ChipFind - документация

Электронный компонент: P89C51RC2xx

Скачать:  PDF   ZIP

Document Outline

Philips
Semiconductors
P89C51RA2xx/RB2xx/RC2xx/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with
512B/512B/512B/1KB RAM
Preliminary data
Supersedes data of 2002 May 20
2002 Jul 18
INTEGRATED CIRCUITS
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2
2002 Jul 18
DESCRIPTION
The P89C51RA2/RB2/RC2/RD2xx contains a non-volatile
8KB/16KB/32KB/64KB Flash program memory that is both parallel
programmable and serial In-System and In-Application
Programmable. In-System Programming (ISP) allows the user to
download new code while the microcontroller sits in the application.
In-Application Programming (IAP) means that the microcontroller
fetches new program code and reprograms itself while in the
system. This allows for remote programming over a modem link.
A default serial loader (boot loader) program in ROM allows serial
In-System programming of the Flash memory via the UART without
the need for a loader in the Flash code. For In-Application
Programming, the user program erases and reprograms the Flash
memory by use of standard routines contained in ROM.
The device supports 6-clock/12-clock mode selection by
programming a Flash bit using parallel programming or
In-System Programming. In addition, an SFR bit (X2) in the clock
control register (CKCON) also selects between 6-clock/12-clock
mode.
Additionally, when in 6-clock mode, peripherals may use either 6
clocks per machine cycle or 12 clocks per machine cycle. This
choice is available individually for each peripheral and is selected by
bits in the CKCON register.
This device is a Single-Chip 8-Bit Microcontroller manufactured in an
advanced CMOS process and is a derivative of the 80C51
microcontroller family. The instruction set is 100% compatible with
the 80C51 instruction set.
The device also has four 8-bit I/O ports, three 16-bit timer/event
counters, a multi-source, four-priority-level, nested interrupt structure,
an enhanced UART and on-chip oscillator and timing circuits.
The added features of the P89C51RA2/RB2/RC2/RD2xx make it a
powerful microcontroller for applications that require pulse width
modulation, high-speed I/O and up/down counting capabilities such
as motor control.
FEATURES
80C51 Central Processing Unit
On-chip Flash Program Memory with In-System Programming
(ISP) and In-Application Programming (IAP) capability
Boot ROM contains low level Flash programming routines for
downloading via the UART
Can be programmed by the end-user application (IAP)
Parallel programming with 87C51 compatible hardware interface
to programmer
Supports 6-clock/12-clock mode via parallel programmer (default
clock mode after ChipErase is 12-clock)
6-clock/12-clock mode Flash bit erasable and programmable via
ISP
6-clock/12-clock mode programmable "on-the-fly" by SFR bit
Peripherals (PCA, timers, UART) may use either 6-clock or
12-clock mode while the CPU is in 6-clock mode
Speed up to 20 MHz with 6-clock cycles per machine cycle
(40 MHz equivalent performance); up to 33 MHz with 12 clocks
per machine cycle
Fully static operation
RAM expandable externally to 64 kbytes
Four interrupt priority levels
Seven interrupt sources
Four 8-bit I/O ports
Full-duplex enhanced UART
Framing error detection
Automatic address recognition
Power control modes
Clock can be stopped and resumed
Idle mode
Power down mode
Programmable clock-out pin
Second DPTR register
Asynchronous port reset
Low EMI (inhibit ALE)
Programmable Counter Array (PCA)
PWM
Capture/compare
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
3
SELECTION TABLE
Type
Memory
Timers
Serial
Interfaces
RAM
ROM
OTP
Flash
# of
T
imers
PWM
PCA
WD
UART
I
2
C
CAN
SPI
ADC bits/ch.
I/O Pins
Interrupts
(Ext.)/Levels
Program
Security
Default Clock
Rate
1
Optional
Clock Rate
1
Reset active
low/high?
Max.
Freq.
at 6-clk
/ 12-clk
(MHz)
Freq.
Range
at 3V
(MHz)
Freq.
Range
at 5V
(MHz)
P89C51RD2xx
1K
64K
4
32
7(2)/4
12-clk
6-clk
H
20/33
0-20/33
P89C51RC2xx
512B
32K
4
32
7(2)/4
12-clk
6-clk
H
20/33
0-20/33
P89C51RB2xx
512B
16K
4
32
7(2)/4
12-clk
6-clk
H
20/33
0-20/33
P89C51RA2xx
512B
8K
4
32
7(2)/4
12-clk
6-clk
H
20/33
0-20/33
NOTE:
1. P89C51Rx2Hxx devices have a 6-clk default clock rate (12-clk optional). Please also see Device Comparison Table.
DEVICE COMPARISON TABLE
Item
1st generation of Rx2 devices
2nd generation of Rx2 devices
(this data sheet)
Difference
Type description
P89C51Rx2Hxx(x)
P89C51Rx2xx(x)
No more letter `H'
Programming algo-
rithm
When using a parallel programmer,
be sure to select
P89C51Rx2Hxx(x) devices
When using a parallel programmer, be
sure to select P89C51Rx2xx(x) de-
vices (no more letter `H')
Different programming algorithm
due to process change
Clock mode (I)
6-clk default, OTP configuration bit
to program to 12-clk mode using
parallel programmer (cannot be
programmed back to 6-clk)
12-clk default, Flash configuration bit
to program to 6-clk mode using paral-
lel programmer or ISP (can be repro-
grammed)
More flexibility for the end user,
more compatibility to older
P89C51Rx+ parts
Clock mode (II)
N/A
6-clock/12-clock mode programmable
"on the fly" by SFR bit X2 (CKCON.0)
Clock mode can be changed by
software
Peripheral clock
modes
N/A
Peripherals can be run in 12-clk mode
while CPU runs in 6-clk mode
More flexibility, lower power con-
sumption
Flash block structure
Two 8-Kbyte blocks
13 16-Kbyte blocks
216 4-Kbyte blocks
More flexibility
ORDERING INFORMATION
PART ORDER
MEMORY
TEMPERATURE
VOLTAGE
FREQUENCY (MHz)
PART ORDER
NUMBER
1
FLASH
RAM
RANGE (
C)
AND PACKAGE
VOLTAGE
RANGE
6-CLOCK
MODE
12-CLOCK
MODE
DWG #
1.
P89C51RA2BA/01
8 KB
512 B
0 to +70, PLCC
4.55.5 V
0 to 20 MHz
0 to 33 MHz
SOT187-2
2.
P89C51RA2BBD/01
8 KB
512 B
0 to +70, LQFP
4.55.5 V
0 to 20 MHz
0 to 33 MHz
SOT389-1
3.
P89C51RB2BA/01
16 KB
512 B
0 to +70, PLCC
4.55.5 V
0 to 20 MHz
0 to 33 MHz
SOT187-2
4.
P89C51RB2BBD/01
16 KB
512 B
0 to +70, LQFP
4.55.5 V
0 to 20 MHz
0 to 33 MHz
SOT389-1
5.
P89C51RC2BN/01
32 KB
512 B
0 to +70, PDIP
4.55.5 V
0 to 20 MHz
0 to 33 MHz
SOT129-1
6.
P89C51RC2BA/01
32 KB
512 B
0 to +70, PLCC
4.55.5 V
0 to 20 MHz
0 to 33 MHz
SOT187-2
7.
P89C51RC2FA/01
32 KB
512 B
40 to +85, PLCC
4.55.5 V
0 to 20 MHz
0 to 33 MHz
SOT187-2
8.
P89C51RC2BBD/01
32 KB
512 B
0 to +70, LQFP
4.55.5 V
0 to 20 MHz
0 to 33 MHz
SOT389-1
9.
P89C51RC2FBD/01
32 KB
512 B
40 to +85, LQFP
4.55.5 V
0 to 20 MHz
0 to 33 MHz
SOT389-1
10.
P89C51RD2BN/01
64 KB
1024 B
0 to +70, PDIP
4.55.5 V
0 to 20 MHz
0 to 33 MHz
SOT129-1
11.
P89C51RD2BA/01
64 KB
1024 B
0 to +70, PLCC
4.55.5 V
0 to 20 MHz
0 to 33 MHz
SOT187-2
12.
P89C51RD2BBD/01
64 KB
1024 B
0 to +70, LQFP
4.55.5 V
0 to 20 MHz
0 to 33 MHz
SOT389-1
13.
P89C51RD2FA/01
64 KB
1024 B
40 to +85, PLCC
4.55.5 V
0 to 20 MHz
0 to 33 MHz
SOT187-2
NOTE:
1. The Part Marking will not include the "/01".
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
4
BLOCK DIAGRAM 1
su01606
ACCELERATED 80C51 CPU
(12-CLK MODE, 6-CLK MODE)
8K / 16K / 32K /
64 KBYTE
CODE FLASH
512 / 1024 BYTE
DATA RAM
PORT 3
CONFIGURABLE I/Os
PORT 2
CONFIGURABLE I/Os
PORT 1
CONFIGURABLE I/Os
PORT 0
CONFIGURABLE I/Os
OSCILLATOR
CRYSTAL OR
RESONATOR
FULL-DUPLEX
ENHANCED UART
TIMER 0
TIMER 1
TIMER 2
PROGRAMMABLE
COUNTER ARRAY
(PCA)
WATCHDOG TIMER
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
5
BLOCK DIAGRAM CPU ORIENTED
SU01065
PSEN
EAV
PP
ALE
RST
XTAL1
XTAL2
V
CC
V
SS
PORT 0
DRIVERS
PORT 2
DRIVERS
RAM ADDR
REGISTER
RAM
PORT 0
LATCH
PORT 2
LATCH
FLASH
REGISTER
B
ACC
STACK
POINTER
TMP2
TMP1
ALU
TIMING
AND
CONTROL
INSTRUCTION
REGISTER
PD
OSCILLATOR
PSW
PORT 1
LATCH
PORT 3
LATCH
PORT 1
DRIVERS
PORT 3
DRIVERS
PROGRAM
ADDRESS
REGISTER
BUFFER
PC
INCRE-
MENTER
PROGRAM
COUNTER
DPTR'S
MULTIPLE
P1.0P1.7
P3.0P3.7
P0.0P0.7
P2.0P2.7
SFRs
TIMERS
P.C.A.
8
8
16
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
6
LOGIC SYMBOL
POR
T
0
POR
T
1
POR
T
2
POR
T
3
ADDRESS AND
DATA BUS
ADDRESS BUS
T2
T2EX
RxD
TxD
INT0
INT1
T0
T1
WR
RD
SECONDAR
Y
FUNCTIONS
RST
EA/V
PP
PSEN
ALE/PROG
V
SS
V
CC
XTAL1
XTAL2
SU01302
PINNING
Plastic Dual In-Line Package
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
T2/P1.0
T2EX/P1.1
ECI/P1.2
CEX0/P1.3
CEX1/P1.4
CEX2/P1.5
CEX3/P1.6
RST
RxD/P3.0
TxD/P3.1
INT0/P3.2
INT1/P3.3
T0/P3.4
T1/P3.5
CEX4/P1.7
WR/P3.6
RD/P3.7
XTAL2
XTAL1
V
SS
P2.0/A8
P2.1/A9
P2.2/A10
P2.3/A11
P2.4/A12
P2.5/A13
P2.6/A14
P2.7/A15
PSEN
ALE/PROG
EA/V
PP
P0.7/AD7
P0.6/AD6
P0.5/AD5
P0.4/AD4
P0.3/AD3
P0.2/AD2
P0.1/AD1
P0.0/AD0
V
CC
DUAL
IN-LINE
PACKAGE
SU00021
Plastic Leaded Chip Carrier
LCC
6
1
40
7
17
39
29
18
28
Pin
Function
1
NIC*
2
P1.0/T2
3
P1.1/T2EX
4
P1.2/ECI
5
P1.3/CEX0
6
P1.4/CEX1
7
P1.5/CEX2
8
P1.6/CEX3
9
P1.7/CEX4
10
RST
11
P3.0/RxD
12
NIC*
13
P3.1/TxD
14
P3.2/INT0
15
P3.3/INT1
Pin
Function
16
P3.4/T0
17
P3.5/T1
18
P3.6/WR
19
P3.7/RD
20
XTAL2
21
XTAL1
22
V
SS
23
NIC*
24
P2.0/A8
25
P2.1/A9
26
P2.2/A10
27
P2.3/A11
28
P2.4/A12
29
P2.5/A13
30
P2.6/A14
Pin
Function
31
P2.7/A15
32
PSEN
33
ALE/PROG
34
NIC*
35
EA/V
PP
36
P0.7/AD7
37
P0.6/AD6
38
P0.5/AD5
39
P0.4/AD4
40
P0.3/AD3
41
P0.2/AD2
42
P0.1/AD1
43
P0.0/AD0
44
V
CC
SU00023
* NO INTERNAL CONNECTION
Plastic Quad Flat Pack
LQFP
44
34
1
11
33
23
12
22
Pin
Function
1
P1.5/CEX2
2
P1.6/CEX3
3
P1.7/CEX4
4
RST
5
P3.0/RxD
6
NIC*
7
P3.1/TxD
8
P3.2/INT0
9
P3.3/INT1
10
P3.4/T0
11
P3.5/T1
12
P3.6/WR
13
P3.7/RD
14
XTAL2
15
XTAL1
Pin
Function
16
V
SS
17
NIC*
18
P2.0/A8
19
P2.1/A9
20
P2.2/A10
21
P2.3/A11
22
P2.4/A12
23
P2.5/A13
24
P2.6/A14
25
P2.7/A15
26
PSEN
27
ALE/PROG
28
NIC*
29
EA/V
PP
30
P0.7/AD7
Pin
Function
31
P0.6/AD6
32
P0.5/AD5
33
P0.4/AD4
34
P0.3/AD3
35
P0.2/AD2
36
P0.1/AD1
37
P0.0/AD0
38
V
CC
39
NIC*
40
P1.0/T2
41
P1.1/T2EX
42
P1.2/ECI
43
P1.3/CEX0
44
P1.4/CEX1
SU01400
* NO INTERNAL CONNECTION
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
7
PIN DESCRIPTIONS
MNEMONIC
PIN NUMBER
TYPE
NAME AND FUNCTION
MNEMONIC
PDIP
PLCC
LQFP
TYPE
NAME AND FUNCTION
V
SS
20
22
16
I
Ground: 0 V reference.
V
CC
40
44
38
I
Power Supply: This is the power supply voltage for normal, idle, and power-down
operation.
P0.00.7
3932
4336
3730
I/O
Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s
written to them float and can be used as high-impedance inputs. Port 0 is also the
multiplexed low-order address and data bus during accesses to external program
and data memory. In this application, it uses strong internal pull-ups when emitting 1s.
P1.0P1.7
18
29
4044,
13
I/O
Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups on all pins.
Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and
can be used as inputs. As inputs, port 1 pins that are externally pulled low will
source current because of the internal pull-ups. (See DC Electrical Characteristics:
I
IL
).
Alternate functions for P89C51RA2/RB2/RC2/RD2xx Port 1 include:
1
2
40
I/O
T2 (P1.0): Timer/Counter 2 external count input/Clockout (see Programmable
Clock-Out)
2
3
41
I
T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction Control
3
4
42
I
ECI (P1.2): External Clock Input to the PCA
4
5
43
I/O
CEX0 (P1.3): Capture/Compare External I/O for PCA module 0
5
6
44
I/O
CEX1 (P1.4): Capture/Compare External I/O for PCA module 1
6
7
1
I/O
CEX2 (P1.5): Capture/Compare External I/O for PCA module 2
7
8
2
I/O
CEX3 (P1.6): Capture/Compare External I/O for PCA module 3
8
9
3
I/O
CEX4 (P1.7): Capture/Compare External I/O for PCA module 4
P2.0P2.7
2128
2431
1825
I/O
Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that
have 1s written to them are pulled high by the internal pull-ups and can be used as
inputs. As inputs, port 2 pins that are externally being pulled low will source current
because of the internal pull-ups. (See DC Electrical Characteristics: I
IL
). Port 2
emits the high-order address byte during fetches from external program memory
and during accesses to external data memory that use 16-bit addresses (MOVX
@DPTR). In this application, it uses strong internal pull-ups when emitting 1s.
During accesses to external data memory that use 8-bit addresses (MOV @Ri),
port 2 emits the contents of the P2 special function register.
P3.0P3.7
1017
11,
1319
5, 713
I/O
Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that
have 1s written to them are pulled high by the internal pull-ups and can be used as
inputs. As inputs, port 3 pins that are externally being pulled low will source current
because of the pull-ups. (See DC Electrical Characteristics: I
IL
). Port 3 also serves
the special features of the P89C51RA2/RB2/RC2/RD2xx, as listed below:
10
11
5
I
RxD (P3.0): Serial input port
11
13
7
O
TxD (P3.1): Serial output port
12
14
8
I
INT0 (P3.2): External interrupt
13
15
9
I
INT1 (P3.3): External interrupt
14
16
10
I
T0 (P3.4): Timer 0 external input
15
17
11
I
T1 (P3.5): Timer 1 external input
16
18
12
O
WR (P3.6): External data memory write strobe
17
19
13
O
RD (P3.7): External data memory read strobe
RST
9
10
4
I
Reset: A high on this pin for two machine cycles while the oscillator is running,
resets the device. An internal resistor to V
SS
permits a power-on reset using only
an external capacitor to V
CC
.
ALE
30
33
27
O
Address Latch Enable: Output pulse for latching the low byte of the address
during an access to external memory. In normal operation, ALE is emitted twice
every machine cycle, and can be used for external timing or clocking. Note that one
ALE pulse is skipped during each access to external data memory. ALE can be
disabled by setting SFR auxiliary.0. With this bit set, ALE will be active only during a
MOVX instruction.
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
8
MNEMONIC
NAME AND FUNCTION
TYPE
PIN NUMBER
MNEMONIC
NAME AND FUNCTION
TYPE
LQFP
PLCC
PDIP
PSEN
29
32
26
O
Program Store Enable: The read strobe to external program memory. When
executing code from the external program memory, PSEN is activated twice each
machine cycle, except that two PSEN activations are skipped during each access
to external data memory. PSEN is not activated during fetches from internal
program memory.
EA/V
PP
31
35
29
I
External Access Enable/Programming Supply Voltage: EA must be externally
held low to enable the device to fetch code from external program memory
locations. If EA is held high, the device executes from internal program memory.
The value on the EA pin is latched when RST is released and any subsequent
changes have no effect. This pin also receives the programming supply voltage
(V
PP
) during Flash programming.
XTAL1
19
21
15
I
Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock
generator circuits.
XTAL2
18
20
14
O
Crystal 2: Output from the inverting oscillator amplifier.
NOTE:
To avoid "latch-up" effect at power-on, the voltage on any pin (other than V
PP
) must not be higher than V
CC
+ 0.5 V or less than V
SS
0.5 V.
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
9
Table 1.
