N
I
V
=
C
C
,
D
+
T
U
O
V
0
=
D
r
o
N
I
D
,
D
N
G
=
T
U
O
V
0
=
x
x
x
V
L
D
T
U
O
D
+
T
U
O
2
.
4
0
1
A
m
x
x
x
B
V
L
0
.
9
0
2
I
D
S
O
ti
u
c
ri
c
t
r
o
h
s
t
u
p
t
u
o
l
a
it
n
e
r
e
f
fi
D
t
n
e
r
r
u
c
)
1
1
(
V
,
d
e
l
b
a
n
E
D
O
V
0
=
x
x
x
V
L
2
.
4
0
1
x
x
x
B
V
L
0
.
9
0
2
I
F
F
O
e
g
a
k
a
e
l
f
f
o
-
r
e
w
o
P
V
T
U
O
V
,
V
6
.
3
r
o
V
0
=
C
C
n
e
p
O
r
o
V
0
=
0
2
1
0
2
+
A
I
Z
O
t
n
e
r
r
u
c
e
t
a
t
S
-
3
t
u
p
t
u
O
,
V
0
.
2
=
N
E
d
n
a
V
8
.
0
=
N
E
V
T
U
O
V
r
o
V
0
=
C
C
0
1
1
0
1
+
I
C
C
s
r
e
v
i
r
d
t
n
e
r
r
u
c
y
l
p
p
u
s
d
a
o
l
o
N
d
e
l
b
a
n
e
D
N
I
V
=
C
C
D
N
G
r
o
A
7
4
0
V
L
V
C
C
0
.
4
0
.
8
m
A
7
4
0
B
V
L
0
.
6
0
.
9
1
I
L
C
C
s
r
e
v
i
r
d
t
n
e
r
r
u
c
y
l
p
p
u
s
d
e
d
a
o
L
d
e
l
b
a
n
e
R
L
)
s
l
e
n
n
a
h
c
ll
a
(
,
s
m
h
o
0
0
1
=
D
N
I
V
=
C
C
)
s
t
u
p
n
i
ll
a
(
D
N
G
r
o
A
7
4
0
V
L
0
2
0
3
A
7
4
0
B
V
L
5
3
5
4
I
Z
C
C
s
r
e
v
i
r
d
t
n
e
r
r
u
c
y
l
p
p
u
s
d
a
o
l
o
N
d
e
l
b
a
s
i
d
D
N
I
V
=
C
C
,
D
N
G
r
o
V
=
N
E
,
D
N
G
=
N
E
C
C
A
7
4
0
V
L
2
.
2
0
.
8
A
7
4
0
B
V
L
0
.
3
0
.
8
Electrical Characteristics
Over supply voltage and operating temperature ranges, unless otherwise specified
(2,3,4)
.
Absolute Maximum Ratings
Supply Voltage (V
CC
) ............................................... 0.3V to +4V
Input Voltage (D
IN
) .................................... 0.3V to (V
CC
+ 0.3V)
Enable Input Voltage (EN, EN) ................... 0.3V to (V
CC
+ 0.3V)
Output Voltage (D
OUT+
,D
OUT
) ............................ 0.3V to +3.9V
Short Circuit Duration
(D
OUT+
,D
OUT
) ....................................................... Continuous
Maximum Package Power Dissipation @ +25C
M Package ................................................................. 1088 mW
MTC Package ............................................................... 866 mW
Derate M Package .............................. 8.5 mW/C above +25C
Derate MTC Package ........................ 6.9 mW/C above +25C
Storage Temperature Range .............................. 65C to +150C
Lead Temperature Range
Soldering (4 seconds) ................................................... +260C
Maximum Junction Temperature ...................................... +150C
ESD Rating
(10)
(HBM, 1.5kW, 100pF) ......................................................
10kV
(EIAJ, 0W, 200pF) .........................................................
1200V
Recommended Operating Conditions
Min
Typ Max Units
Supply Voltage (V
CC
)
+3.0 +3.3 +3.6
V
Operating Free Air Temperature (T
A
) 40
+25
+85
C
3
PS8611B 10/04/04
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
PI90LV047A/PI90LVB047A
3V LVDS Quad Flow-Through
Differential Line Drivers
Notes
1. "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply
that the devices should be operated at these limits. The table of "Electrical Characteristics" specifies conditions of device operation.
2. Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground except:
V
OD1
and
V
OD1
.
3. All typicals are given for: V
CC
= +3.3V, T
A
= +25C.
4. The PI90LV047A is a current mode device and only functions within datasheet specifications when a resistive load is applied to the driver
outputs typical range is (90 ohms to 110 ohms).
5. t
SKD1
|t
PHLD
t
PLHD
| is the magnitude difference in differential propagation delay time between the positive going edge and the negative going
edge of the same channel.
6. t
SKD2
is the Differential Channel-to-Channel Skew of any event on the same device.
7. t
SKD3
, Differential Part to Part Skew, is defined as the difference between the minimum and maximum specified differential propagation
delays. This specification applies to devices at the same V
CC
and within 5C of each other within the operating temperature range.
8. t
SKD4
, part to part skew, is the differential channel-to-channel skew of any event between devices. This specification applies
to devices over recommended operating temperature and voltage ranges, and across process distribution. t
SKD4
is defined as
|Max Min| differential propagation delay.
9. Generator waveform for all tests unless otherwise specified: f = 1 MHz, Z
O
= 50 ohms, t
r
1 ns, and t
f
1ns.