Special Function Registers
SYMBOL
DESCRIPTION
DIRECT
ADDRESS
BIT ADDRESS, SYMBOL, OR ALTERNATIVE PORT FUNCTION
MSB
LSB
RESET
VALUE
ACC*
Accumulator
E0H
E7
E6
E5
E4
E3
E2
E1
E0
00H
AUXR#
Auxiliary
8EH
EXTRAM
AO
xxxxxx00B
AUXR1#
Auxiliary 1
A2H
ENBOOT
GF2
0
DPS
xxxxxxx0B
B*
B register
F0H
F7
F6
F5
F4
F3
F2
F1
F0
00H
CCAP0H#
Module 0 Capture High
FAH
xxxxxxxxB
CCAP1H#
Module 1 Capture High
FBH
xxxxxxxxB
CCAP2H#
Module 2 Capture High
FCH
xxxxxxxxB
CCAP3H#
Module 3 Capture High
FDH
xxxxxxxxB
CCAP4H#
Module 4 Capture High
FEH
xxxxxxxxB
CCAP0L#
Module 0 Capture Low
EAH
xxxxxxxxB
CCAP1L#
Module 1 Capture Low
EBH
xxxxxxxxB
CCAP2L#
Module 2 Capture Low
ECH
xxxxxxxxB
CCAP3L#
Module 3 Capture Low
EDH
xxxxxxxxB
CCAP4L#
Module 4 Capture Low
EEH
xxxxxxxxB
CCAPM0#
Module 0 Mode
DAH
ECOM
CAPP
CAPN
MAT
TOG
PWM
ECCF
x0000000B
CCAPM1#
Module 1 Mode
DBH
ECOM
CAPP
CAPN
MAT
TOG
PWM
ECCF
x0000000B
CCAPM2#
Module 2 Mode
DCH
ECOM
CAPP
CAPN
MAT
TOG
PWM
ECCF
x0000000B
CCAPM3#
Module 3 Mode
DDH
ECOM
CAPP
CAPN
MAT
TOG
PWM
ECCF
x0000000B
CCAPM4#
Module 4 Mode
DEH
ECOM
CAPP
CAPN
MAT
TOG
PWM
ECCF
x0000000B
DF
DE
DD
DC
DB
DA
D9
D8
CCON*#
PCA Counter Control
D8H
CF
CR
CCF4
CCF3
CCF2
CCF1
CCF0
00x00000B
CH#
PCA Counter High
F9H
00H
CKCON#
Clock control
8FH
WDX2
PCAX2
SIX2
T2X2
T1X2
T0X2
X2
x0000000B
CL#
PCA Counter Low
E9H
00H
CMOD#
PCA Counter Mode
D9H
CIDL
WDTE
CPS1
CPS0
ECF
00xxx000B
DPTR:
Data Pointer (2 bytes)
DPH
Data Pointer High
83H
00H
DPL
Data Pointer Low
82H
00H
AF
AE
AD
AC
AB
AA
A9
A8
IE*
Interrupt Enable 0
A8H
EA
EC
ET2
ES
ET1
EX1
ET0
EX0
00H
BF
BE
BD
BC
BB
BA
B9
B8
IP*
Interrupt Priority
B8H
PPC
PT2
PS
PT1
PX1
PT0
PX0
x0000000B
IPH#
Interrupt Priority High
B7H
PPCH
PT2H
PSH
PT1H
PX1H
PT0H
PX0H
x0000000B
87
86
85
84
83
82
81
80
P0*
Port 0
80H
AD7
AD6
AD5
AD4
AD3
AD2
AD1
AD0
FFH
97
96
95
94
93
92
91
90
P1*
Port 1
90H
CEX4
CEX3
CEX2
CEX1
CEX0
ECI
T2EX
T2
FFH
A7
A6
A5
A4
A3
A2
A1
A0
P2*
Port 2
A0H
AD15
AD14
AD13
AD12
AD11
AD10
AD9
AD8
FFH
B7
B6
B5
B4
B3
B2
B1
B0
P3*
Port 3
B0H
RD
WR
T1
T0
INT1
INT0
TxD
RxD
FFH
PCON#
1
Power Control
87H
SMOD1
SMOD0
POF
GF1
GF0
PD
IDL
00xxx000B
*
SFRs are bit addressable.
#
SFRs are modified from or added to the 80C51 SFRs.
Reserved bits.
1. Reset value depends on reset source.
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
10
Table 1.
Special Function Registers (Continued)
SYMBOL
DESCRIPTION
DIRECT
ADDRESS
BIT ADDRESS, SYMBOL, OR ALTERNATIVE PORT FUNCTION
MSB
LSB
RESET
VALUE
D7
D6
D5
D4
D3
D2
D1
D0
PSW*
Program Status Word
D0H
CY
AC
F0
RS1
RS0
OV
F1
P
00000000B
RCAP2H
#
Timer 2 Capture High
CBH
00H
RCAP2L
#
Timer 2 Capture Low
CAH
00H
SADDR#
Slave Address
A9H
00H
SADEN#
Slave Address Mask
B9H
00H
SBUF
Serial Data Buffer
99H
xxxxxxxxB
9F
9E
9D
9C
9B
9A
99
98
SCON*
Serial Control
98H
SM0/FE
SM1
SM2
REN
TB8
RB8
TI
RI
00H
SP
Stack Pointer
81H
07H
8F
8E
8D
8C
8B
8A
89
88
TCON*
Timer Control
88H
TF1
TR1
TF0
TR0
IE1
IT1
IE0
IT0
00H
CF
CE
CD
CC
CB
CA
C9
C8
T2CON*
Timer 2 Control
C8H
TF2
EXF2
RCLK
TCLK
EXEN2
TR2
C/T2
CP/RL2
00H
T2MOD#
Timer 2 Mode Control
C9H
T2OE
DCEN
xxxxxx00B
TH0
Timer High 0
8CH
00H
TH1
Timer High 1
8DH
00H
TH2#
Timer High 2
CDH
00H
TL0
Timer Low 0
8AH
00H
TL1
Timer Low 1
8BH
00H
TL2#
Timer Low 2
CCH
00H
TMOD
Timer Mode
89H
GATE
C/T
M1
M0
GATE
C/T
M1
M0
00H
WDTRST
Watchdog Timer Reset
A6H
*
SFRs are bit addressable.
#
SFRs are modified from or added to the 80C51 SFRs.
Reserved bits.
OSCILLATOR CHARACTERISTICS
XTAL1 and XTAL2 are the input and output, respectively, of an
inverting amplifier. The pins can be configured for use as an
on-chip oscillator.
To drive the device from an external clock source, XTAL1 should be
driven while XTAL2 is left unconnected. Minimum and maximum
high and low times specified in the data sheet must be observed.
This device is configured at the factory to operate using 12 clock
periods per machine cycle, referred to in this datasheet as "12-clock
mode". It may be optionally configured on commercially available
Flash programming equipment or via ISP or via software to operate
at 6 clocks per machine cycle, referred to in this datasheet as
"6-clock mode". (This yields performance equivalent to twice that of
standard 80C51 family devices). Also see next page.
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
11
CLOCK CONTROL REGISTER (CKCON)
This device provides control of the 6-clock/12-clock mode by means
of both an SFR bit (X2) and a Flash bit (FX2, located in the Security
Block). The Flash clock control bit, FX2, when programmed (6-clock
mode) supercedes the X2 bit (CKCON.0).
The CKCON register also provides individual control of the clock
rates for the peripherals devices. When running in 6-clock mode
each peripheral may be individually clocked from either fosc/6 or
fosc/12. When in 12-clock mode, all peripheral devices will use
fosc/12. The CKCON register is shown below.
X2
BIT
SYMBOL
FUNCTION
CKCON.7
Reserved.
CKCON.6
WDX2
Watchdog clock; 0 = 6 clocks for each WDT clock, 1 = 12 clocks for each WDT clock
CKCON.5
PCAX2
PCA clock; 0 = 6 clocks for each PCA clock, 1 = 12 clocks for each PCA clock
CKCON.4
SIX2
UART clock; 0 = 6 clocks for each UART clock, 1 = 12 clocks for each UART clock
CKCON.3
T2X2
Timer2 clock; 0 = 6 clocks for each Timer2 clock, 1 = 12 clocks for each Timer2 clock
CKCON.2
T1X2
Timer1 clock; 0 = 6 clocks for each Timer1 clock, 1 = 12 clocks for each Timer1 clock
CKCON.1
T0X2
Timer0 clock; 0 = 6 clocks for each Timer0 clock, 1 = 12 clocks for each Timer0 clock
CKCON.0
X2
CPU clock; 1 = 6 clocks for each machine cycle, 0 = 12 clocks for each machine cycle
SU01607
T0X2
T1X2
T2X2
SIX2
PCAX2
WDX2
Not Bit Addressable
CKCON
Address = 8Fh
Reset Value =
x0000000B
7
6
5
4
3
2
1
0
Bits 1 through 6 only apply if 6 clocks per machine cycle is chosen
(i.e. Bit 0 = 1). If Bit 0 = 0 (12 clocks per machine cycle) then all
peripherals will have 12 clocks per machine cycle as their clock
source.
Also please note that the clock divider applies to the serial port for
modes 0 & 2 (fixed baud rate modes). This is because modes 1 & 3
(variable baud rate modes) use either Timer 1 or Timer 2.
Below is the truth table for the peripheral input clock sources.
FX2 clock mode bit
X2
Peripheral clock
mode bit
(e.g., T0X2)
CPU MODE
Peripheral Clock Rate
erased
0
x
12-clock (default)
12-clock (default)
erased
1
0
6-clock
6-clock
erased
1
1
6-clock
12-clock
programmed
x
0
6-clock
6-clock
programmed
x
1
6-clock
12-clock
RESET
A reset is accomplished by holding the RST pin high for at least two
machine cycles (12 oscillator periods in 6-clock mode, or 24 oscillator
periods in 12-clock mode), while the oscillator is running. To ensure a
good power-on reset, the RST pin must be high long enough to allow
the oscillator time to start up (normally a few milliseconds) plus two
machine cycles. At power-on, the voltage on V
CC
and RST must
come up at the same time for a proper start-up. Ports 1, 2, and 3 will
asynchronously be driven to their reset condition when a voltage
above V
IH1
(min.) is applied to RST.
The value on the EA pin is latched when RST is deasserted and has
no further effect.
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
12
LOW POWER MODES
Stop Clock Mode
The static design enables the clock speed to be reduced down to
0 MHz (stopped). When the oscillator is stopped, the RAM and
Special Function Registers retain their values. This mode allows
step-by-step utilization and permits reduced system power
consumption by lowering the clock frequency down to any value. For
lowest power consumption the Power Down mode is suggested.
Idle Mode
In the idle mode (see Table 2), the CPU puts itself to sleep while all
of the on-chip peripherals stay active. The instruction to invoke the
idle mode is the last instruction executed in the normal operating
mode before the idle mode is activated. The CPU contents, the
on-chip RAM, and all of the special function registers remain intact
during this mode. The idle mode can be terminated either by any
enabled interrupt (at which time the process is picked up at the
interrupt service routine and continued), or by a hardware reset
which starts the processor in the same manner as a power-on reset.
Power-Down Mode
To save even more power, a Power Down mode (see Table 2) can
be invoked by software. In this mode, the oscillator is stopped and
the instruction that invoked Power Down is the last instruction
executed. The on-chip RAM and Special Function Registers retain
their values down to 2 V and care must be taken to return V
CC
to the
minimum specified operating voltages before the Power Down Mode
is terminated.
Either a hardware reset or external interrupt can be used to exit from
Power Down. Reset redefines all the SFRs but does not change the
on-chip RAM. An external interrupt allows both the SFRs and the
on-chip RAM to retain their values.
To properly terminate Power Down, the reset or external interrupt
should not be executed before V
CC
is restored to its normal
operating level and must be held active long enough for the
oscillator to restart and stabilize (normally less than 10 ms).
With an external interrupt, INT0 and INT1 must be enabled and
configured as level-sensitive. Holding the pin low restarts the oscillator
but bringing the pin back high completes the exit. Once the interrupt
is serviced, the next instruction to be executed after RETI will be the
one following the instruction that put the device into Power Down.
POWER-ON FLAG
The Power-On Flag (POF) is set by on-chip circuitry when the V
CC
level on the P89C51RA2/RB2/RC2/RD2xx rises from 0 to 5 V. The
POF bit can be set or cleared by software allowing a user to
determine if the reset is the result of a power-on or a warm start
after powerdown. The V
CC
level must remain above 3 V for the POF
to remain unaffected by the V
CC
level.
Design Consideration
When the idle mode is terminated by a hardware reset, the device
normally resumes program execution, from where it left off, up to
two machine cycles before the internal reset algorithm takes control.
On-chip hardware inhibits access to internal RAM in this event, but
access to the port pins is not inhibited. To eliminate the possibility of
an unexpected write when Idle is terminated by reset, the instruction
following the one that invokes Idle should not be one that writes to a
port pin or to external memory.
ONCE
TM
Mode
The ONCE ("On-Circuit Emulation") Mode facilitates testing and
debugging of systems without the device having to be removed from
the circuit. The ONCE Mode is invoked by:
1. Pull ALE low while the device is in reset and PSEN is high;
2. Hold ALE low as RST is deactivated.
While the device is in ONCE Mode, the Port 0 pins go into a float
state, and the other port pins and ALE and PSEN are weakly pulled
high. The oscillator circuit remains active. While the device is in this
mode, an emulator or test CPU can be used to drive the circuit.
Normal operation is restored when a normal reset is applied.
Programmable Clock-Out
A 50% duty cycle clock can be programmed to come out on P1.0.
This pin, besides being a regular I/O pin, has two alternate
functions. It can be programmed:
1. to input the external clock for Timer/Counter 2, or
2. to output a 50% duty cycle clock ranging from 61 Hz to 4 MHz at a
16 MHz operating frequency in 12-clock mode (122 Hz to 8 MHz in
6-clock mode).
To configure the Timer/Counter 2 as a clock generator, bit C/T2 (in
T2CON) must be cleared and bit T20E in T2MOD must be set. Bit
TR2 (T2CON.2) also must be set to start the timer.
The Clock-Out frequency depends on the oscillator frequency and
the reload value of Timer 2 capture registers (RCAP2H, RCAP2L)
as shown in this equation:
Oscillator Frequency
n
(65536
*
RCAP2H, RCAP2L)
n =
2 in 6-clock mode
4 in 12-clock mode
Where (RCAP2H,RCAP2L) = the content of RCAP2H and RCAP2L
taken as a 16-bit unsigned integer.
In the Clock-Out mode Timer 2 roll-overs will not generate an
interrupt. This is similar to when it is used as a baud-rate generator.
It is possible to use Timer 2 as a baud-rate generator and a clock
generator simultaneously. Note, however, that the baud-rate and the
Clock-Out frequency will be the same.
Table 2.
External Pin Status During Idle and Power-Down Mode
MODE
PROGRAM MEMORY
ALE
PSEN
PORT 0
PORT 1
PORT 2
PORT 3
Idle
Internal
1
1
Data
Data
Data
Data
Idle
External
1
1
Float
Data
Address
Data
Power-down
Internal
0
0
Data
Data
Data
Data
Power-down
External
0
0
Float
Data
Data
Data
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
13
TIMER 0 AND TIMER 1 OPERATION
Timer 0 and Timer 1
The "Timer" or "Counter" function is selected by control bits C/T in
the Special Function Register TMOD. These two Timer/Counters
have four operating modes, which are selected by bit-pairs (M1, M0)
in TMOD. Modes 0, 1, and 2 are the same for both Timers/Counters.
Mode 3 is different. The four operating modes are described in the
following text.
Mode 0
Putting either Timer into Mode 0 makes it look like an 8048 Timer,
which is an 8-bit Counter with a divide-by-32 prescaler. Figure 2
shows the Mode 0 operation.
In this mode, the Timer register is configured as a 13-bit register. As
the count rolls over from all 1s to all 0s, it sets the Timer interrupt
flag TFn. The counted input is enabled to the Timer when TRn = 1
and either GATE = 0 or INTn = 1. (Setting GATE = 1 allows the
Timer to be controlled by external input INTn, to facilitate pulse width
measurements). TRn is a control bit in the Special Function Register
TCON (Figure 3).
The 13-bit register consists of all 8 bits of THn and the lower 5 bits
of TLn. The upper 3 bits of TLn are indeterminate and should be
ignored. Setting the run flag (TRn) does not clear the registers.
Mode 0 operation is the same for Timer 0 as for Timer 1. There are
two different GATE bits, one for Timer 1 (TMOD.7) and one for Timer
0 (TMOD.3).
Mode 1
Mode 1 is the same as Mode 0, except that the Timer register is
being run with all 16 bits.
Mode 2
Mode 2 configures the Timer register as an 8-bit Counter (TLn) with
automatic reload, as shown in Figure 4. Overflow from TLn not only
sets TFn, but also reloads TLn with the contents of THn, which is
preset by software. The reload leaves THn unchanged.
Mode 2 operation is the same for Timer 0 as for Timer 1.
Mode 3
Timer 1 in Mode 3 simply holds its count. The effect is the same as
setting TR1 = 0.
Timer 0 in Mode 3 establishes TL0 and TH0 as two separate
counters. The logic for Mode 3 on Timer 0 is shown in Figure 5. TL0
uses the Timer 0 control bits: C/T, GATE, TR0, and TF0 as well as
pin INT0. TH0 is locked into a timer function (counting machine
cycles) and takes over the use of TR1 and TF1 from Timer 1. Thus,
TH0 now controls the "Timer 1" interrupt.
Mode 3 is provided for applications requiring an extra 8-bit timer on
the counter. With Timer 0 in Mode 3, an 80C51 can look like it has
three Timer/Counters. When Timer 0 is in Mode 3, Timer 1 can be
turned on and off by switching it out of and into its own Mode 3, or
can still be used by the serial port as a baud rate generator, or in
fact, in any application not requiring an interrupt.
GATE
C/T
M1
M0
GATE
C/T
M1
M0
BIT
SYMBOL
FUNCTION
TMOD.3/
GATE
Gating control when set. Timer/Counter "n" is enabled only while "INTn" pin is high and
TMOD.7
"TRn" control pin is set. when cleared Timer "n" is enabled whenever "TRn" control bit is set.
TMOD.2/
C/T
Timer or Counter Selector cleared for Timer operation (input from internal system clock.)
TMOD.6
Set for Counter operation (input from "Tn" input pin).
M1
M0
OPERATING
0
0
8048 Timer: "TLn" serves as 5-bit prescaler.
0
1
16-bit Timer/Counter: "THn" and "TLn" are cascaded; there is no prescaler.
1
0
8-bit auto-reload Timer/Counter: "THn" holds a value which is to be reloaded
into "TLn" each time it overflows.
1
1
(Timer 0) TL0 is an 8-bit Timer/Counter controlled by the standard Timer 0 control bits.
TH0 is an 8-bit timer only controlled by Timer 1 control bits.
1
1
(Timer 1) Timer/Counter 1 stopped.
SU01580
TIMER 1
TIMER 0
Not Bit Addressable
TMOD
Address = 89H
Reset Value = 00H
7
6
5
4
3
2
1
0
Figure 1. Timer/Counter 0/1 Mode Control (TMOD) Register
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
14
INTn Pin
Timer n
Gate bit
TRn
TLn
(5 Bits)
THn
(8 Bits)
TFn
Interrupt
Control
C/T = 0
C/T = 1
SU01618
OSC
d*
Tn Pin
*d = 6 in 6-clock mode; d = 12 in 12-clock mode.
Figure 2. Timer/Counter 0/1 Mode 0: 13-Bit Timer/Counter
IT0
BIT
SYMBOL
FUNCTION
TCON.7
TF1
Timer 1 overflow flag. Set by hardware on Timer/Counter overflow.
Cleared by hardware when processor vectors to interrupt routine, or clearing the bit in software.
TCON.6
TR1
Timer 1 Run control bit. Set/cleared by software to turn Timer/Counter on/off.
TCON.5
TF0
Timer 0 overflow flag. Set by hardware on Timer/Counter overflow.
Cleared by hardware when processor vectors to interrupt routine, or by clearing the bit in software.
TCON.4
TR0
Timer 0 Run control bit. Set/cleared by software to turn Timer/Counter on/off.
TCON.3
IE1
Interrupt 1 Edge flag. Set by hardware when external interrupt edge detected.
Cleared when interrupt processed.
TCON.2
IT1
Interrupt 1 type control bit. Set/cleared by software to specify falling edge/low level triggered
external interrupts.
TCON.1
IE0
Interrupt 0 Edge flag. Set by hardware when external interrupt edge detected.
Cleared when interrupt processed.
TCON.0
IT0
Interrupt 0 Type control bit. Set/cleared by software to specify falling edge/low level
triggered external interrupts.
SU01516
IE0
IT1
IE1
TR0
TF0
TR1
TF1
Bit Addressable
TCON
Address = 88H
Reset Value = 00H
7
6
5
4
3
2
1
0
Figure 3. Timer/Counter 0/1 Control (TCON) Register
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
15
TLn
(8 Bits)
TFn
Interrupt
Control
C/T = 0
C/T = 1
THn
(8 Bits)
Reload
INTn Pin
Timer n
Gate bit
TRn
SU01619
OSC
d*
Tn Pin
*d = 6 in 6-clock mode; d = 12 in 12-clock mode.
Figure 4. Timer/Counter 0/1 Mode 2: 8-Bit Auto-Reload
TL0
(8 Bits)
TF0
Interrupt
Control
TH0
(8 Bits)
TF1
Interrupt
Control
TR1
INT0 Pin
Timer 0
Gate bit
TR0
SU01620
C/T = 0
C/T = 1
*d = 6 in 6-clock mode; d = 12 in 12-clock mode.
OSC
d*
OSC
d*
T0 Pin
Figure 5. Timer/Counter 0 Mode 3: Two 8-Bit Counters
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
16
TIMER 2 OPERATION
Timer 2
Timer 2 is a 16-bit Timer/Counter which can operate as either an
event timer or an event counter, as selected by C/T2 in the special
function register T2CON (see Figure 6). Timer 2 has three operating
modes: Capture, Auto-reload (up or down counting), and Baud Rate
Generator, which are selected by bits in the T2CON as shown in
Table 3.
Capture Mode
In the capture mode there are two options which are selected by bit
EXEN2 in T2CON. If EXEN2=0, then timer 2 is a 16-bit timer or
counter (as selected by C/T2 in T2CON) which, upon overflowing
sets bit TF2, the timer 2 overflow bit. This bit can be used to
generate an interrupt (by enabling the Timer 2 interrupt bit in the
IE register). If EXEN2= 1, Timer 2 operates as described above, but
with the added feature that a 1- to -0 transition at external input
T2EX causes the current value in the Timer 2 registers, TL2 and
TH2, to be captured into registers RCAP2L and RCAP2H,
respectively. In addition, the transition at T2EX causes bit EXF2 in
T2CON to be set, and EXF2 like TF2 can generate an interrupt
(which vectors to the same location as Timer 2 overflow interrupt.
The Timer 2 interrupt service routine can interrogate TF2 and EXF2
to determine which event caused the interrupt). The capture mode is
illustrated in Figure 7 (There is no reload value for TL2 and TH2 in
this mode. Even when a capture event occurs from T2EX, the
counter keeps on counting T2EX pin transitions or osc/6 pulses
(osc/12 in 12-clock mode).).
Auto-Reload Mode (Up or Down Counter)
In the 16-bit auto-reload mode, Timer 2 can be configured (as either
a timer or counter [C/T2 in T2CON]) then programmed to count up
or down. The counting direction is determined by bit DCEN (Down
Counter Enable) which is located in the T2MOD register (see
Figure 8). When reset is applied the DCEN=0 which means Timer 2
will default to counting up. If DCEN bit is set, Timer 2 can count up
or down depending on the value of the T2EX pin.
Figure 9 shows Timer 2 which will count up automatically since
DCEN=0. In this mode there are two options selected by bit EXEN2
in T2CON register. If EXEN2=0, then Timer 2 counts up to 0FFFFH
and sets the TF2 (Overflow Flag) bit upon overflow. This causes the
Timer 2 registers to be reloaded with the 16-bit value in RCAP2L
and RCAP2H. The values in RCAP2L and RCAP2H are preset by
software means.
If EXEN2=1, then a 16-bit reload can be triggered either by an
overflow or by a 1-to-0 transition at input T2EX. This transition also
sets the EXF2 bit. The Timer 2 interrupt, if enabled, can be
generated when either TF2 or EXF2 are 1.
In Figure 10 DCEN=1 which enables Timer 2 to count up or down.
This mode allows pin T2EX to control the direction of count. When a
logic 1 is applied at pin T2EX Timer 2 will count up. Timer 2 will
overflow at 0FFFFH and set the TF2 flag, which can then generate
an interrupt, if the interrupt is enabled. This timer overflow also
causes the 16-bit value in RCAP2L and RCAP2H to be reloaded
into the timer registers TL2 and TH2.
When a logic 0 is applied at pin T2EX this causes Timer 2 to count
down. The timer will underflow when TL2 and TH2 become equal to
the value stored in RCAP2L and RCAP2H. Timer 2 underflow sets
the TF2 flag and causes 0FFFFH to be reloaded into the timer
registers TL2 and TH2.
The external flag EXF2 toggles when Timer 2 underflows or overflows.
This EXF2 bit can be used as a 17th bit of resolution if needed. The
EXF2 flag does not generate an interrupt in this mode of operation.
(MSB)
(LSB)
Symbol
Position
Name and Significance
TF2
T2CON.7
Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set
when either RCLK or TCLK = 1.
EXF2
T2CON.6
Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and
EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the Timer 2
interrupt routine. EXF2 must be cleared by software. EXF2 does not cause an interrupt in up/down
counter mode (DCEN = 1).
RCLK
T2CON.5
Receive clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its receive clock
in modes 1 and 3. RCLK = 0 causes Timer 1 overflow to be used for the receive clock.
TCLK
T2CON.4
Transmit clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock
in modes 1 and 3. TCLK = 0 causes Timer 1 overflows to be used for the transmit clock.
EXEN2
T2CON.3
Timer 2 external enable flag. When set, allows a capture or reload to occur as a result of a negative
transition on T2EX if Timer 2 is not being used to clock the serial port. EXEN2 = 0 causes Timer 2 to
ignore events at T2EX.
TR2
T2CON.2
Start/stop control for Timer 2. A logic 1 starts the timer.
C/T2
T2CON.1
Timer or counter select. (Timer 2)
0 = Internal timer (OSC/6 in 6-clock mode or OSC/12 in 12-clock mode)
1 = External event counter (falling edge triggered).
CP/RL2
T2CON.0
Capture/Reload flag. When set, captures will occur on negative transitions at T2EX if EXEN2 = 1. When
cleared, auto-reloads will occur either with Timer 2 overflows or negative transitions at T2EX when
EXEN2 = 1. When either RCLK = 1 or TCLK = 1, this bit is ignored and the timer is forced to auto-reload
on Timer 2 overflow.
TF2
EXF2
RCLK
TCLK
EXEN2
TR2
C/T2
CP/RL2
SU01251
Figure 6. Timer/Counter 2 (T2CON) Control Register
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
17
Table 3.
Timer 2 Operating Modes
RCLK + TCLK
CP/RL2
TR2
MODE
0
0
1
16-bit Auto-reload
0
1
1
16-bit Capture
1
X
1
Baud rate generator
X
X
0
(off)
OSC
n*
C/T2 = 0
C/T2 = 1
TR2
Control
TL2
(8 BITS)
TH2
(8 BITS)
TF2
RCAP2L
RCAP2H
EXEN2
Control
EXF2
Timer 2
Interrupt
T2EX Pin
Transition
Detector
T2 Pin
Capture
SU01252
* n = 6 in 6-clock mode, or 12 in 12-clock mode.
Figure 7. Timer 2 in Capture Mode
Not Bit Addressable
Symbol
Function
--
Not implemented, reserved for future use.*
T2OE
Timer 2 Output Enable bit.
DCEN
Down Count Enable bit. When set, this allows Timer 2 to be configured as an up/down counter.
--
--
--
--
--
--
T2OE
DCEN
SU00729
7
6
5
4
3
2
1
0
*
User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features.
In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is
indeterminate.
Bit
T2MOD
Address = 0C9H
Reset Value = XXXX XX00B
Figure 8. Timer 2 Mode (T2MOD) Control Register
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
18
OSC
n*
C/T2 = 0
C/T2 = 1
TR2
CONTROL
TL2
(8 BITS)
TH2
(8 BITS)
TF2
RCAP2L
RCAP2H
EXEN2
CONTROL
EXF2
TIMER 2
INTERRUPT
T2EX PIN
TRANSITION
DETECTOR
T2 PIN
RELOAD
SU01253
* n = 6 in 6-clock mode, or 12 in 12-clock mode.
Figure 9. Timer 2 in Auto-Reload Mode (DCEN = 0)
n*
C/T2 = 0
C/T2 = 1
TL2
TH2
TR2
CONTROL
T2 PIN
SU01254
FFH
FFH
RCAP2L
RCAP2H
(UP COUNTING RELOAD VALUE)
T2EX PIN
TF2
INTERRUPT
COUNT
DIRECTION
1 = UP
0 = DOWN
EXF2
OVERFLOW
(DOWN COUNTING RELOAD VALUE)
TOGGLE
OSC
* n = 6 in 6-clock mode, or 12 in 12-clock mode.
Figure 10. Timer 2 Auto Reload Mode (DCEN = 1)
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
19
C/T2 = 0
C/T2 = 1
TR2
Control
TL2
(8-bits)
TH2
(8-bits)
16
RCAP2L
RCAP2H
EXEN2
Control
EXF2
Timer 2
Interrupt
T2EX Pin
Transition
Detector
Reload
2
"0"
"1"
RX Clock
16
TX Clock
"0"
"1"
"0"
"1"
Timer 1
Overflow
Note availability of additional external interrupt.
SMOD
RCLK
TCLK
SU01629
n = 1 in 6-clock mode
n = 2 in 12-clock mode
OSC
n
T2 Pin
Figure 11. Timer 2 in Baud Rate Generator Mode
Table 4.
Timer 2 Generated Commonly Used
Baud Rates
Baud Rate
Timer 2
12-clock
mode
6-clock
mode
Osc Freq
RCAP2H
RCAP2L
375 k
750 k
12 MHz
FF
FF
9.6 k
19.2 k
12 MHz
FF
D9
4.8 k
9.6 k
12 MHz
FF
B2
2.4 k
4.8 k
12 MHz
FF
64
1.2 k
2.4 k
12 MHz
FE
C8
300
600
12 MHz
FB
1E
110
220
12 MHz
F2
AF
300
600
6 MHz
FD
8F
110
220
6 MHz
F9
57
Baud Rate Generator Mode
Bits TCLK and/or RCLK in T2CON (Table 4) allow the serial port
transmit and receive baud rates to be derived from either Timer 1 or
Timer 2. When TCLK= 0, Timer 1 is used as the serial port transmit
baud rate generator. When TCLK= 1, Timer 2 is used as the serial
port transmit baud rate generator. RCLK has the same effect for the
serial port receive baud rate. With these two bits, the serial port can
have different receive and transmit baud rates one generated by
Timer 1, the other by Timer 2.
Figure 11 shows the Timer 2 in baud rate generation mode. The baud
rate generation mode is like the auto-reload mode,in that a rollover in
TH2 causes the Timer 2 registers to be reloaded with the 16-bit value
in registers RCAP2H and RCAP2L, which are preset by software.
The baud rates in modes 1 and 3 are determined by Timer 2's
overflow rate given below:
Modes 1 and 3 Baud Rates
+
Timer 2 Overflow Rate
16
The timer can be configured for either "timer" or "counter" operation.
In many applications, it is configured for "timer" operation (C/T2=0).
Timer operation is different for Timer 2 when it is being used as a
baud rate generator.
Usually, as a timer it would increment every machine cycle (i.e.,
1
/
6
the oscillator frequency in 6-clock mode,
1
/
12
the oscillator
frequency in 12-clock mode). As a baud rate generator, it
increments at the oscillator frequency in 6-clock mode (
OSC
/
2
in
12-clock mode). Thus the baud rate formula is as follows:
Oscillator Frequency
[ n *
[65536
*
(RCAP2H, RCAP2L)]]
Modes 1 and 3 Baud Rates =
* n =
16 in 6-clock mode
32 in 12-clock mode
Where:
(RCAP2H, RCAP2L)= The content of RCAP2H and
RCAP2L taken as a 16-bit unsigned integer.
The Timer 2 as a baud rate generator mode shown in Figure 11, is
valid only if RCLK and/or TCLK = 1 in T2CON register. Note that a
rollover in TH2 does not set TF2, and will not generate an interrupt.
Thus, the Timer 2 interrupt does not have to be disabled when
Timer 2 is in the baud rate generator mode. Also if the EXEN2
(T2 external enable flag) is set, a 1-to-0 transition in T2EX
(Timer/counter 2 trigger input) will set EXF2 (T2 external flag) but
will not cause a reload from (RCAP2H, RCAP2L) to (TH2,TL2).
Therefore when Timer 2 is in use as a baud rate generator, T2EX
can be used as an additional external interrupt, if needed.
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
20
When Timer 2 is in the baud rate generator mode, one should not try
to read or write TH2 and TL2. As a baud rate generator, Timer 2 is
incremented every state time (osc/2) or asynchronously from pin T2;
under these conditions, a read or write of TH2 or TL2 may not be
accurate. The RCAP2 registers may be read, but should not be
written to, because a write might overlap a reload and cause write
and/or reload errors. The timer should be turned off (clear TR2)
before accessing the Timer 2 or RCAP2 registers.
Table 4 shows commonly used baud rates and how they can be
obtained from Timer 2.
Summary of Baud Rate Equations
Timer 2 is in baud rate generating mode. If Timer 2 is being clocked
through pin T2 (P1.0) the baud rate is:
Baud Rate
+
Timer 2 Overflow Rate
16
If Timer 2 is being clocked internally, the baud rate is:
Baud Rate
+
f
OSC
[ n *
[65536
*
(RCAP2H, RCAP2L)]]
* n =
16 in 6-clock mode
32 in 12-clock mode
Where f
OSC
= Oscillator Frequency
To obtain the reload value for RCAP2H and RCAP2L, the above
equation can be rewritten as:
RCAP2H, RCAP2L
+
65536
*
f
OSC
n *
Baud Rate
Timer/Counter 2 Set-up
Except for the baud rate generator mode, the values given for T2CON
do not include the setting of the TR2 bit. Therefore, bit TR2 must be
set, separately, to turn the timer on. see Table 5 for set-up of Timer 2
as a timer. Also see Table 6 for set-up of Timer 2 as a counter.
Table 5.
Timer 2 as a Timer
T2CON
MODE
INTERNAL CONTROL
(Note 1)
EXTERNAL CONTROL
(Note 2)
16-bit Auto-Reload
00H
08H
16-bit Capture
01H
09H
Baud rate generator receive and transmit same baud rate
34H
36H
Receive only
24H
26H
Transmit only
14H
16H
Table 6.
Timer 2 as a Counter
TMOD
MODE
INTERNAL CONTROL
(Note 1)
EXTERNAL CONTROL
(Note 2)
16-bit
02H
0AH
Auto-Reload
03H
0BH
NOTES:
1. Capture/reload occurs only on timer/counter overflow.
2. Capture/reload occurs on timer/counter overflow and a 1-to-0 transition on T2EX (P1.1) pin except when Timer 2 is used in the baud rate
generator mode.
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
21
FULL-DUPLEX ENHANCED UART
Standard UART operation
The serial port is full duplex, meaning it can transmit and receive
simultaneously. It is also receive-buffered, meaning it can
commence reception of a second byte before a previously received
byte has been read from the register. (However, if the first byte still
hasn't been read by the time reception of the second byte is
complete, one of the bytes will be lost.) The serial port receive and
transmit registers are both accessed at Special Function Register
SBUF. Writing to SBUF loads the transmit register, and reading
SBUF accesses a physically separate receive register.
The serial port can operate in 4 modes:
Mode 0:
Serial data enters and exits through RxD. TxD outputs
the shift clock. 8 bits are transmitted/received (LSB first).
The baud rate is fixed at 1/12 the oscillator frequency in
12-clock mode or 1/6 the oscillator frequency in 6-clock
mode.
Mode 1:
10 bits are transmitted (through TxD) or received
(through RxD): a start bit (0), 8 data bits (LSB first), and
a stop bit (1). On receive, the stop bit goes into RB8 in
Special Function Register SCON. The baud rate is
variable.
Mode 2:
11 bits are transmitted (through TxD) or received
(through RxD): start bit (0), 8 data bits (LSB first), a
programmable 9th data bit, and a stop bit (1). On
Transmit, the 9th data bit (TB8 in SCON) can be
assigned the value of 0 or 1. Or, for example, the parity
bit (P, in the PSW) could be moved into TB8. On receive,
the 9th data bit goes into RB8 in Special Function
Register SCON, while the stop bit is ignored. The baud
rate is programmable to either 1/32 or 1/64 the oscillator
frequency in 12-clock mode or 1/16 or 1/32 the oscillator
frequency in 6-clock mode.
Mode 3:
11 bits are transmitted (through TxD) or received
(through RxD): a start bit (0), 8 data bits (LSB first), a
programmable 9th data bit, and a stop bit (1). In fact,
Mode 3 is the same as Mode 2 in all respects except
baud rate. The baud rate in Mode 3 is variable.
In all four modes, transmission is initiated by any instruction that
uses SBUF as a destination register. Reception is initiated in Mode 0
by the condition RI = 0 and REN = 1. Reception is initiated in the
other modes by the incoming start bit if REN = 1.
Multiprocessor Communications
Modes 2 and 3 have a special provision for multiprocessor
communications. In these modes, 9 data bits are received. The 9th
one goes into RB8. Then comes a stop bit. The port can be
programmed such that when the stop bit is received, the serial port
interrupt will be activated only if RB8 = 1. This feature is enabled by
setting bit SM2 in SCON. A way to use this feature in multiprocessor
systems is as follows:
When the master processor wants to transmit a block of data to one
of several slaves, it first sends out an address byte which identifies
the target slave. An address byte differs from a data byte in that the
9th bit is 1 in an address byte and 0 in a data byte. With SM2 = 1, no
slave will be interrupted by a data byte. An address byte, however,
will interrupt all slaves, so that each slave can examine the received
byte and see if it is being addressed. The addressed slave will clear
its SM2 bit and prepare to receive the data bytes that will be coming.
The slaves that weren't being addressed leave their SM2s set and
go on about their business, ignoring the coming data bytes.
SM2 has no effect in Mode 0, and in Mode 1 can be used to check
the validity of the stop bit. In a Mode 1 reception, if SM2 = 1, the
receive interrupt will not be activated unless a valid stop bit is
received.
Serial Port Control Register
The serial port control and status register is the Special Function
Register SCON, shown in Figure 12. This register contains not only
the mode selection bits, but also the 9th data bit for transmit and
receive (TB8 and RB8), and the serial port interrupt bits (TI and RI).
Baud Rates
The baud rate in Mode 0 is fixed: Mode 0 Baud Rate = Oscillator
Frequency / 12 (12-clock mode) or / 6 (6-clock mode). The baud
rate in Mode 2 depends on the value of bit SMOD in Special
Function Register PCON. If SMOD = 0 (which is the value on reset),
and the port pins in 12-clock mode, the baud rate is 1/64 the
oscillator frequency. If SMOD = 1, the baud rate is 1/32 the oscillator
frequency. In 6-clock mode, the baud rate is 1/32 or 1/16 the
oscillator frequency, respectively.
Mode 2 Baud Rate =
2
SMOD
n
(Oscillator Frequency)
Where:
n = 64 in 12-clock mode, 32 in 6-clock mode
The baud rates in Modes 1 and 3 are determined by the Timer 1 or
Timer 2 overflow rate.
Using Timer 1 to Generate Baud Rates
When Timer 1 is used as the baud rate generator (T2CON.RCLK
= 0, T2CON.TCLK = 0), the baud rates in Modes 1 and 3 are
determined by the Timer 1 overflow rate and the value of SMOD as
follows:
Mode 1, 3 Baud Rate =
2
SMOD
n
(Timer 1 Overflow Rate)
Where:
n = 32 in 12-clock mode, 16 in 6-clock mode
The Timer 1 interrupt should be disabled in this application. The
Timer itself can be configured for either "timer" or "counter"
operation, and in any of its 3 running modes. In the most typical
applications, it is configured for "timer" operation, in the auto-reload
mode (high nibble of TMOD = 0010B). In that case the baud rate is
given by the formula:
Mode 1, 3 Baud Rate =
2
SMOD
n
Oscillator Frequency
12
[256(TH1)]
Where:
n = 32 in 12-clock mode, 16 in 6-clock mode
One can achieve very low baud rates with Timer 1 by leaving the
Timer 1 interrupt enabled, and configuring the Timer to run as a
16-bit timer (high nibble of TMOD = 0001B), and using the Timer 1
interrupt to do a 16-bit software reload. Figure 13 lists various
commonly used baud rates and how they can be obtained from
Timer 1.
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
22
SM2
Enables the multiprocessor communication feature in Modes 2 and 3. In Mode 2 or 3, if SM2 is set to 1, then Rl will not be
activated if the received 9th data bit (RB8) is 0. In Mode 1, if SM2=1 then RI will not be activated if a valid stop bit was not
received. In Mode 0, SM2 should be 0.