10. ESD Ratings:
HBM (1.5 kohms, 100pF)
10kV
EIAJ (0 ohm, 200pF)
1200V
11. Output short circuit current (I
OS
) is specified as magnitude only, minus sign indicates direction only.
12. C
L
includes probe and jig capacitance.
13. All input voltages are for one channel unless otherwise specified. Other inputs are set to GND.
14. f
MAX
generator input conditions: t
r
= t
f
<1ns (0% to 100%), 50% duty cycle, 0V to 3V.
Output Criteria: duty cycle = 45%/55%, V
OD
>250mV, all channels switching.
Switching Characteristics
V
CC
= +3.3V 10%, T
A
= 40C
(3,9,12)
l
o
b
m
y
S
r
e
t
e
m
a
r
a
P
s
n
o
i
t
i
d
n
o
C
t
s
e
T
.
n
i
M
.
p
y
T
.
x
a
M
s
t
i
n
U
t
D
L
H
P
w
o
L
o
t
h
g
i
H
y
a
l
e
D
n
o
i
t
a
g
a
p
o
r
P
l
a
i
t
n
e
r
e
f
fi
D
R
L
)
7
4
0
V
L
(
s
m
h
o
0
0
1
=
R
L
)
7
4
0
B
V
L
(
s
m
h
o
0
5
=
C
L
F
p
5
1
=
)
3
d
n
a
2
s
e
r
u
g
i
F
(
5
.
0
8
.
0
9
.
1
t
D
H
L
P
h
g
i
H
o
t
w
o
L
y
a
l
e
D
n
o
i
t
a
g
a
p
o
r
P
l
a
i
t
n
e
r
e
f
fi
D
5
.
0
2
.
1
9
.
1
t
1
D
K
S
t
w
e
k
S
e
s
l
u
P
l
a
i
t
n
e
r
e
f
fi
D
D
L
H
P
t
D
H
L
P
)
5
(
0
3
.
0
4
.
0
t
2
D
K
S
w
e
k
S
l
e
n
n
a
h
C
-
o
t
-l
e
n
n
a
h
C
)
6
(
0
4
.
0
5
.
0
t
3
D
K
S
w
e
k
S
t
r
a
P
-
o
t
-
t
r
a
P
l
a
i
t
n
e
r
e
f
fi
D
)
7
(
0
0
.
1
t
4
D
K
S
w
e
k
S
t
r
a
P
-
o
t
-
t
r
a
P
l
a
i
t
n
e
r
e
f
fi
D
)
8
(
0
2
.
1
t
H
L
T
e
m
i
T
e
s
i
R
5
.
0
5
.
1
t
L
H
T
e
m
i
T
ll
a
F
5
.
0
5
.
1
t
Z
H
P
Z
o
t
h
g
i
H
e
m
i
T
e
l
b
a
s
i
D
R
L
)
7
4
0
V
L
(
s
m
h
o
0
0
1
=
R
L
)
7
4
0
B
V
L
(
s
m
h
o
0
5
=
C
L
F
p
5
1
=
)
5
d
n
a
4
s
e
r
u
g
i
F
(
5
t
Z
L
P
Z
o
t
w
o
L
e
m
i
T
e
l
b
a
s
i
D
5
t
H
Z
P
h
g
i
H
o
t
Z
e
m
i
T
e
l
b
a
n
E
7
t
L
Z
P
w
o
L
o
t
Z
e
m
i
T
e
l
b
a
n
E
7
f
X
A
M
y
c
n
e
u
q
e
r
F
g
n
i
t
a
r
e
p
O
m
u
m
i
x
a
M
)
4
1
(
z
H
M
4
PS8611B 10/04/04
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
PI90LV047A/PI90LVB047A
3V LVDS Quad Flow-Through
Differential Line Drivers
Figure 1. Driver V
OD
and V
OS
Test Circuit
Parameter Measurement Information
Figure 2. DriverPropagation Delay & Transition Time Test Circuit
Figure 3. Driver Propogation Delay and Transition Time Waveforms
D
IN
Driver ENABLED
D
OUT+
R
L
/2
R
L
/2
V
CC
GND
VOS
VOD
3V
1.5V
t
PLHD
t
PHLD
1.5V
0V
0V
80%
20%
20%
80%
0V
0V Differential
VDIFF = D
OUT+
D
OUT
0V
V
OH
V
OL
DIN
DOUT
DOUT+
DDIFF
t
TLH
t
THL
D
IN
D
OUT+
D
OUT
Driver ENABLED
C
L
C
L
Generator
R
L
50
5
PS8611B 10/04/04
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
PI90LV047A/PI90LVB047A
3V LVDS Quad Flow-Through
Differential Line Drivers
Figure 4. Drive 3-State Delay Test Circuit
Parameter Measurement Information (continued)
Figure 5. Driver 3-State Delay Waveform
D
IN
D
D
OUT+
D
OUT
1/4 PI90LV047A
EN
EN
V
CC
GND
C
L
+1.2V
C
L
Generator
50
50
50
Data Input
Enable
1/4 PI90LV047A
Any LVDS Receiver
Data
Output
+
Figure 6. Point-to-Point Application
Typical Application
EN When EN = GND or OPEN
3V
0V
3V
0V
1.2V
1.2V
t
PZL
t
PLZ
50%
50%
50%
50%
1.5V
1.5V
1.5V
1.5V
t
PZH
V
OH
V
OL
t
PHZ
EN When EN = V
CC
D
OUT+
When D
IN
= V
CC
D
OUT
When D
IN
= GND
D
OUT+
When D
IN
= GND
D
OUT
When D
IN
= V
CC