REN
Enables serial reception. Set by software to enable reception. Clear by software to disable reception.
TB8
The 9th data bit that will be transmitted in Modes 2 and 3. Set or clear by software as desired.
RB8
In Modes 2 and 3, is the 9th data bit that was received. In Mode 1, it SM2=0, RB8 is the stop bit that was received. In Mode 0,
RB8 is not used.
TI
Transmit interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or at the beginning of the stop bit in the other
modes, in any serial transmission. Must be cleared by software.
RI
Receive interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or halfway through the stop bit time in the other
modes, in any serial reception (except see SM2). Must be cleared by software.
SM0
SM1
SM2
REN
TB8
RB8
TI
RI
Where SM0, SM1 specify the serial port mode, as follows:
SM0
SM1
Mode
Description
Baud Rate
0
0
0
shift register
f
OSC
/12 (12-clock mode) or f
OSC
/6 (6-clock mode)
0
1
1
8-bit UART
variable
1
0
2
9-bit UART
f
OSC
/64 or f
OSC
/32 (12-clock mode) or f
OSC
/32 or f
OSC
/16 (6-clock mode)
1
1
3 9-bit
UART
variable
SU01626
Bit Addressable
SCON
Address = 98H
Reset Value = 00H
7
6
5
4
3
2
1
0
Figure 12. Serial Port Control (SCON) Register
Baud Rate
f
SMOD
Timer 1
Mode
12-clock mode
6-clock mode
f
OSC
SMOD
C/T
Mode
Reload Value
Mode 0 Max
1.67 MHz
3.34 MHz
20 MHz
X
X
X
X
Mode 2 Max
625 k
1250 k
20 MHz
1
X
X
X
Mode 1, 3 Max
104.2 k
208.4 k
20 MHz
1
0
2
FFH
Mode 1, 3
19.2 k
38.4 k
11.059 MHz
1
0
2
FDH
9.6 k
19.2 k
11.059 MHz
0
0
2
FDH
4.8 k
9.6 k
11.059 MHz
0
0
2
FAH
2.4 k
4.8 k
11.059 MHz
0
0
2
F4H
1.2 k
2.4 k
11.059 MHz
0
0
2
E8H
137.5
275
11.986 MHz
0
0
2
1DH
110
220
6 MHz
0
0
2
72H
110
220
12 MHz
0
0
1
FEEBH
Figure 13. Timer 1 Generated Commonly Used Baud Rates
More About Mode 0
Serial data enters and exits through RxD. TxD outputs the shift
clock. 8 bits are transmitted/received: 8 data bits (LSB first). The
baud rate is fixed a 1/12 the oscillator frequency (12-clock mode) or
1/6 the oscillator frequency (6-clock mode).
Figure 14 shows a simplified functional diagram of the serial port in
Mode 0, and associated timing.
Transmission is initiated by any instruction that uses SBUF as a
destination register. The "write to SBUF" signal at S6P2 also loads a
1 into the 9th position of the transmit shift register and tells the TX
Control block to commence a transmission. The internal timing is
such that one full machine cycle will elapse between "write to SBUF"
and activation of SEND.
SEND enables the output of the shift register to the alternate output
function line of P3.0 and also enable SHIFT CLOCK to the alternate
output function line of P3.1. SHIFT CLOCK is low during S3, S4, and
S5 of every machine cycle, and high during S6, S1, and S2. At
S6P2 of every machine cycle in which SEND is active, the contents
of the transmit shift are shifted to the right one position.
As data bits shift out to the right, zeros come in from the left. When
the MSB of the data byte is at the output position of the shift register,
then the 1 that was initially loaded into the 9th position, is just to the
left of the MSB, and all positions to the left of that contain zeros.
This condition flags the TX Control block to do one last shift and
then deactivate SEND and set T1. Both of these actions occur at
S1P1 of the 10th machine cycle after "write to SBUF."
Reception is initiated by the condition REN = 1 and R1 = 0. At S6P2
of the next machine cycle, the RX Control unit writes the bits
11111110 to the receive shift register, and in the next clock phase
activates RECEIVE.
RECEIVE enable SHIFT CLOCK to the alternate output function line
of P3.1. SHIFT CLOCK makes transitions at S3P1 and S6P1 of
every machine cycle. At S6P2 of every machine cycle in which
RECEIVE is active, the contents of the receive shift register are
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
23
shifted to the left one position. The value that comes in from the right
is the value that was sampled at the P3.0 pin at S5P2 of the same
machine cycle.
As data bits come in from the right, 1s shift out to the left. When the
0 that was initially loaded into the rightmost position arrives at the
leftmost position in the shift register, it flags the RX Control block to
do one last shift and load SBUF. At S1P1 of the 10th machine cycle
after the write to SCON that cleared RI, RECEIVE is cleared as RI is
set.
More About Mode 1
Ten bits are transmitted (through TxD), or received (through RxD): a
start bit (0), 8 data bits (LSB first), and a stop bit (1). On receive, the
stop bit goes into RB8 in SCON. In the 80C51 the baud rate is
determined by the Timer 1 or Timer 2 overflow rate.
Figure 15 shows a simplified functional diagram of the serial port in
Mode 1, and associated timings for transmit receive.
Transmission is initiated by any instruction that uses SBUF as a
destination register. The "write to SBUF" signal also loads a 1 into
the 9th bit position of the transmit shift register and flags the TX
Control unit that a transmission is requested. Transmission actually
commences at S1P1 of the machine cycle following the next rollover
in the divide-by-16 counter. (Thus, the bit times are synchronized to
the divide-by-16 counter, not to the "write to SBUF" signal.)
The transmission begins with activation of SEND which puts the
start bit at TxD. One bit time later, DATA is activated, which enables
the output bit of the transmit shift register to TxD. The first shift pulse
occurs one bit time after that.
As data bits shift out to the right, zeros are clocked in from the left.
When the MSB of the data byte is at the output position of the shift
register, then the 1 that was initially loaded into the 9th position is
just to the left of the MSB, and all positions to the left of that contain
zeros. This condition flags the TX Control unit to do one last shift
and then deactivate SEND and set TI. This occurs at the 10th
divide-by-16 rollover after "write to SBUF."
Reception is initiated by a detected 1-to-0 transition at RxD. For this
purpose RxD is sampled at a rate of 16 times whatever baud rate
has been established. When a transition is detected, the
divide-by-16 counter is immediately reset, and 1FFH is written into
the input shift register. Resetting the divide-by-16 counter aligns its
rollovers with the boundaries of the incoming bit times.
The 16 states of the counter divide each bit time into 16ths. At the
7th, 8th, and 9th counter states of each bit time, the bit detector
samples the value of RxD. The value accepted is the value that was
seen in at least 2 of the 3 samples. This is done for noise rejection.
If the value accepted during the first bit time is not 0, the receive
circuits are reset and the unit goes back to looking for another 1-to-0
transition. This is to provide rejection of false start bits. If the start bit
proves valid, it is shifted into the input shift register, and reception of
the rest of the frame will proceed.
As data bits come in from the right, 1s shift out to the left. When the
start bit arrives at the leftmost position in the shift register (which in
mode 1 is a 9-bit register), it flags the RX Control block to do one
last shift, load SBUF and RB8, and set RI. The signal to load SBUF
and RB8, and to set RI, will be generated if, and only if, the following
conditions are met at the time the final shift pulse is generated.:
1. R1 = 0, and
2. Either SM2 = 0, or the received stop bit = 1.
If either of these two conditions is not met, the received frame is
irretrievably lost. If both conditions are met, the stop bit goes into
RB8, the 8 data bits go into SBUF, and RI is activated. At this time,
whether the above conditions are met or not, the unit goes back to
looking for a 1-to-0 transition in RxD.
More About Modes 2 and 3
Eleven bits are transmitted (through TxD), or received (through
RxD): a start bit (0), 8 data bits (LSB first), a programmable 9th data
bit, and a stop bit (1). On transmit, the 9th data bit (TB8) can be
assigned the value of 0 or 1. On receive, the 9the data bit goes into
RB8 in SCON. The baud rate is programmable to either 1/32 or 1/64
(12-clock mode) or 1/16 or 1/32 the oscillator frequency (6-clock
mode) the oscillator frequency in Mode 2. Mode 3 may have a
variable baud rate generated from Timer 1 or Timer 2.
Figures 16 and 17 show a functional diagram of the serial port in
Modes 2 and 3. The receive portion is exactly the same as in Mode
1. The transmit portion differs from Mode 1 only in the 9th bit of the
transmit shift register.
Transmission is initiated by any instruction that uses SBUF as a
destination register. The "write to SBUF" signal also loads TB8 into
the 9th bit position of the transmit shift register and flags the TX
Control unit that a transmission is requested. Transmission
commences at S1P1 of the machine cycle following the next rollover
in the divide-by-16 counter. (Thus, the bit times are synchronized to
the divide-by-16 counter, not to the "write to SBUF" signal.)
The transmission begins with activation of SEND, which puts the
start bit at TxD. One bit time later, DATA is activated, which enables
the output bit of the transmit shift register to TxD. The first shift pulse
occurs one bit time after that. The first shift clocks a 1 (the stop bit)
into the 9th bit position of the shift register. Thereafter, only zeros
are clocked in. Thus, as data bits shift out to the right, zeros are
clocked in from the left. When TB8 is at the output position of the
shift register, then the stop bit is just to the left of TB8, and all
positions to the left of that contain zeros. This condition flags the TX
Control unit to do one last shift and then deactivate SEND and set
TI. This occurs at the 11th divide-by-16 rollover after "write to SUBF."
Reception is initiated by a detected 1-to-0 transition at RxD. For this
purpose RxD is sampled at a rate of 16 times whatever baud rate
has been established. When a transition is detected, the
divide-by-16 counter is immediately reset, and 1FFH is written to the
input shift register.
At the 7th, 8th, and 9th counter states of each bit time, the bit
detector samples the value of R-D. The value accepted is the value
that was seen in at least 2 of the 3 samples. If the value accepted
during the first bit time is not 0, the receive circuits are reset and the
unit goes back to looking for another 1-to-0 transition. If the start bit
proves valid, it is shifted into the input shift register, and reception of
the rest of the frame will proceed.
As data bits come in from the right, 1s shift out to the left. When the
start bit arrives at the leftmost position in the shift register (which in
Modes 2 and 3 is a 9-bit register), it flags the RX Control block to do
one last shift, load SBUF and RB8, and set RI.
The signal to load SBUF and RB8, and to set RI, will be generated
if, and only if, the following conditions are met at the time the final
shift pulse is generated.
1. RI = 0, and
2. Either SM2 = 0, or the received 9th data bit = 1.
If either of these conditions is not met, the received frame is
irretrievably lost, and RI is not set. If both conditions are met, the
received 9th data bit goes into RB8, and the first 8 data bits go into
SBUF. One bit time later, whether the above conditions were met or
not, the unit goes back to looking for a 1-to-0 transition at the RxD
input.
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
24
80C51 Internal Bus
SBUF
Zero Detector
D Q
S
CL
Write
to
SBUF
TX Control
TX Clock
Send
Shift
Start
S6
RX Control
Start
Shift
Receive
RX Clock
T1
R1
Serial
Port
Interrupt
1 1 1 1 1 1 1 0
Input Shift Register
REN
RI
Load
SBUF
Shift
Shift
Clock
RxD
P3.0 Alt
Output
Function
TxD
P3.1 Alt
Output
Function
SBUF
Read
SBUF
80C51 Internal Bus
RxD
P3.0 Alt
Input
Function
Write to SBUF
S6P2
Send
Shift
RxD (Data Out)
D0
D1
D2
D3
D4
D5
D6
D7
Transmit
TxD (Shift Clock)
TI
S3P1
S6P1
Write to SCON (Clear RI)
RI
Receive
Shift
RxD (Data In)
D0
D1
D2
D3
D4
D5
D6
TxD (Shift Clock)
S5P2
Receive
D7
ALE
S4 . .
S1
S6
. . . .
S1
S6
. . . .
S1
S6
. . . .
S1
S6
. . . .
S1
S6
. . . .
S1
S6
. . . .
S1
S6
. . . .
S1
S6
. . . .
S1
S6
. . . .
S1
S6
. . . .
S1
SU00539
LSB
LSB
MSB
MSB
Figure 14. Serial Port Mode 0
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
25
80C51 Internal Bus
SBUF
Zero Detector
D Q
S
CL
Write
to
SBUF
TX Control
TX Clock
Send
Data
Start
RX Control
Start
RX Clock RI
T1
Serial
Port
Interrupt
Input Shift Register
(9 Bits)
Load
SBUF
Shift
SBUF
Read
SBUF
80C51 Internal Bus
TxD
TB8
16
1-to-0
Transition
Detector
Sample
2
Timer 1
Overflow
SMOD = 1
SMOD = 0
Shift
Bit Detector
Transmit
Send
S1P1
Shift
TX
Clock
Write to SBUF
Start Bit
TxD
Stop Bit
D0
D1
D2
D3
D4
D5
D6
D7
TI
RxD
RX
Clock
16 Reset
Start
Bit
RxD
Stop Bit
D0
D1
D2
D3
D4
D5
D6
D7
Bit Detector
Sample Times
Shift
RI
Receive
Data
16
Load
SBUF
Shift
1FFH
SU00540
Figure 15. Serial Port Mode 1
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
26
80C51 Internal Bus
SBUF
Zero Detector
D Q
S
CL
Write
to
SBUF
TX Control
TX Clock
Send
Data
Start
RX Control
Start
Load
SBUF
RX Clock
T1
Serial
Port
Interrupt
Input Shift Register
(9 Bits)
Load
SBUF
Shift
SBUF
Read
SBUF
80C51 Internal Bus
TxD
TB8
16
1-to-0
Transition
Detector
Sample
2
SMOD = 1
SMOD = 0
Shift
Bit Detector
RxD
Stop Bit
Gen.
Mode 2
Phase 2 Clock
(1/2 f
OSC
)
R1
16
Shift
1FFH
Transmit
Send
S1P1
Shift
TX
Clock
Write to SBUF
Start Bit
TxD
Stop Bit
D0
D1
D2
D3
D4
D5
D6
D7
TI
RX
Clock
16 Reset
Start
Bit
RxD
Stop Bit
D0
D1
D2
D3
D4
D5
D6
D7
Bit Detector
Sample Times
Shift
RI
Receive
Data
(SMOD is
PCON.7)
TB8
RB8
Stop Bit Gen.
SU00541
Figure 16. Serial Port Mode 2
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
27
80C51 Internal Bus
SBUF
Zero Detector
D Q
S
CL
Write
to
SBUF
TX Control
TX Clock
Send
Data
Start
RX Control
Start
RX Clock
T1
Serial
Port
Interrupt
Input Shift Register
(9 Bits)
Load
SBUF
Shift
SBUF
Read
SBUF
80C51 Internal Bus
TxD
TB8
16
1-to-0
Transition
Detector
Sample
2
Timer 1
Overflow
SMOD = 1
SMOD = 0
Shift
Bit Detector
RxD
R1
16
Load
SBUF
Shift
1FFH
Transmit
Send
S1P1
Shift
TX
Clock
Write to SBUF
Start Bit
TxD
Stop Bit
D0
D1
D2
D3
D4
D5
D6
D7
TI
RX
Clock
16 Reset
Start
Bit
RxD
Stop Bit
D0
D1
D2
D3
D4
D5
D6
D7
Bit Detector
Sample Times
Shift
RI
Receive
Data
TB8
RB8
Stop Bit Gen.
SU00542
Figure 17. Serial Port Mode 3
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
28
Enhanced UART
In addition to the standard operation the UART can perform framing
error detect by looking for missing stop bits, and automatic address
recognition. The UART also fully supports multiprocessor
communication as does the standard 80C51 UART.
When used for framing error detect the UART looks for missing stop
bits in the communication. A missing bit will set the FE bit in the
SCON register. The FE bit shares the SCON.7 bit with SM0 and the
function of SCON.7 is determined by PCON.6 (SMOD0) (see
Figure 18). If SMOD0 is set then SCON.7 functions as FE. SCON.7
functions as SM0 when SMOD0 is cleared. When used as FE
SCON.7 can only be cleared by software. Refer to Figure 19.
Automatic Address Recognition
Automatic Address Recognition is a feature which allows the UART
to recognize certain addresses in the serial bit stream by using
hardware to make the comparisons. This feature saves a great deal
of software overhead by eliminating the need for the software to
examine every serial address which passes by the serial port. This
feature is enabled by setting the SM2 bit in SCON. In the 9 bit UART
modes, mode 2 and mode 3, the Receive Interrupt flag (RI) will be
automatically set when the received byte contains either the "Given"
address or the "Broadcast" address. The 9-bit mode requires that
the 9th information bit is a 1 to indicate that the received information
is an address and not data. Automatic address recognition is shown
in Figure 20.
The 8 bit mode is called Mode 1. In this mode the RI flag will be set
if SM2 is enabled and the information received has a valid stop bit
following the 8 address bits and the information is either a Given or
Broadcast address.
Mode 0 is the Shift Register mode and SM2 is ignored.
Using the Automatic Address Recognition feature allows a master to
selectively communicate with one or more slaves by invoking the
Given slave address or addresses. All of the slaves may be
contacted by using the Broadcast address. Two special Function
Registers are used to define the slave's address, SADDR, and the
address mask, SADEN. SADEN is used to define which bits in the
SADDR are to b used and which bits are "don't care". The SADEN
mask can be logically ANDed with the SADDR to create the "Given"
address which the master will use for addressing each of the slaves.
Use of the Given address allows multiple slaves to be recognized
while excluding others. The following examples will help to show the
versatility of this scheme:
Slave 0
SADDR
=
1100 0000
SADEN
=
1111 1101
Given
=
1100 00X0
Slave 1
SADDR
=
1100 0000
SADEN
=
1111 1110
Given
=
1100 000X
In the above example SADDR is the same and the SADEN data is
used to differentiate between the two slaves. Slave 0 requires a 0 in
bit 0 and it ignores bit 1. Slave 1 requires a 0 in bit 1 and bit 0 is
ignored. A unique address for Slave 0 would be 1100 0010 since
slave 1 requires a 0 in bit 1. A unique address for slave 1 would be
1100 0001 since a 1 in bit 0 will exclude slave 0. Both slaves can be
selected at the same time by an address which has bit 0 = 0 (for
slave 0) and bit 1 = 0 (for slave 1). Thus, both could be addressed
with 1100 0000.
In a more complex system the following could be used to select
slaves 1 and 2 while excluding slave 0:
Slave 0
SADDR
=
1100 0000
SADEN
=
1111 1001
Given
=
1100 0XX0
Slave 1
SADDR
=
1110 0000
SADEN
=
1111 1010
Given
=
1110 0X0X
Slave 2
SADDR
=
1110 0000
SADEN
=
1111 1100
Given
=
1110 00XX
In the above example the differentiation among the 3 slaves is in the
lower 3 address bits. Slave 0 requires that bit 0 = 0 and it can be
uniquely addressed by 1110 0110. Slave 1 requires that bit 1 = 0 and
it can be uniquely addressed by 1110 and 0101. Slave 2 requires
that bit 2 = 0 and its unique address is 1110 0011. To select Slaves 0
and 1 and exclude Slave 2 use address 1110 0100, since it is
necessary to make bit 2 = 1 to exclude slave 2.
The Broadcast Address for each slave is created by taking the
logical OR of SADDR and SADEN. Zeros in this result are trended
as don't-cares. In most cases, interpreting the don't-cares as ones,
the broadcast address will be FF hexadecimal.
Upon reset SADDR (SFR address 0A9H) and SADEN (SFR
address 0B9H) are leaded with 0s. This produces a given address
of all "don't cares" as well as a Broadcast address of all "don't
cares". This effectively disables the Automatic Addressing mode and
allows the microcontroller to use standard 80C51 type UART drivers
which do not make use of this feature.
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
29
SCON Address = 98H
Reset Value = 0000 0000B
SM0/FE
SM1
SM2
REN
TB8
RB8
Tl
Rl
Bit Addressable
(SMOD0 = 0/1)*
Symbol
Function
FE
Framing Error bit. This bit is set by the receiver when an invalid stop bit is detected. The FE bit is not cleared by valid
frames but should be cleared by software. The SMOD0 bit must be set to enable access to the FE bit.
SM0
Serial Port Mode Bit 0, (SMOD0 must = 0 to access bit SM0)
SM1
Serial Port Mode Bit 1
SM0
SM1
Mode
Description
Baud Rate**
0
0
0
shift register
f
OSC
/6 (6-clock mode) or f
OSC
/12 (12-clock mode)
0
1
1
8-bit UART
variable
1
0
2
9-bit UART
f
OSC
/32 or f
OSC
/16 (6-clock mode) or
f
OSC
/64 or f
OSC
/32 (12-clock mode)
1
1
3
9-bit UART
variable
SM2
Enables the Automatic Address Recognition feature in Modes 2 or 3. If SM2 = 1 then Rl will not be set unless the
received 9th data bit (RB8) is 1, indicating an address, and the received byte is a Given or Broadcast Address.
In Mode 1, if SM2 = 1 then Rl will not be activated unless a valid stop bit was received, and the received byte is a
Given or Broadcast Address. In Mode 0, SM2 should be 0.
REN
Enables serial reception. Set by software to enable reception. Clear by software to disable reception.
TB8
The 9th data bit that will be transmitted in Modes 2 and 3. Set or clear by software as desired.
RB8
In modes 2 and 3, the 9th data bit that was received. In Mode 1, if SM2 = 0, RB8 is the stop bit that was received.
In Mode 0, RB8 is not used.
Tl
Transmit interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or at the beginning of the stop bit in the
other modes, in any serial transmission. Must be cleared by software.
Rl
Receive interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or halfway through the stop bit time in
the other modes, in any serial reception (except see SM2). Must be cleared by software.
NOTE:
*SMOD0 is located at PCON6.
**f
OSC
= oscillator frequency
SU01255
Bit:
7
6
5
4
3
2
1
0
Figure 18. SCON: Serial Port Control Register
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
30
SMOD1
SMOD0
POF
LVF
GF0
GF1
IDL
PCON
(87H)
SM0 / FE
SM1
SM2
REN
TB8
RB8
TI
RI
SCON
(98H)
D0
D1
D2
D3
D4
D5
D6
D7
D8
STOP
BIT
DATA BYTE
ONLY IN
MODE 2, 3
START
BIT
SET FE BIT IF STOP BIT IS 0 (FRAMING ERROR)
SM0 TO UART MODE CONTROL
0 : SCON.7 = SM0
1 : SCON.7 = FE
SU00044
Figure 19. UART Framing Error Detection
SM0
SM1
SM2
REN
TB8
RB8
TI
RI
SCON
(98H)
D0
D1
D2
D3
D4
D5
D6
D7
D8
1
1
1
0
COMPARATOR
1
1
X
RECEIVED ADDRESS D0 TO D7
PROGRAMMED ADDRESS
IN UART MODE 2 OR MODE 3 AND SM2 = 1:
INTERRUPT IF REN=1, RB8=1 AND "RECEIVED ADDRESS" = "PROGRAMMED ADDRESS"
WHEN OWN ADDRESS RECEIVED, CLEAR SM2 TO RECEIVE DATA BYTES
WHEN ALL DATA BYTES HAVE BEEN RECEIVED: SET SM2 TO WAIT FOR NEXT ADDRESS.
SU00045
Figure 20. UART Multiprocessor Communication, Automatic Address Recognition
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
31
Interrupt Priority Structure
The P89C51RA2/RB2/RC2/RD2xx has a 7 source four-level
interrupt structure (see Table 7).
There are 3 SFRs associated with the four-level interrupt. They are
the IE, IP, and IPH. (See Figures 21, 22, and 23.) The IPH (Interrupt
Priority High) register makes the four-level interrupt structure
possible. The IPH is located at SFR address B7H. The structure of
the IPH register and a description of its bits is shown in Figure 23.
The function of the IPH SFR, when combined with the IP SFR,
determines the priority of each interrupt. The priority of each
interrupt is determined as shown in the following table:
PRIORITY BITS
INTERRUPT PRIORITY LEVEL
IPH.x
IP.x
INTERRUPT PRIORITY LEVEL
0
0
Level 0 (lowest priority)
0
1
Level 1
1
0
Level 2
1
1
Level 3 (highest priority)
The priority scheme for servicing the interrupts is the same as that
for the 80C51, except there are four interrupt levels rather than two
as on the 80C51. An interrupt will be serviced as long as an interrupt
of equal or higher priority is not already being serviced. If an
interrupt of equal or higher level priority is being serviced, the new
interrupt will wait until it is finished before being serviced. If a lower
priority level interrupt is being serviced, it will be stopped and the
new interrupt serviced. When the new interrupt is finished, the lower
priority level interrupt that was stopped will be completed.
Table 7.
Interrupt Table
SOURCE
POLLING PRIORITY
REQUEST BITS
HARDWARE CLEAR?
VECTOR ADDRESS
X0
1
IE0
N (L)
1
Y (T)
2
03H
T0
2
TP0
Y
0BH
X1
3
IE1
N (L)
Y (T)
13H
T1
4
TF1
Y
1BH
PCA
5
CF, CCFn
n = 04
N
33H
SP
6
RI, TI
N
23H
T2
7
TF2, EXF2
N
2BH
NOTES:
1. L = Level activated
2. T = Transition activated
EX0
IE (0A8H)
Enable Bit = 1 enables the interrupt.
Enable Bit = 0 disables it.
BIT
SYMBOL
FUNCTION
IE.7
EA
Global disable bit. If EA = 0, all interrupts are disabled. If EA = 1, each interrupt can be individually
enabled or disabled by setting or clearing its enable bit.
IE.6
EC
PCA interrupt enable bit
IE.5
ET2
Timer 2 interrupt enable bit.
IE.4
ES
Serial Port interrupt enable bit.
IE.3
ET1
Timer 1 interrupt enable bit.
IE.2
EX1
External interrupt 1 enable bit.
IE.1
ET0
Timer 0 interrupt enable bit.
IE.0
EX0
External interrupt 0 enable bit.
SU01290
ET0
EX1
ET1
ES
ET2
EC
EA
0
1
2
3
4
5
6
7
Figure 21. IE Registers
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
32
PX0
IP (0B8H)
Priority Bit = 1 assigns high priority
Priority Bit = 0 assigns low priority
BIT
SYMBOL
FUNCTION
IP.7
IP.6
PPC
PCA interrupt priority bit
IP.5
PT2
Timer 2 interrupt priority bit.
IP.4
PS
Serial Port interrupt priority bit.
IP.3
PT1
Timer 1 interrupt priority bit.
IP.2
PX1
External interrupt 1 priority bit.
IP.1
PT0
Timer 0 interrupt priority bit.
IP.0
PX0
External interrupt 0 priority bit.
SU01291
PT0
PX1
PT1
PS
PT2
PPC
0
1
2
3
4
5
6
7
Figure 22. IP Registers
PX0H
IPH (B7H)
Priority Bit = 1 assigns higher priority
Priority Bit = 0 assigns lower priority
BIT
SYMBOL
FUNCTION
IPH.7
IPH.6
PPCH
PCA interrupt priority bit
IPH.5
PT2H
Timer 2 interrupt priority bit high.
IPH.4
PSH
Serial Port interrupt priority bit high.
IPH.3
PT1H
Timer 1 interrupt priority bit high.
IPH.2
PX1H
External interrupt 1 priority bit high.
IPH.1
PT0H
Timer 0 interrupt priority bit high.
IPH.0
PX0H
External interrupt 0 priority bit high.
SU01292
PT0H
PX1H
PT1H
PSH
PT2H
PPCH
0
1
2
3
4
5
6
7
Figure 23. IPH Registers
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
33
Reduced EMI Mode
The AO bit (AUXR.0) in the AUXR register when set disables the
ALE output unless the CPU needs to perform an off-chip memory
access.
Reduced EMI Mode
AUXR (8EH)
7
6
5
4
3
2
1
0
EXTRAM
AO
AUXR.1
EXTRAM
AUXR.0
AO
See more detailed description in Figure 38.
Dual DPTR
The dual DPTR structure (see Figure 24) is a way by which the chip
will specify the address of an external data memory location. There
are two 16-bit DPTR registers that address the external memory,
and a single bit called DPS = AUXR1/bit0 that allows the program
code to switch between them.
New Register Name: AUXR1#
SFR Address: A2H
Reset Value: xxxxxxx0B
AUXR1 (A2H)
7
6
5
4
3
2
1
0
ENBOOT
GF2
0
DPS
Where:
DPS = AUXR1/bit0 = Switches between DPTR0 and DPTR1.
Select Reg
DPS
DPTR0
0
DPTR1
1
The DPS bit status should be saved by software when switching
between DPTR0 and DPTR1.
The GF2 bit is a general purpose user-defined flag. Note that bit 2 is
not writable and is always read as a zero. This allows the DPS bit to
be quickly toggled simply by executing an INC AUXR1 instruction
without affecting the GF2 bit.
The ENBOOT bit determines whether the BOOTROM is enabled
or disabled.
This bit will automatically be set if the status byte is
non zero during reset or PSEN is pulled low, ALE floats high, and
EA > V
IH
on the falling edge of reset. Otherwise, this bit will be
cleared during reset.
DPS
DPTR1
DPTR0
DPH
(83H)
DPL
(82H)
EXTERNAL
DATA
MEMORY
SU00745A
BIT0
AUXR1
Figure 24.
DPTR Instructions
The instructions that refer to DPTR refer to the data pointer that is
currently selected using the AUXR1/bit 0 register. The six
instructions that use the DPTR are as follows:
INC DPTR
Increments the data pointer by 1
MOV DPTR, #data16
Loads the DPTR with a 16-bit constant
MOV A, @ A+DPTR
Move code byte relative to DPTR to ACC
MOVX A, @ DPTR
Move external RAM (16-bit address) to
ACC
MOVX @ DPTR , A
Move ACC to external RAM (16-bit
address)
JMP @ A + DPTR
Jump indirect relative to DPTR
The data pointer can be accessed on a byte-by-byte basis by
specifying the low or high byte in an instruction which accesses the
SFRs. See
Application Note AN458 for more details.
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
34
Programmable Counter Array (PCA)
The Programmable Counter Array available on the
P89C51RA2/RB2/RC2/RD2xx is a special 16-bit Timer that has five
16-bit capture/compare modules associated with it. Each of the
modules can be programmed to operate in one of four modes: rising
and/or falling edge capture, software timer, high-speed output, or
pulse width modulator. Each module has a pin associated with it in
port 1. Module 0 is connected to P1.3 (CEX0), module 1 to P1.4
(CEX1), etc. The basic PCA configuration is shown in Figure 25.
The PCA timer is a common time base for all five modules and can
be programmed to run at: 1/6 the oscillator frequency, 1/2 the
oscillator frequency, the Timer 0 overflow, or the input on the ECI pin
(P1.2). The timer count source is determined from the CPS1 and
CPS0 bits in the CMOD SFR as follows (see Figure 28):
CPS1 CPS0 PCA Timer Count Source
0
0
1/6 oscillator frequency (6-clock mode);
1/12 oscillator frequency (12-clock mode)
0
1
1/2 oscillator frequency (6-clock mode);
1/4 oscillator frequency (12-clock mode)
1
0
Timer 0 overflow
1
1
External Input at ECI pin
In the CMOD SFR are three additional bits associated with the PCA.
They are CIDL which allows the PCA to stop during idle mode,
WDTE which enables or disables the watchdog function on
module 4, and ECF which when set causes an interrupt and the
PCA overflow flag CF (in the CCON SFR) to be set when the PCA
timer overflows. These functions are shown in Figure 26.
The watchdog timer function is implemented in module 4 (see
Figure 35).
The CCON SFR contains the run control bit for the PCA and the
flags for the PCA timer (CF) and each module (refer to Figure 29).
To run the PCA the CR bit (CCON.6) must be set by software. The
PCA is shut off by clearing this bit. The CF bit (CCON.7) is set when
the PCA counter overflows and an interrupt will be generated if the
ECF bit in the CMOD register is set, The CF bit can only be cleared
by software. Bits 0 through 4 of the CCON register are the flags for
the modules (bit 0 for module 0, bit 1 for module 1, etc.) and are set
by hardware when either a match or a capture occurs. These flags
also can only be cleared by software. The PCA interrupt system
shown in Figure 27.
Each module in the PCA has a special function register associated
with it. These registers are: CCAPM0 for module 0, CCAPM1 for
module 1, etc. (see Figure 30). The registers contain the bits that
control the mode that each module will operate in. The ECCF bit
(CCAPMn.0 where n=0, 1, 2, 3, or 4 depending on the module)
enables the CCF flag in the CCON SFR to generate an interrupt
when a match or compare occurs in the associated module. PWM
(CCAPMn.1) enables the pulse width modulation mode. The TOG
bit (CCAPMn.2) when set causes the CEX output associated with
the module to toggle when there is a match between the PCA
counter and the module's capture/compare register. The match bit
MAT (CCAPMn.3) when set will cause the CCFn bit in the CCON
register to be set when there is a match between the PCA counter
and the module's capture/compare register.
The next two bits CAPN (CCAPMn.4) and CAPP (CCAPMn.5)
determine the edge that a capture input will be active on. The CAPN
bit enables the negative edge, and the CAPP bit enables the positive
edge. If both bits are set both edges will be enabled and a capture will
occur for either transition. The last bit in the register ECOM
(CCAPMn.6) when set enables the comparator function. Figure 31
shows the CCAPMn settings for the various PCA functions.
There are two additional registers associated with each of the PCA
modules. They are CCAPnH and CCAPnL and these are the
registers that store the 16-bit count when a capture occurs or a
compare should occur. When a module is used in the PWM mode
these registers are used to control the duty cycle of the output.
MODULE FUNCTIONS:
16-BIT CAPTURE
16-BIT TIMER
16-BIT HIGH SPEED OUTPUT
8-BIT PWM
WATCHDOG TIMER (MODULE 4 ONLY)
MODULE 0
MODULE 1
MODULE 2
MODULE 3
MODULE 4
P1.3/CEX0
P1.4/CEX1
P1.5/CEX2
P1.6/CEX3
P1.7/CEX4
16 BITS
PCA TIMER/COUNTER
TIME BASE FOR PCA MODULES
16 BITS
SU00032
Figure 25. Programmable Counter Array (PCA)
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
35
CF
CR
CCF4
CCF3
CCF2
CCF1
CCF0
CCON
(C0H)
CH
CL
OVERFLOW
INTERRUPT
16BIT UP COUNTER
IDLE
TO PCA
MODULES
CMOD
(C1H)
CIDL
WDTE
CPS1
CPS0
ECF
OSC/6 (6 CLOCK MODE)
OR
OSC/12 (12 CLOCK MODE)
TIMER 0 OVERFLOW
EXTERNAL INPUT
(P1.2/ECI)
DECODE
00
01
10
11
SU01256
OSC/2 (6 CLOCK MODE)
OR
OSC/4 (12 CLOCK MODE)
Figure 26. PCA Timer/Counter
MODULE 0
MODULE 1
MODULE 2
MODULE 3
MODULE 4
PCA TIMER/COUNTER
CF
CR
CCF4
CCF3
CCF2
CCF1
CCF0
CMOD.0 ECF
CCAPMn.0 ECCFn
TO
INTERRUPT
PRIORITY
DECODER
CCON
(C0H)
IE.6
EC
IE.7
EA
SU01097
Figure 27. PCA Interrupt System
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
36
CMOD Address = D9H
Reset Value = 00XX X000B
CIDL
WDTE
CPS1
CPS0
ECF
Bit:
Symbol
Function
CIDL
Counter Idle control: CIDL = 0 programs the PCA Counter to continue functioning during idle Mode. CIDL = 1 programs
it to be gated off during idle.
WDTE
Watchdog Timer Enable: WDTE = 0 disables Watchdog Timer function on PCA Module 4. WDTE = 1 enables it.
Not implemented, reserved for future use.*
CPS1
PCA Count Pulse Select bit 1.
CPS0
PCA Count Pulse Select bit 0.
CPS1
CPS0
Selected PCA Input**
0
0
0
Internal clock, f
OSC
/6 in 6-clock mode (f
OSC
/12 in 12-clock mode)
0
1
1
Internal clock, f
OSC
/2 in 6-clock mode (f
OSC
/4 in 12-clock mode)
1
0
2
Timer 0 overflow
1
1
3
External clock at ECI/P1.2 pin
(max. rate = f
OSC
/4 in 6-clock mode, f
OCS
/8 in 12-clock mode)
ECF
PCA Enable Counter Overflow interrupt: ECF = 1 enables CF bit in CCON to generate an interrupt. ECF = 0 disables
that function of CF.
NOTE:
*
User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive
value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.
** f
OSC
= oscillator frequency
SU01318
7
6
5
4
3
2
1
0
Figure 28. CMOD: PCA Counter Mode Register
CCON Address = D8H
Reset Value = 00X0 0000B
CF
CR
CCF4
CCF3
CCF2
CCF1
CCF0
Bit Addressable
Bit:
Symbol
Function
CF
PCA Counter Overflow flag. Set by hardware when the counter rolls over. CF flags an interrupt if bit ECF in CMOD is
set. CF may be set by either hardware or software but can only be cleared by software.
CR
PCA Counter Run control bit. Set by software to turn the PCA counter on. Must be cleared by software to turn the PCA
counter off.
Not implemented, reserved for future use*.
CCF4
PCA Module 4 interrupt flag. Set by hardware when a match or capture occurs. Must be cleared by software.
CCF3
PCA Module 3 interrupt flag. Set by hardware when a match or capture occurs. Must be cleared by software.
CCF2
PCA Module 2 interrupt flag. Set by hardware when a match or capture occurs. Must be cleared by software.
CCF1
PCA Module 1 interrupt flag. Set by hardware when a match or capture occurs. Must be cleared by software.
CCF0
PCA Module 0 interrupt flag. Set by hardware when a match or capture occurs. Must be cleared by software.
NOTE:
*
User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive
value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.
SU01319
7
6
5
4
3
2
1
0
Figure 29. CCON: PCA Counter Control Register
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
37
CCAPMn Address
CCAPM0
0DAH
CCAPM1
0DBH
CCAPM2
0DCH
CCAPM3
0DDH
CCAPM4
0DEH
Reset Value = X000 0000B
ECOMn
CAPPn
CAPNn
MATn
TOGn
PWMn
ECCFn
Not Bit Addressable
Bit:
Symbol
Function
Not implemented, reserved for future use*.
ECOMn
Enable Comparator. ECOMn = 1 enables the comparator function.
CAPPn
Capture Positive, CAPPn = 1 enables positive edge capture.
CAPNn
Capture Negative, CAPNn = 1 enables negative edge capture.
MATn
Match. When MATn = 1, a match of the PCA counter with this module's compare/capture register causes the CCFn bit
in CCON to be set, flagging an interrupt.
TOGn
Toggle. When TOGn = 1, a match of the PCA counter with this module's compare/capture register causes the CEXn
pin to toggle.
PWMn
Pulse Width Modulation Mode. PWMn = 1 enables the CEXn pin to be used as a pulse width modulated output.
ECCFn
Enable CCF interrupt. Enables compare/capture flag CCFn in the CCON register to generate an interrupt.
NOTE:
*User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features In that case, the reset or inactive
value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.
SU01320
7
6
5
4
3
2
1
0
Figure 30. CCAPMn: PCA Modules Compare/Capture Registers
ECOMn
CAPPn
CAPNn
MATn
TOGn
PWMn
ECCFn
MODULE FUNCTION
X
0
0
0
0
0
0
0
No operation
X
X
1
0
0
0
0
X
16-bit capture by a positive-edge trigger on CEXn
X
X
0
1
0
0
0
X
16-bit capture by a negative trigger on CEXn
X
X
1
1
0
0
0
X
16-bit capture by a transition on CEXn
X
1
0
0
1
0
0
X
16-bit Software Timer
X
1
0
0
1
1
0
X
16-bit High Speed Output
X
1
0
0
0
0
1
0
8-bit PWM
X
1
0
0
1
X
0
X
Watchdog Timer
Figure 31. PCA Module Modes (CCAPMn Register)
PCA Capture Mode
To use one of the PCA modules in the capture mode either one or
both of the CCAPM bits CAPN and CAPP for that module must be
set. The external CEX input for the module (on port 1) is sampled for
a transition. When a valid transition occurs the PCA hardware loads
the value of the PCA counter registers (CH and CL) into the
module's capture registers (CCAPnL and CCAPnH). If the CCFn bit
for the module in the CCON SFR and the ECCFn bit in the CCAPMn
SFR are set then an interrupt will be generated. Refer to Figure 32.
16-bit Software Timer Mode
The PCA modules can be used as software timers by setting both
the ECOM and MAT bits in the modules CCAPMn register. The PCA
timer will be compared to the module's capture registers and when a
match occurs an interrupt will occur if the CCFn (CCON SFR) and
the ECCFn (CCAPMn SFR) bits for the module are both set (see
Figure 33).
High Speed Output Mode
In this mode the CEX output (on port 1) associated with the PCA
module will toggle each time a match occurs between the PCA
counter and the module's capture registers. To activate this mode
the TOG, MAT, and ECOM bits in the module's CCAPMn SFR must
be set (see Figure 34).
Pulse Width Modulator Mode
All of the PCA modules can be used as PWM outputs. Figure 35
shows the PWM function. The frequency of the output depends on
the source for the PCA timer. All of the modules will have the same
frequency of output because they all share the PCA timer. The duty
cycle of each module is independently variable using the module's
capture register CCAPLn. When the value of the PCA CL SFR is
less than the value in the module's CCAPLn SFR the output will be
low, when it is equal to or greater than the output will be high. When
CL overflows from FF to 00, CCAPLn is reloaded with the value in
CCAPHn. the allows updating the PWM without glitches. The PWM
and ECOM bits in the module's CCAPMn register must be set to
enable the PWM mode.
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
38
CF
CR
CCF4
CCF3
CCF2
CCF1
CCF0
CCON
(D8H)
ECOMn
CAPPn
CAPNn
MATn
TOGn
PWMn
ECCFn
CCAPMn, n= 0 to 4
(DAH DEH)
CH
CL
CCAPnH
CCAPnL
CEXn
CAPTURE
PCA INTERRUPT
PCA TIMER/COUNTER
0
0
0
0
(TO CCFn)
SU01608
Figure 32. PCA Capture Mode
MATCH
CF
CR
CCF4
CCF3
CCF2
CCF1
CCF0
CCON
(D8H)
ECOMn
CAPPn
CAPNn
MATn
TOGn
PWMn
ECCFn
CCAPMn, n= 0 to 4
(DAH DEH)
CH
CL
CCAPnH
CCAPnL
PCA INTERRUPT
PCA TIMER/COUNTER
0
0
0
0
16BIT COMPARATOR
(TO CCFn)
ENABLE
WRITE TO
CCAPnH
RESET
WRITE TO
CCAPnL
0
1
SU01609
Figure 33. PCA Compare Mode
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
39
CF
CR
CCF4
CCF3
CCF2
CCF1
CCF0
CCON
(D8H)
ECOMn
CAPPn
CAPNn
MATn
TOGn
PWMn
ECCFn
CCAPMn, n: 0..4
(DAH DEH)
CH
CL
CCAPnH
CCAPnL
PCA INTERRUPT
PCA TIMER/COUNTER
1
0
0
0
16BIT COMPARATOR
(TO CCFn)
WRITE TO
CCAPnH
RESET
WRITE TO
CCAPnL
0
1
ENABLE
CEXn
TOGGLE
MATCH
SU01610
Figure 34. PCA High Speed Output Mode
CL < CCAPnL
ECOMn
CAPPn
CAPNn
MATn
TOGn
PWMn
ECCFn
CCAPMn, n: 0..4
(DAH DEH)
PCA TIMER/COUNTER
0
0
0
0
CL
CCAPnL
CEXn
8BIT
COMPARATOR
OVERFLOW
CCAPnH
ENABLE
0
1
CL >= CCAPnL
0
SU01611
Figure 35. PCA PWM Mode
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
40
ECOMn
CAPPn
CAPNn
MATn
TOGn
PWMn
ECCFn
CCAPM4
(DEH)
CH
CL
CCAP4H
CCAP4L
RESET
PCA TIMER/COUNTER
X
0
0
0
16BIT COMPARATOR
MATCH
ENABLE
WRITE TO
CCAP4L
RESET
WRITE TO
CCAP4H
1
0
1
CMOD
(D9H)
CIDL
WDTE
CPS1
CPS0
ECF
X
SU01612
MODULE 4
Figure 36. PCA Watchdog Timer mode (Module 4 only)
PCA Watchdog Timer
An on-board watchdog timer is available with the PCA to improve the
reliability of the system without increasing chip count. Watchdog
timers are useful for systems that are susceptible to noise, power
glitches, or electrostatic discharge. Module 4 is the only PCA module
that can be programmed as a watchdog. However, this module can
still be used for other modes if the watchdog is not needed.
Figure 36 shows a diagram of how the watchdog works. The user
pre-loads a 16-bit value in the compare registers. Just like the other
compare modes, this 16-bit value is compared to the PCA timer
value. If a match is allowed to occur, an internal reset will be
generated. This will not cause the RST pin to be driven high.
In order to hold off the reset, the user has three options:
1. periodically change the compare value so it will never match the
PCA timer,
2. periodically change the PCA timer value so it will never match
the compare values, or
3. disable the watchdog by clearing the WDTE bit before a match
occurs and then re-enable it.
The first two options are more reliable because the watchdog
timer is never disabled as in option #3. If the program counter ever
goes astray, a match will eventually occur and cause an internal
reset. The second option is also not recommended if other PCA
modules are being used. Remember, the PCA timer is the time
base for all modules; changing the time base for other modules
would not be a good idea. Thus, in most applications the first
solution is the best option.
Figure 37 shows the code for initializing the watchdog timer.
Module 4 can be configured in either compare mode, and the WDTE
bit in CMOD must also be set. The user's software then must
periodically change (CCAP4H,CCAP4L) to keep a match from
occurring with the PCA timer (CH,CL). This code is given in the
WATCHDOG routine in Figure 37.
This routine should not be part of an interrupt service routine,
because if the program counter goes astray and gets stuck in an
infinite loop, interrupts will still be serviced and the watchdog will
keep getting reset. Thus, the purpose of the watchdog would be
defeated. Instead, call this subroutine from the main program within
2
16
count of the PCA timer.
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
41
INIT_WATCHDOG:
MOV CCAPM4, #4CH ; Module 4 in compare mode
MOV CCAP4L, #0FFH ; Write to low byte first
MOV CCAP4H, #0FFH ; Before PCA timer counts up to
; FFFF Hex, these compare values
; must be changed
ORL CMOD, #40H ; Set the WDTE bit to enable the
; watchdog timer without changing
; the other bits in CMOD
;
;********************************************************************
;
; Main program goes here, but CALL WATCHDOG periodically.
;
;********************************************************************
;
WATCHDOG:
CLR EA ; Hold off interrupts
MOV CCAP4L, #00 ; Next compare value is within
MOV CCAP4H, CH ; 255 counts of the current PCA
SETB EA ; timer value
RET
Figure 37. PCA Watchdog Timer Initialization Code
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
42
Expanded Data RAM Addressing
The P89C51RA2/RB2/RC2/RD2xx has internal data memory that is
mapped into four separate segments: the lower 128 bytes of RAM,
upper 128 bytes of RAM, 128 bytes Special Function Register (SFR),
and 256 bytes expanded RAM (ERAM) (768 bytes for the RD2xx).
The four segments are:
1. The Lower 128 bytes of RAM (addresses 00H to 7FH) are
directly and indirectly addressable.
2. The Upper 128 bytes of RAM (addresses 80H to FFH) are
indirectly addressable only.
3. The Special Function Registers, SFRs, (addresses 80H to FFH)
are directly addressable only.
4. The 256/768-bytes expanded RAM (ERAM, 00H 1FFH/2FFH)
are indirectly accessed by move external instruction, MOVX, and
with the EXTRAM bit cleared, see Figure 38.
The Lower 128 bytes can be accessed by either direct or indirect
addressing. The Upper 128 bytes can be accessed by indirect
addressing only. The Upper 128 bytes occupy the same address
space as the SFR. That means they have the same address, but are
physically separate from SFR space.
When an instruction accesses an internal location above address
7FH, the CPU knows whether the access is to the upper 128 bytes
of data RAM or to SFR space by the addressing mode used in the
instruction. Instructions that use direct addressing access SFR
space. For example:
MOV 0A0H,#data
accesses the SFR at location 0A0H (which is P2). Instructions that
use indirect addressing access the Upper 128 bytes of data RAM.
For example:
MOV @R0,acc
where R0 contains 0A0H, accesses the data byte at address 0A0H,
rather than P2 (whose address is 0A0H).
The ERAM can be accessed by indirect addressing, with EXTRAM
bit cleared and MOVX instructions. This part of memory is physically
located on-chip, logically occupies the first 256/768 bytes of external
data memory in the P89C51RA2/RB2/RC2/89C51RD2.
With EXTRAM = 0, the ERAM is indirectly addressed, using the
MOVX instruction in combination with any of the registers R0, R1 of
the selected bank or DPTR. An access to ERAM will not affect ports
P0, P3.6 (WR#) and P3.7 (RD#). P2 SFR is output during external
addressing. For example, with EXTRAM = 0,
MOVX @R0,acc
where R0 contains 0A0H, accesses the ERAM at address 0A0H
rather than external memory. An access to external data memory
locations higher than the ERAM will be performed with the MOVX
DPTR instructions in the same way as in the standard 80C51, so
with P0 and P2 as data/address bus, and P3.6 and P3.7 as write
and read timing signals. Refer to Figure 39.
With EXTRAM = 1, MOVX @Ri and MOVX @DPTR will be similar
to the standard 80C51. MOVX @ Ri will provide an 8-bit address
multiplexed with data on Port 0 and any output port pins can be
used to output higher order address bits. This is to provide the
external paging capability. MOVX @DPTR will generate a 16-bit
address. Port 2 outputs the high-order eight address bits (the
contents of DPH) while Port 0 multiplexes the low-order eight
address bits (DPL) with data. MOVX @Ri and MOVX @DPTR will
generate either read or write signals on P3.6 (WR) and P3.7 (RD).
The stack pointer (SP) may be located anywhere in the 256 bytes
RAM (lower and upper RAM) internal data memory. The stack may
not be located in the ERAM.
AUXR
Reset Value = xxxx xx00B
--
--
--
--
--
--
EXTRAM
AO
Not Bit Addressable
Bit:
Symbol
Function
AO
Disable/Enable ALE
AO
Operating Mode
0
ALE is emitted at a constant rate of
1
/
6
the oscillator frequency (12-clock mode;
1
/
3
f
OSC
in 6-clock mode).
1
ALE is active only during off-chip memory access.
EXTRAM
Internal/External RAM access using MOVX @Ri/@DPTR
EXTRAM
Operating Mode
0
Internal ERAM access using MOVX @Ri/@DPTR
1
External data memory access.
--
Not implemented, reserved for future use*.
NOTE:
*User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value
of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.
SU01613
7
6
5
4
3
2
1
0
Address = 8EH
Figure 38. AUXR: Auxiliary Register
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
43
ERAM
256 or 768 BYTES
UPPER
128 BYTES
INTERNAL RAM
LOWER
128 BYTES
INTERNAL RAM
SPECIAL
FUNCTION
REGISTER
100
FF
00
FF
00
80
80
EXTERNAL
DATA
MEMORY
FFFF
0000
SU01293
Figure 39. Internal and External Data Memory Address Space with EXTRAM = 0
HARDWARE WATCHDOG TIMER (ONE-TIME
ENABLED WITH RESET-OUT FOR
P89C51RA2/RB2/RC2/RD2xx)
The WDT is intended as a recovery method in situations where the
CPU may be subjected to software upset. The WDT consists of a
14-bit counter and the WatchDog Timer reset (WDTRST) SFR. The
WDT is disabled at reset. To enable the WDT, the user must write
01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H.
When the WDT is enabled, it will increment every machine cycle
while the oscillator is running and there is no way to disable the
WDT except through reset (either hardware reset or WDT overflow
reset). When the WDT overflows, it will drive an output reset HIGH
pulse at the RST-pin (see the note below).
Using the WDT
To enable the WDT, the user must write 01EH and 0E1H in sequence
to the WDTRST, SFR location 0A6H. When the WDT is enabled, the
user needs to service it by writing 01EH and 0E1H to WDTRST to
avoid a WDT overflow. The 14-bit counter overflows when it reaches
16383 (3FFFH) and this will reset the device. When the WDT is
enabled, it will increment every machine cycle while the oscillator is
running. This means the user must reset the WDT at least every
16383 machine cycles. To reset the WDT, the user must write 01EH
and 0E1H to WDTRST. WDTRST is a write only register. The WDT
counter cannot be read or written. When the WDT overflows, it will
generate an output RESET pulse at the reset pin (see note below).
The RESET pulse duration is 98
T
OSC
(6-clock mode; 196 in
12-clock mode), where T
OSC
= 1/f
OSC
. To make the best use of the
WDT, it should be serviced in those sections of code that will
periodically be executed within the time required to prevent a WDT
reset.
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
44
FLASH EPROM MEMORY
GENERAL DESCRIPTION
The P89C51RA2/RB2/RC2/RD2xx Flash memory augments EPROM
functionality with in-circuit electrical erasure and programming. The
Flash can be read and written as bytes. The Chip Erase operation will
erase the entire program memory. The Block Erase function can
erase any Flash block. In-system programming and standard parallel
programming are both available. On-chip erase and write timing
generation contribute to a user friendly programming interface.
The P89C51RA2/RB2/RC2/RD2xx Flash reliably stores memory
contents even after 10,000 erase and program cycles. The cell is
designed to optimize the erase and programming mechanisms. In
addition, the combination of advanced tunnel oxide processing and
low internal electric fields for erase and programming operations
produces reliable cycling. The P89C51RA2/RB2/RC2/RD2xx uses a
+5 V V
PP
supply to perform the Program/Erase algorithms.
FEATURES IN-SYSTEM PROGRAMMING (ISP)
AND IN-APPLICATION PROGRAMMING (IAP)
Flash EPROM internal program memory with Block Erase.
Internal 1-kbyte fixed BootROM, containing low-level in-system
programming routines and a default serial loader. User program
can call these routines to perform In-Application Programming
(IAP). The BootROM can be turned off to provide access to the
full 64-kbyte Flash memory.
Boot Vector allows user provided Flash loader code to reside
anywhere in the Flash memory space. This configuration provides
flexibility to the user.
Default loader in BootROM allows programming via the serial port
without the need for a user provided loader.
Up to 64-kbyte external program memory if the internal program
memory is disabled (EA = 0).
Programming and erase voltage +5 V (+12 V tolerant).
Read/Programming/Erase using ISP/IAP:
Byte Programming (8
m
s).
Typical quick erase times:
Block Erase (4 kbyte) in 3 seconds.
Full Chip Erase:
RD2xx (64K) in 11 seconds
RC2 (32K) in 7 seconds
RB2 (16K) in 5 seconds
RA2 (4K) in 4 seconds
Parallel programming with 87C51 compatible hardware interface
to programmer.
In-system programming (ISP).
In-application programming (IAP).
Programmable security for the code in the Flash.
10,000 minimum erase/program cycles for each byte.
10-year minimum data retention.
FLASH PROGRAMMING AND ERASURE
In general, there are three methods of erasing or programming of
the Flash memory that may be used. First, the Flash may be
programmed or erased in the end-user application by calling
low-level routines through entry point in the BootROM. The end-user
application, though, must be executing code from a different block
than the block that is being erased or programmed. Second, the
on-chip ISP boot loader may be invoked. This ISP boot loader will, in
turn, call low-level routines through the common entry point in the
BootROM that can be used by end-user applications. Third, the
Flash may be programmed or erased using parallel method by using
a commercially available EPROM programmer. The parallel
programming method used by these devices is similar to that used
by EPROM 87C51, but it is not identical, and the commercially
available programmer will need to have support for these devices.
FLASH MEMORY SPACES
Flash User Code Memory Organization
The P89C51RA2/RB2/RC2/RD2xx contains 8KB/16KB/32KB/64KB
Flash user code program memory organized into 4-kbyte blocks.
ISP and IAP BootROM routines will support the new 4-kbyte block
sizes through additional block number assignments while
maintaining compatibility with previous 8-kbyte and 16-kbyte block
assignments. This memory space is programmable via IAP, ISP, and
parallel modes.
Status Byte/Boot Vector Block
This device includes a 4-kbyte block which contains the Status Byte
and Boot Vector (Status Byte Block) . The Status Byte and Boot
Vector are programmable via IAP, ISP, and parallel modes. Note that
erasing of either the Status Byte and Boot Vector will erase the
entire contents of this block. Thus the Status Byte and Boot Vector
are erased together but are programmable separately.
Security & User Configuration Block
This device includes a 4-kbyte block (Security Block) which contains
the Security Bits, the 6-clock/12-clock Flash-based clock mode bit
FX2, and 4095 user programmable bytes. This block is
programmable via IAP, ISP, and parallel modes. Security bits will
prevent, as required, parallel programmers from reading or writing,
however, IAP or ISP inhibitions will be software controlled. This
block may only be erased using full-chip erase functions in ISP, IAP,
or parallel mode. This security feature protects against software
piracy and prevents the contents of the Flash from being read. The
Security bits are located in the Flash. There are three programmable
security bits that will provide different levels of protection for the
on-chip code and data (See Table 11). The 4095 user programmable
bytes are not part of user code memory are intended to be
programmed or read through IAP, ISP, or parallel programmer
functions.
The 6-clock/12-clock Flash-based clock mode bit FX2 will be latched
at power-on. This allows the bit to be changed via IAP or ISP and
delay taking effect until the next reset. This avoids changing baud
rates during ISP operations.
Boot ROM
When the microcontroller programs its Flash memory, all of the low
level details are handled by code that is contained in a 1-kbyte
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
45
BootROM that is shadowed over a portion of the user code memory
space. A user program simply calls the common entry point with
appropriate parameters in the BootROM to accomplish the desired
operation. BootROM operations include: erase block, program byte,
verify byte, program security bit, etc. The BootROM overlays the
program memory space at the top of the address space from FC00
to FFFF hex, when it is enabled. The BootROM may be turned off so
that the upper 1 kbyte of user program memory is accessible for
execution.
Clock Mode
The clock mode feature sets operating frequency to be 1/12 or 1/6 of
the oscillator frequency. The clock mode configuration bit, FX2, is
located in the Security Block (See Table 8). FX2, when programmed,
will override the SFR clock mode bit (X2) in the CKCON register. If
FX2 is erased, then the SFR bit (X2) may be used to select between
6-clock and 12-clock mode.
Table 8.
CLOCK MODE CONFIG BIT (FX2)
X2 bit in CKCON
DESCRIPTION
erased
0
12-clock mode (default)
erased
1
6-clock mode
programmed
x
6-clock mode
NOTE:
1. Default clock mode after ChipErase is set to SFR selection.
FLASH MEMORY SPACES
Flash User Code Memory Organization
FFFF
C000
8000
4000
2000
0000
PROGRAM
ADDRESS
BOOT ROM
(1 kB)
FFFF
FC00
SU01614
89C51RD2xx
89C51RC2xx
89C51RB2xx
89C51RA2xx
BLOCK 1
BLOCK 0
BLOCK 3
BLOCK 2
BLOCK 5
BLOCK 4
BLOCK 7
BLOCK 6
BLOCK 9
BLOCK 8
BLOCK 11
BLOCK 10
BLOCK 13
BLOCK 12
BLOCK 15
BLOCK 14
Each block is
4 kbytes in size
Figure 40. Flash Memory Configurations
Power-On Reset Code Execution
The P89C51RA2/RB2/RC2/RD2xx contains two special Flash
registers: the BOOT VECTOR and the STATUS BYTE. At the falling
edge of reset, the P89C51RA2/RB2/RC2/RD2xx examines the
contents of the Status Byte. If the Status Byte is set to zero,
power-up execution starts at location 0000H, which is the normal
start address of the user's application code. When the Status Byte is
set to a value other than zero, the contents of the Boot Vector is
used as the high byte of the execution address and the low byte is
set to 00H. The factory default setting is 0FCH, corresponds to the
address 0FC00H for the factory masked-ROM ISP boot loader. A
custom boot loader can be written with the Boot Vector set to the
custom boot loader.
NOTE:
When erasing the Status Byte or Boot Vector, both
bytes are erased at the same time. It is necessary to reprogram
the Boot Vector after erasing and updating the Status Byte.
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
46
Hardware Activation of the Boot Loader
The boot loader can also be executed by holding PSEN LOW,
EA greater than V
IH
(such as +5 V), and ALE HIGH (or not connected)
at the falling edge of RESET. This is the same effect as having a
non-zero status byte. This allows an application to be built that will
normally execute the end user's code but can be manually forced
into ISP operation.
If the factory default setting for the Boot Vector (0FCH) is changed, it
will no longer point to the ISP masked-ROM boot loader code. If this
happens, the only way it is possible to change the contents of the
Boot Vector is through the parallel programming method, provided
that the end user application does not contain a customized loader
that provides for erasing and reprogramming of the Boot Vector and
Status Byte.
After programming the Flash, the status byte should be programmed
to zero in order to allow execution of the user's application code
beginning at address 0000H.
+5 V (+12 V tolerant)
+5 V
TxD
RxD
V
SS
V
PP
V
CC
TxD
RxD
RST
XTAL2
XTAL1
SU01615
V
SS
V
CC
P89C51RA2xx
P89C51RB2xx
P89C51RC2xx
P89C51RD2xx
Figure 41. In-System Programming with a Minimum of Pins
In-System Programming (ISP)
The In-System Programming (ISP) is performed without removing
the microcontroller from the system. The In-System Programming
(ISP) facility consists of a series of internal hardware resources
coupled with internal firmware to facilitate remote programming of
the P89C51RA2/RB2/RC2/RD2xx through the serial port. This
firmware is provided by Philips and embedded within each
P89C51RA2/RB2/RC2/RD2xx device.
The Philips In-System Programming (ISP) facility has made in-circuit
programming in an embedded application possible with a minimum
of additional expense in components and circuit board area.
The ISP function uses five pins: TxD, RxD, V
SS
, V
CC
, and V
PP
(see
Figure 41). Only a small connector needs to be available to interface
your application to an external circuit in order to use this feature.
The V
PP
supply should be adequately decoupled and V
PP
not
allowed to exceed datasheet limits.
Free ISP software is available from the Embedded Systems
Academy: "FlashMagic"
1. Direct your browser to the following page:
http://www.esacademy.com/software/flashmagic/
2. Download Flashmagic
3. Execute "flashmagic.exe" to install the software
Using the In-System Programming (ISP)
The ISP feature allows for a wide range of baud rates to be used in
your application, independent of the oscillator frequency. It is also
adaptable to a wide range of oscillator frequencies. This is
accomplished by measuring the bit-time of a single bit in a received
character. This information is then used to program the baud rate in
terms of timer counts based on the oscillator frequency. The ISP
feature requires that an initial character (an uppercase U) be sent to
the P89C51RA2/RB2/RC2/RD2xx to establish the baud rate. The
ISP firmware provides auto-echo of received characters.
Once baud rate initialization has been performed, the ISP firmware
will only accept Intel Hex-type records. Intel Hex records consist of
ASCII characters used to represent hexadecimal values and are
summarized below:
:NNAAAARRDD..DDCC<crlf>
In the Intel Hex record, the "NN" represents the number of data
bytes in the record. The P89C51RA2/RB2/RC2/RD2xx will accept
up to 16 (10H) data bytes. The "AAAA" string represents the
address of the first byte in the record. If there are zero bytes in the
record, this field is often set to 0000. The "RR" string indicates the
record type. A record type of "00" is a data record. A record type of
"01" indicates the end-of-file mark. In this application, additional
record types will be added to indicate either commands or data for
the ISP facility. The maximum number of data bytes in a record is
limited to 16 (decimal). ISP commands are summarized in Table 9.
As a record is received by the P89C51RA2/RB2/RC2/RD2xx, the
information in the record is stored internally and a checksum
calculation is performed. The operation indicated by the record type
is not performed until the entire record has been received. Should
an error occur in the checksum, the P89C51RA2/RB2/RC2/RD2xx
will send an "X" out the serial port indicating a checksum error. If the
checksum calculation is found to match the checksum in the record,
then the command will be executed. In most cases, successful
reception of the record will be indicated by transmitting a "."
character out the serial port (displaying the contents of the internal
program memory is an exception).
In the case of a Data Record (record type 00), an additional check is
made. A "." character will NOT be sent unless the record checksum
matched the calculated checksum and all of the bytes in the record
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
47
were successfully programmed. For a data record, an "X" indicates
that the checksum failed to match, and an "R" character indicates
that one of the bytes did not properly program. It is necessary to
send a type 02 record (specify oscillator frequency) to the
P89C51RA2/RB2/RC2/RD2xx before programming data.
The ISP facility was designed to that specific crystal frequencies
were not required in order to generate baud rates or time the
programming pulses. The user thus needs to provide the
P89C51RA2/RB2/RC2/RD2xx with information required to generate
the proper timing. Record type 02 is provided for this purpose.
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
48
Table 9.
Intel-Hex Records Used by In-System Programming
RECORD TYPE
COMMAND/DATA FUNCTION
00
Program Data
:nnaaaa00dd....ddcc
Where:
nn
= number of bytes (hex) in record
aaaa
= memory address of first byte in record
dd....dd
= data bytes
cc
= checksum
Example:
:10008000AF5F67F0602703E0322CFA92007780C3FD
01
End of File (EOF), no operation
:xxxxxx01cc
Where:
xxxxxx
= required field, but value is a "don't care"
cc
= checksum
Example:
:00000001FF
03
Miscellaneous Write Functions
:nnxxxx03ffssddcc
Where:
nn
= number of bytes (hex) in record
xxxx
= required field, but value is a "don't care"
03
= Write Function
ff
= subfunction code
ss
= selection code
dd
= data input (as needed)
cc
= checksum
Subfunction Code = 01 (Erase 8K/16K Code Blocks)
ff = 01
ss = block code as shown below:
block 0, 0k to 8k, 00H
block 1, 8k to 16k, 20H
(RB2, RC2, RD2)
block 2, 16k to 32k, 40H
(RC2, RD2)
block 3, 32k to 48k, 80H
(RD2 only)
block 4, 48k to 64k, C0H
(RD2 only)
Example:
:0200000301C03A erase block 4
Subfunction Code = 04 (Erase Boot Vector and Status Byte)
ff = 04
ss = don't care
Example:
:020000030400F7 erase boot vector and status byte
Subfunction Code = 05 (Program Security Bits)
ff = 05
ss = 00 program security bit 1 (inhibit writing to Flash)
01 program security bit 2 (inhibit Flash verify)
02 program security bit 3 (disable external memory)
Example:
:020000030501F5 program security bit 2
Subfunction Code = 06 (Program Status Byte or Boot Vector)
ff = 06
ss = 00 program status byte
01 program boot vector
02 program FX2 bit (dd = 80)
dd = data
Example 1:
:030000030601FCF7 program boot vector with 0FCH
Example 2:
:0300000306028072 program FX2 bit (select 12-clock mode)
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
49
RECORD TYPE
COMMAND/DATA FUNCTION
03 (Cont.)
Subfunction Code = 07 (Full Chip Erase)
Erases all blocks, security bits, and sets status byte and boot vector to default values
ff = 07
ss = don't care
dd = don't care
Example:
:0100000307F5 full chip erase
Subfunction Code = 0C (Erase 4K Blocks)
ff = 0C
ss = block code as shown below:
Block 0 , 0k~4k , 00H
Block 1 , 4k~8k , 10H
Block 2 , 8k~12k , 20H
(only available on RD2 / RC2 / RB2)
Block 3 , 12k~16k , 30H
(only available on RD2 / RC2 / RB2)
Block 4 , 16k~20k , 40H
(only available on RD2 / RC2)
Block 5 , 20k~24k , 50H
(only available on RD2 / RC2)
Block 6 , 24k~28k , 60H
(only available on RD2 / RC2)
Block 7 , 28k~32k , 70H
(only available on RD2 / RC2)
Block 8 , 32k~36k , 80H
(only available on RD2)
Block 9 , 36k~40k , 90H
(only available on RD2)
Block 10, 40k~44k , A0H
(only available on RD2)
Block 11, 44k~48k , B0H
(only available on RD2)
Block 12, 48k~52k , C0H
(only available on RD2)
Block 13, 52k~56k , D0H
(only available on RD2)
Block 14, 56k~60k , E0H
(only available on RD2)
Block 15, 60k~64k , F0H
(only available on RD2)
Example:
:020000030C20CF (Erase 4k block #2)
04
Display Device Data or Blank Check Record type 04 causes the contents of the entire Flash array to be sent out
the serial port in a formatted display. This display consists of an address and the contents of 16 bytes starting with that
address. No display of the device contents will occur if security bit 2 has been programmed. Data to the serial port is
initiated by the reception of any character and terminated by the reception of any character.
General Format of Function 04
:05xxxx04sssseeeeffcc
Where:
05
= number of bytes (hex) in record
xxxx
= required field, but value is a "don't care"
04
= "Display Device Data or Blank Check" function code
ssss
= starting address
eeee
= ending address
ff
= subfunction
00 = display data
01 = blank check
02 = display data in data block (valid addresses: 0001~0FFFH)
cc
= checksum
Example 1:
:0500000440004FFF0069
display 40004FFF
Example 2:
:0500000400000FFF02E7
display data in data block
(the data at address 0000 is invalid)
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
50
RECORD TYPE
COMMAND/DATA FUNCTION
05
Miscellaneous Read Functions (Selection)
General Format of Function 05
:02xxxx05ffsscc
Where:
02
=
number of bytes (hex) in record
xxxx
=
required field, but value is a "don't care"
05
=
"Miscellaneous Read" function code
ffss
=
subfunction and selection code
0000 = read signature byte manufacturer id (15H)
0001 = read signature byte device id # 1 (C2H)
0002 = read signature byte device id # 2
0003 = read FX2 bit
0080 = read ROM Code Revision
0700 = read security bits
0701 = read status byte
0702 = read boot vector
cc
= checksum
Example 1:
:020000050001F8 read signature byte device id # 1
Example 2:
:020000050003F6 read FX2 bit
(bit7=0 represent 12clock mode, bit7=1 represent 6clock mode)
Example 3:
:02000005008079 read ROM Code Revision (0A: Rev. A, 0B:Rev. B)
06
Direct Load of Baud Rate
General Format of Function 06
:02xxxx06hhllcc
Where:
02
=
number of bytes (hex) in record
xxxx
=
required field, but value is a "don't care"
06
=
"Direct Load of Baud Rate" function code
hh
=
high byte of Timer 2
ll
=
low byte of Timer 2
cc
=
checksum
Example:
:02000006F500F3
07
Program Data in Data Block
:nnaaaa07dd....ddcc
Where:
nn
=
number of bytes (hex) in record
aaaa
=
memory address of first byte in record (the valid address:0001~0FFFH)
dd....dd
=
data bytes
cc
=
checksum
Example:
:10008007AF5F67F0602703E0322CFA92007780C3F6
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
51
In Application Programming Method
Several In Application Programming (IAP) calls are available for use by
an application program to permit selective erasing and programming of
Flash sectors. All calls are made through a common interface,
PGM_MTP. The programming functions are selected by setting up
the microcontroller's registers before making a call to PGM_MTP at
FFF0H. The oscillator frequency is an integer number rounded down
to the nearest megahertz. For example, set R0 to 11 for 11.0592 MHz.
Results are returned in the registers. The IAP calls are shown in
Table 10.
Using the Watchdog Timer (WDT)
The P89C51Rx2 devices support the use of the WDT in IAP. The
user specifies that the WDT is to be fed by setting the most
significant bit of the function parameter passed in R1 prior to calling
PGM_MTP. The WDT function is only supported for Block Erase
when using Quick Block Erase. The Quick Block Erase is specified
by performing a Block Erase with register R0 = 0. Requesting a
WDT feed during IAP should only be performed in applications that
use the WDT since the process of feeding the WDT will start the
WDT if the WDT was not running.
Table 10.
IAP calls
IAP CALL
PARAMETER
PROGRAM BYTE
Input Parameter:
R0 = osc freq (integer)
R1 = 02h or R1= 82h (WDT feed)
DPTR = address of byte to program
ACC = byte to program
Return Parameter:
ACC = 00 if pass, !=00 if fail
ERASE 4K CODE BLOCK
(New function)
Input Parameter:
R0 = osc freq (integer)
R1 = 0Ch or R1 = 8Ch (WDT feed)
DPH = address of 4k code block
DPH = 00H , 4k block 0, 0k~4k
DPH = 10H , 4k block 1, 4k~8k
DPH = 20H , 4k block 2, 8k~12k
DPH = 30H , 4k block 3, 12k~16k
DPH = 40H , 4k block 4, 16k~20k
DPH = 50H , 4k block 5, 20k~24k
DPH = 60H , 4k block 6, 24k~28k
DPH = 70H , 4k block 7, 28k~32k
DPH = 80H , 4k block 8, 32k~36k
DPH = 90H , 4k block 9, 36k~40k
DPH = A0H , 4k block 10, 40k~44k
DPH = B0H , 4k block 11, 44k~48k
DPH = C0H , 4k block 12, 48k~52k
DPH = D0H , 4k block 13, 52k~56k
DPH = E0H , 4k block 14, 56k~60k
DPH = F0H , 4k block 15, 60k~64k
DPL = 00h
Return Parameter:
ACC = 00 if pass, !=00 if fail
ERASE 8K / 16K CODE
BLOCK
Input Parameter:
R0 = osc freq (integer)
R1 = 01h or R1 = 81h (WDT feed)
DPH = address of code block
DPH = 00H , block 0 , 0k~8k
DPH = 20H , block 1 , 8k~16k
DPH = 40H , block 2 , 16~32k
DPH = 80H , block 3 , 32k~48k
DPH = C0H , block 4 , 48k~64k
DPL = 00h
Return Parameter:
ACC = 00 if pass , !=0 if fail
ERASE STATUS BYTE &
BOOT VECTOR
Input Parameter:
R0 = osc freq (integer)
R1 = 04h or R1 = 84h (WDT feed)
DPH = 00h
DPL = don't care
Return Parameter:
ACC = 00 if pass , !=0 if fail
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
52
IAP CALL
PARAMETER
PROGRAM SECURITY BITS
Input Parameter:
R0 = osc freq (integer)
R1 = 05h or R1 = 85h (WDT feed)
DPH = 00h
DPL = 00h , security bit #1
DPL = 01h , security bit #2
DPL = 02h , security bit #3
Return Parameter:
ACC = 00 if pass , !=0 if fail
PROGRAM STATUS BYTE
Input Parameter:
R0 = osc freq (integer)
R1 = 06h or R1 = 86h (WDT feed)
DPH = 00h
DPL = 00H - program status byte
ACC = status byte
Return Parameter:
ACC = 00 if pass , !=0 if fail
PROGRAM BOOT VECTOR
Input Parameter:
R0 = osc freq (integer)
R1 = 06h or R1 = 86h (WDT feed)
DPH = 00h
DPL = 01H - program boot vector
ACC = boot vector
Return Parameter:
ACC = 00 if pass , !=0 if fail
PROGRAM 6CLK/12CLK
CONFIGURATION BIT
(New function)
Input Parameter:
R0 = osc freq (integer)
R1 = 06h or R1 = 86h (WDT feed)
DPH = 00h
DPL = 02H - program config bit
ACC = 80H (MSB = 6clk/12clk bit)
Return Parameter:
ACC = 00 if pass , !=0 if fail
PROGRAM DATA BLOCK
(New function)
Input Parameter:
R0 = osc freq (integer)
R1 = 0Dh or R1 = 8Dh (WDT feed)
DPTR = address of byte to program
(valid addresses = 0001h~0FFFh)
ACC = data
Return Parameter:
ACC = 00 if pass , !=0 if fail
READ DEVICE DATA
Input Parameter:
R0 = osc freq (integer)
R1 = 03h or R1 = 83h (WDT feed)
DPTR = address of byte to read
Return Parameter:
ACC = value of byte read
READ DATA BLOCK
(New function)
Input Parameter:
R0 = osc freq (integer)
R1 = 0Eh or R1 = 8Eh (WDT feed)
DPTR = address of byte to read
(valid addresses = 0001h~0FFFh)
Return Parameter:
ACC = value of byte read
READ MANUFACTURER ID
Input Parameter:
R0 = osc freq (integer)
R1 = 00h or R1 = 80h (WDT feed)
DPH = 00h
DPL = 00h - read manufacturer ID
Return Parameter:
ACC = value of byte read
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
53
IAP CALL
PARAMETER
READ DEVICE ID #1
Input Parameter:
R0 = osc freq (integer)
R1 = 00h or R1 = 80h (WDT feed)
DPH = 00h
DPL = 01h - read device ID #1
Return Parameter:
ACC = value of byte read
READ DEVICE ID #2
Input Parameter:
R0 = osc freq (integer)
R1 = 00h or R1 = 80h (WDT feed)
DPH = 00h
DPL = 02h - read device ID #2
Return Parameter:
ACC = value of byte read
READ SECURITY BITS
Input Parameter:
R0 = osc freq (integer)
R1 = 07h or R1 = 87h (WDT feed)
DPH = 00h
DPL = 00h - read lock byte
Return Parameter:
ACC = value of byte read
READ STATUS BYTE
Input Parameter:
R0 = osc freq (integer)
R1 = 07h or R1 = 87h (WDT feed)
DPH = 00h
DPL = 01h - read status byte
Return Parameter:
ACC = value of byte read
READ BOOT VECTOR
Input Parameter:
R0 = osc freq (integer)
R1 = 07h or R1 = 87h (WDT feed)
DPH = 00h
DPL = 02h - read boot vector
Return Parameter:
ACC = value of byte read
READ CONFIG
(New function)
Input Parameter:
R0 = osc freq (integer)
R1 = 00h or R1 = 80h (WDT feed)
DPH = 00h
DPL = 03h - read config byte
Return Parameter:
ACC = value of byte read
READ REVISION
(New function)
Input Parameter:
R0 = osc freq (integer)
R1 = 00h or R1 = 80h (WDT feed)
DPH = 00h
DPL = 80h - read revision of ROM Code
Return Parameter:
ACC = value of byte read
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
54
Security
The security feature protects against software piracy and prevents the contents of the Flash from being read. The Security Lock bits are located
in Flash. The P89C51RA2/RB2/RC2/RD2xx has three programmable security lock bits that will provide different levels of protection for the
on-chip code and data (see Table 11).
Table 11.
SECURITY LOCK BITS
1
PROTECTION DESCRIPTION
LEVEL
LB1
LB2
LB3
PROTECTION DESCRIPTION
1
0
0
0
MOVC instructions executed from external program memory are disabled from fetching code
bytes from internal memory.
2
1
0
0
Block erase is disabled. Erase or programming of the status byte or boot vector is disabled.
3
1
1
0
Verify of code memory is disabled.
4
1
1
1
External execution is disabled.
NOTE:
1. Security bits are independent of each other. Full-chip erase may be performed regardless of the state of the security bits.
2. Any other combination of lock bits is undefined.
3. Setting LBx doesn't prevent programming of unprogrammed bits.
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
55
ABSOLUTE MAXIMUM RATINGS
1, 2, 3
PARAMETER
RATING
UNIT
Operating temperature under bias
0 to +70 or 40 to +85
C
Storage temperature range
65 to +150
C
Voltage on EA/V
PP
pin to V
SS
0 to +13.0
V
Voltage on any other pin to V
SS
0.5 to +6.5
V
Maximum I
OL
per I/O pin
15
mA
Power dissipation (based on package heat transfer limitations, not device power consumption)
1.5
W
NOTES:
1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any conditions other than those described in the AC and DC Electrical Characteristics section
of this specification is not implied.
2. This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static
charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.
3. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V
SS
unless otherwise noted.
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
56
DC ELECTRICAL CHARACTERISTICS
T
amb
= 0
C to +70
C or 40
C to +85
C; V
CC
= 5 V
10%; V
SS
= 0 V
SYMBOL
PARAMETER
TEST
LIMITS
UNIT
SYMBOL
PARAMETER
CONDITIONS
MIN
TYP
1
MAX
UNIT
V
IL
Input low voltage
4.5 V < V
CC
< 5.5 V
0.5
0.2V
CC
0.1
V
V
IH
Input high voltage (ports 0, 1, 2, 3, EA)
0.2V
CC
+0.9
V
CC
+0.5
V
V
IH1
Input high voltage, XTAL1, RST
0.7V
CC
V
CC
+0.5
V
V
OL
Output low voltage, ports 1, 2, 3
8
V
CC
= 4.5 V
I
OL
= 1.6 mA
2
0.4
V
V
OL1
Output low voltage, port 0, ALE, PSEN
7, 8
V
CC
= 4.5 V
I
OL
= 3.2 mA
2
0.45
V
V
OH
Output high voltage, ports 1, 2, 3
3
V
CC
= 4.5 V
I
OH
= 30
A
V
CC
0.7
V
V
OH1
Output high voltage (port 0 in external bus mode),
ALE
9
, PSEN
3
V
CC
= 4.5 V
I
OH
= 3.2 mA
V
CC
0.7
V
I
IL
Logical 0 input current, ports 1, 2, 3
V
IN
= 0.4 V
1
75
A
I
TL
Logical 1-to-0 transition current, ports 1, 2, 3
6
V
IN
= 2.0 V
See Note 4
650
A
I
LI
Input leakage current, port 0
0.45 < V
IN
< V
CC
0.3
10
A
I
CC
Power supply current (see Figure 49):
See Note 5
Active mode (see Note 5)
Idle mode (see Note 5)
Power-down mode or clock stopped (see
Fi
55 f
diti
)
T
amb
= 0
C to 70
C
< 30
100
A
Figure 55 for conditions)
T
amb
= 40
C to +85
C
< 40
125
A
Programming and erase mode
f
osc
= 20 MHz
60
mA
R
RST
Internal reset pull-down resistor
40
225
k
C
IO
Pin capacitance
10
(except EA)
15
pF
NOTES:
1. Typical ratings are not guaranteed. The values listed are at room temperature, 5 V.
2. Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the V
OL
s of ALE and ports 1 and 3. The noise is due
to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the
worst cases (capacitive loading > 100 pF), the noise pulse on the ALE pin may exceed 0.8 V. In such cases, it may be desirable to qualify
ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. I
OL
can exceed these conditions provided that no
single output sinks more than 5 mA and no more than two outputs exceed the test conditions.
3. Capacitive loading on ports 0 and 2 may cause the V
OH
on ALE and PSEN to momentarily fall below the V
CC
0.7 specification when the
address bits are stabilizing.
4. Pins of ports 1, 2 and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its
maximum value when V
IN
is approximately 2 V.
5. See Figures 52 through 55 for I
CC
test conditions and Figure 49 for I
CC
vs Freq.
Active mode:
I
CC(MAX)
= (10.5 + 0.9
FREQ.[MHz])mA in 12-clock mode
Idle mode:
I
CC(MAX)
= (2.5 + 0.33
FREQ.[MHz])mA in 12-clock mode
6. This value applies to T
amb
= 0
C to +70
C.
7. Load capacitance for port 0, ALE, and PSEN = 100 pF, load capacitance for all other outputs = 80 pF.
8. Under steady state (non-transient) conditions, I
OL
must be externally limited as follows:
Maximum I
OL
per port pin:
15 mA (*NOTE: This is 85
C specification.)
Maximum I
OL
per 8-bit port:
26 mA
Maximum total I
OL
for all outputs:
71 mA
If I
OL
exceeds the test condition, V
OL
may exceed the related specification. Pins are not guaranteed to sink current greater than the listed
test conditions.
9. ALE is tested to V
OH1
, except when ALE is off then V
OH
is the voltage specification.
10. Pin capacitance is characterized but not tested. Pin capacitance is less than 25 pF. Pin capacitance of ceramic package is less than 15 pF
(except EA is 25 pF).
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
57
AC ELECTRICAL CHARACTERISTICS (12-CLOCK MODE)
T
amb
= 0
C to +70
C or 40
C to +85
C; V
CC
= 5 V
10%, V
SS
= 0 V
1, 2, 3
VARIABLE CLOCK
4
33 MHz CLOCK
4
SYMBOL
FIGURE
PARAMETER
MIN
MAX
MIN
MAX
UNIT
1/t
CLCL
42
Oscillator frequency
0
33
MHz
t
LHLL
42
ALE pulse width
2t
CLCL
40
21
ns
t
AVLL
42
Address valid to ALE low
t
CLCL
25
5
ns
t
LLAX
42
Address hold after ALE low
t
CLCL
25
5
ns
t
LLIV
42
ALE low to valid instruction in
4t
CLCL
65
55
ns
t
LLPL
42
ALE low to PSEN low
t
CLCL
25
5
ns
t
PLPH
42
PSEN pulse width
3t
CLCL
45
45
ns
t
PLIV
42
PSEN low to valid instruction in
3t
CLCL
60
30
ns
t
PXIX
42
Input instruction hold after PSEN
0
0
ns
t
PXIZ
42
Input instruction float after PSEN
t
CLCL
25
5
ns
t
AVIV
42
Address to valid instruction in
5t
CLCL
80
70
ns
t
PLAZ
42
PSEN low to address float
10
10
ns
Data Memory
t
RLRH
43, 44
RD pulse width
6t
CLCL
100
82
ns
t
WLWH
43, 44
WR pulse width
6t
CLCL
100
82
ns
t
RLDV
43, 44
RD low to valid data in
5t
CLCL
90
60
ns
t
RHDX
43, 44
Data hold after RD
0
0
ns
t
RHDZ
43, 44
Data float after RD
2t
CLCL
28
32
ns
t
LLDV
43, 44
ALE low to valid data in
8t
CLCL
150
90
ns
t
AVDV
43, 44
Address to valid data in
9t
CLCL
165
105
ns
t
LLWL
43, 44
ALE low to RD or WR low
3t
CLCL
50
3t
CLCL
+50
40
140
ns
t
AVWL
43, 44
Address valid to WR low or RD low
4t
CLCL
75
45
ns
t
QVWX
43, 44
Data valid to WR transition
t
CLCL
30
0
ns
t
WHQX
43, 44
Data hold after WR
t
CLCL
25
5
ns
t
QVWH
44
Data valid to WR high
7t
CLCL
130
80
ns
t
RLAZ
43, 44
RD low to address float
0
0
ns
t
WHLH
43, 44
RD or WR high to ALE high
t
CLCL
25
t
CLCL
+25
5
55
ns
External Clock
t
CHCX
46
High time
17
t
CLCL
t
CLCX
ns
t
CLCX
46
Low time
17
t
CLCL
t
CHCX
ns
t
CLCH
46
Rise time
5
ns
t
CHCL
46
Fall time
5
ns
Shift Register
t
XLXL
45
Serial port clock cycle time
12t
CLCL
360
ns
t
QVXH
45
Output data setup to clock rising edge
10t
CLCL
133
167
ns
t
XHQX
45
Output data hold after clock rising edge
2t
CLCL
80
50
ns
t
XHDX
45
Input data hold after clock rising edge
0
0
ns
t
XHDV
45
Clock rising edge to input data valid
10t
CLCL
133
167
ns
NOTES:
1. Parameters are valid over operating temperature range unless otherwise specified.
2. Load capacitance for port 0, ALE, and PSEN = 100 pF, load capacitance for all other outputs = 80 pF.
3. Interfacing the microcontroller to devices with float times up to 45 ns is permitted. This limited bus contention will not cause damage to
Port 0 drivers.
4. Parts are tested to 3.5 MHz, but guaranteed to operate down to 0 Hz.
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
58
AC ELECTRICAL CHARACTERISTICS (6-CLOCK MODE)
T
amb
= 0
C to +70
C or 40
C to +85
C; V
CC
= 5 V
10%, V
SS
= 0 V
1, 2, 3
VARIABLE CLOCK
4
20 MHz CLOCK
4
SYMBOL
FIGURE
PARAMETER
MIN
MAX
MIN
MAX
UNIT
1/t
CLCL
42
Oscillator frequency
0
20
MHz
t
LHLL
42
ALE pulse width
t
CLCL
40
10
ns
t
AVLL
42
Address valid to ALE low
0.5t
CLCL
20
5
ns
t
LLAX
42
Address hold after ALE low
0.5t
CLCL
20
5
ns
t
LLIV
42
ALE low to valid instruction in
2t
CLCL
65
35
ns
t
LLPL
42
ALE low to PSEN low
0.5t
CLCL
20
5
ns
t
PLPH
42
PSEN pulse width
1.5t
CLCL
45
30
ns
t
PLIV
42
PSEN low to valid instruction in
1.5t
CLCL
60
15
ns
t
PXIX
42
Input instruction hold after PSEN
0
0
ns
t
PXIZ
42
Input instruction float after PSEN
0.5t
CLCL
20
5
ns
t
AVIV
42
Address to valid instruction in
2.5t
CLCL
80
45
ns
t
PLAZ
42
PSEN low to address float
10
10
ns
Data Memory
t
RLRH
43, 44
RD pulse width
3t
CLCL
100
50
ns
t
WLWH
43, 44
WR pulse width
3t
CLCL
100
50
ns
t
RLDV
43, 44
RD low to valid data in
2.5t
CLCL
90
35
ns
t
RHDX
43, 44
Data hold after RD
0
0
ns
t
RHDZ
43, 44
Data float after RD
t
CLCL
20
5
ns
t
LLDV
43, 44
ALE low to valid data in
4t
CLCL
150
50
ns
t
AVDV
43, 44
Address to valid data in
4.5t
CLCL
165
60
ns
t
LLWL
43, 44
ALE low to RD or WR low
1.5t
CLCL
50
1.5t
CLCL
+50
25
125
ns
t
AVWL
43, 44
Address valid to WR low or RD low
2t
CLCL
75
25
ns
t
QVWX
43, 44
Data valid to WR transition
0.5t
CLCL
25
0
ns
t
WHQX
43, 44
Data hold after WR
0.5t
CLCL
20
5
ns
t
QVWH
44
Data valid to WR high
3.5t
CLCL
130
45
ns
t
RLAZ
43, 44
RD low to address float
0
0
ns
t
WHLH
43, 44
RD or WR high to ALE high
0.5t
CLCL
20
0.5t
CLCL
+20
5
45
ns
External Clock
t
CHCX
46
High time
20
t
CLCL
t
CLCX
ns
t
CLCX
46
Low time
20
t
CLCL
t
CHCX
ns
t
CLCH
46
Rise time
5
ns
t
CHCL
46
Fall time
5
ns
Shift Register
t
XLXL
45
Serial port clock cycle time
6t
CLCL
300
ns
t
QVXH
45
Output data setup to clock rising edge
5t
CLCL
133
117
ns
t
XHQX
45
Output data hold after clock rising edge
t
CLCL
30
20
ns
t
XHDX
45
Input data hold after clock rising edge
0
0
ns
t
XHDV
45
Clock rising edge to input data valid
5t
CLCL
133
117
ns
NOTES:
1. Parameters are valid over operating temperature range unless otherwise specified.
2. Load capacitance for port 0, ALE, and PSEN = 100 pF, load capacitance for all other outputs = 80 pF.
3. Interfacing the microcontroller to devices with float times up to 45 ns is permitted. This limited bus contention will not cause damage to
Port 0 drivers.
4. Parts are tested to 2 MHz, but are guaranteed to operate down to 0 Hz.
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
59
EXPLANATION OF THE AC SYMBOLS
Each timing symbol has five characters. The first character is always
`t' (= time). The other characters, depending on their positions,
indicate the name of a signal or the logical status of that signal. The
designations are:
A Address
C Clock
D Input data
H Logic level high
I Instruction (program memory contents)
L Logic level low, or ALE
P PSEN
Q Output data
R RD signal
t Time
V Valid
W WR signal
X No longer a valid logic level
Z Float
Examples: t
AVLL
= Time for address valid to ALE low.
t
LLPL
= Time for ALE low to PSEN low.
t
PXIZ
ALE
PSEN
PORT 0
PORT 2
A0A15
A8A15
A0A7
A0A7
t
AVLL
t
PXIX
t
LLAX
INSTR IN
t
LHLL
t
PLPH
t
LLIV
t
PLAZ
t
LLPL
t
AVIV
SU00006
t
PLIV
Figure 42. External Program Memory Read Cycle
ALE
PSEN
PORT 0
PORT 2
RD
A0A7
FROM RI OR DPL
DATA IN
A0A7 FROM PCL
INSTR IN
P2.0P2.7 OR A8A15 FROM DPF
A0A15 FROM PCH
t
WHLH
t
LLDV
t
LLWL
t
RLRH
t
LLAX
t
RLAZ
t
AVLL
t
RHDX
t
RHDZ
t
AVWL
t
AVDV
t
RLDV
SU00025
Figure 43. External Data Memory Read Cycle
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
60
t
LLAX
ALE
PSEN
PORT 0
PORT 2
WR
A0A7
FROM RI OR DPL
DATA OUT
A0A7 FROM PCL
INSTR IN
P2.0P2.7 OR A8A15 FROM DPF
A0A15 FROM PCH
t
WHLH
t
LLWL
t
WLWH
t
AVLL
t
AVWL
t
QVWX
t
WHQX
t
QVWH
SU00026
Figure 44. External Data Memory Write Cycle
0
1
2
3
4
5
6
7
8
INSTRUCTION
ALE
CLOCK
OUTPUT DATA
WRITE TO SBUF
INPUT DATA
CLEAR RI
SET TI
SET RI
t
XLXL
t
QVXH
t
XHQX
t
XHDX
t
XHDV
SU00027
1
2
3
0
4
5
6
7
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
Figure 45. Shift Register Mode Timing
VCC0.5
0.45V
0.7VCC
0.2VCC0.1
t
CHCL
t
CLCL
t
CLCH
t
CLCX
t
CHCX
SU00009
Figure 46. External Clock Drive
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
61
VCC0.5
0.45V
0.2VCC+0.9
0.2VCC0.1
NOTE:
AC inputs during testing are driven at V
CC
0.5 for a logic `1' and 0.45V for a logic `0'.
Timing measurements are made at V
IH
min for a logic `1' and V
IL
max for a logic `0'.
SU00717
Figure 47. AC Testing Input/Output
VLOAD
VLOAD+0.1V
VLOAD0.1V
VOH0.1V
VOL+0.1V
NOTE:
TIMING
REFERENCE
POINTS
For timing purposes, a port is no longer floating when a 100mV change from
load voltage occurs, and begins to float when a 100mV change from the loaded
V
OH
/V
OL
level occurs. I
OH
/I
OL
20mA.
SU00718
Figure 48. Float Waveform
4
8
12
16
20
24
28
32
36
60
50
40
30
20
10
Frequency at XTAL1 (MHz, 12-clock mode)
I
CC
(mA)
MAXIMUM IDLE
SU01631
TYPICAL I
CC
ACTIVE
89C51RA2/RB2/RC2/RD2
MAXIMUM I
CC
ACTIVE
TYPICAL IDLE
Figure 49. I
CC
vs. FREQ
Valid only within frequency specifications of the device under test
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
62
VCC0.5
0.45V
0.2VCC+0.9
0.2VCC0.1
NOTE:
AC inputs during testing are driven at V
CC
0.5 for a logic `1' and 0.45V for a logic `0'.
Timing measurements are made at V
IH
min for a logic `1' and V
IL
max for a logic `0'.
SU00010
Figure 50. AC Testing Input/Output
VLOAD
VLOAD+0.1V
VLOAD0.1V
VOH0.1V
VOL+0.1V
NOTE:
TIMING
REFERENCE
POINTS
For timing purposes, a port is no longer floating when a 100mV change from load voltage occurs,
and begins to float when a 100mV change from the loaded V
OH
/V
OL
level occurs. I
OH
/I
OL
20mA.
SU00011
Figure 51. Float Waveform
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
63
V
CC
P0
EA
RST
XTAL1
XTAL2
V
SS
V
CC
V
CC
V
CC
I
CC
(NC)
CLOCK SIGNAL
P89C51RA2xx
P89C51RB2xx
P89C51RC2xx
P89C51RD2xx
SU01478
Figure 52. I
CC
Test Condition, Active Mode, T
amb
= 25
C.
All other pins are disconnected
V
CC
P0
RST
XTAL1
XTAL2
V
SS
V
CC
V
CC
I
CC
(NC)
CLOCK SIGNAL
EA
SU01479
P89C51RA2xx
P89C51RB2xx
P89C51RC2xx
P89C51RD2xx
Figure 53. I
CC
Test Condition, Idle Mode, T
amb
= 25
C.
All other pins are disconnected
VCC0.5
0.5V
t
CHCL
t
CLCL
t
CLCH
t
CLCX
t
CHCX
SU01297
Figure 54. Clock Signal Waveform for I
CC
Tests in Active
and Idle Modes.
t
CLCL
= t
CHCL
= 10 ns
V
CC
P0
RST
XTAL1
XTAL2
V
SS
V
CC
V
CC
I
CC
(NC)
EA
SU01480
P89C51RA2xx
P89C51RB2xx
P89C51RC2xx
P89C51RD2xx
Figure 55. I
CC
Test Condition, Power Down Mode.
All other pins are disconnected; V
CC
= 2 V to 5.5 V
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
64
DIP40:
plastic dual in-line package; 40 leads (600 mil)
SOT129-1
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
65
PLCC44:
plastic leaded chip carrier; 44 leads
SOT187-2
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
66
LQFP44:
plastic low profile quad flat package; 44 leads; body 10 x 10 x 1.4 mm
SOT389-1
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
67
REVISION HISTORY
Date
CPCN
Description
2002 July 18
9397 750 10129
Modified ordering information table
2002 May 20
9397 750 09843
Initial release
Philips Semiconductors
Preliminary data
P89C51RA2/RB2/RC2/RD2xx
80C51 8-bit Flash microcontroller family
8KB/16KB/32KB/64KB ISP/IAP Flash with 512B/512B/512B/1KB RAM
2002 Jul 18
68
Definitions
Short-form specification -- The data in a short-form specification is extracted from a full data sheet with the same type number and title. For
detailed information see the relevant data sheet or data handbook.
Limiting values definition -- Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended
periods may affect device reliability.
Application information -- Applications that are described herein for any of these products are for illustrative purposes only. Philips
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or
modification.
Disclaimers
Life support -- These products are not designed for use in life support appliances, devices or systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes -- Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless
otherwise specified.
Contact information
For additional information please visit
http://www.semiconductors.philips.com.
Fax: +31 40 27 24825
For sales offices addresses send e-mail to:
sales.addresses@www.semiconductors.philips.com.
Koninklijke Philips Electronics N.V. 2002
All rights reserved. Printed in U.S.A.
Date of release: 07-02
Document order number:
9397 750 10129
Philips
Semiconductors
Data sheet status
[1]
Objective data
Preliminary data
Product data
Product
status
[2]
Development
Qualification
Production
Definitions
This data sheet contains data from the objective specification for product development.
Philips Semiconductors reserves the right to change the specification in any manner without notice.
This data sheet contains data from the preliminary specification. Supplementary data will be
published at a later date. Philips Semiconductors reserves the right to change the specification
without notice, in order to improve the design and supply the best possible product.
This data sheet contains data from the product specification. Philips Semiconductors reserves the
right to make changes at any time in order to improve the design, manufacturing and supply.
Changes will be communicated according to the Customer Product/Process Change Notification
(CPCN) procedure SNW-SQ-650A.
Data sheet status
[1] Please consult the most recently issued data sheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL
http://www.semiconductors.philips.com.