ChipFind - документация

Электронный компонент: TDA8050T

Скачать:  PDF   ZIP
DATA SHEET
Product specification
Supersedes data of 1999 Jun 21
File under Integrated Circuits, IC02
1999 Dec 14
INTEGRATED CIRCUITS
TDA8050
QPSK transmitter
1999 Dec 14
2
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
FEATURES
Programmable gain
PLL controlled carrier frequency
3-wire transmission bus
5 V supply voltage.
APPLICATIONS
QPSK modulation.
GENERAL DESCRIPTION
The Quadrature Phase Shift Keying (QPSK) transmitter is
a monolithic bipolar IC dedicated for quadrature
modulation of the I and Q signals. It includes:
Two double-balanced mixers
Symmetrical Voltage Controlled Oscillator (VCO) with
0 to 90 degree signal generation for modulation
Phase-Locked Loop (PLL) for IF frequency control
Conversion mixer
PLL for RF frequency control
Gain controlled output amplifier
3-wire bus and an output buffer.
Two PLLs are incorporated, the first PLL includes:
Fixed main divider
Crystal oscillator and its programmable reference
divider
Phase/frequency detector combined with a fixed charge
pump.
The second PLL includes:
Divide-by-four preamplifier
12-bit programmable divider
Crystal oscillator and its programmable reference
divider
Phase/frequency detector combined with a `clever'
charge pump which drives the tuning amplifier, including
9 V output.
QUICK REFERENCE DATA
ORDERING INFORMATION
SYMBOL
PARAMETER
MIN.
TYP.
MAX.
UNIT
V
CC
supply voltage
4.75
5.00
5.25
V
f
c
output centre frequency
5
-
40
MHz
V
o(max)
maximum output level
-
55
-
dBmV
f
xtal
crystal frequency
1
-
4
MHz
f
ref(MOD)
reference frequency for modulator synthesizer
-
250
-
kHz
f
step
frequency step size for convertor synthesizer
50
-
500
kHz
T
amb
operating ambient temperature
0
-
70
C
TYPE
NUMBER
PACKAGE
NAME
DESCRIPTION
VERSION
TDA8050T
SO32
plastic small outline package; 32 leads; body width 7.5 mm
SOT287-1
1999
Dec
14
3
Philips Semiconductors
Product specification
QPSK tr
ansmitter
TD
A8050
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
BLOCK DIA
GRAM
handbook, full pagewidth
FCE181
1/2
90
0
27
TDA8050
MODULATOR
CONVERTER
25
24
28
1
3
2
30
31
RF_OUT
OUTEN
BUF_OUT
BUF_OUTC
26
AVCC1
4
AGND2
18
DVCC
13
DGND
9
AGND1
32
SW_CAP
29
AVCC2
8
7
6
5
CLK
I_IN
I_INC
Q_IN
Q_INC
15
14
DATA
16
EN
RF_OUTC
RF_IN
IF_FILT
RF_INC
IF_FILTC
FIXED
MAIN DIVIDER
DAC
3-WIRE BUS TRANCEIVER
DIGITAL
PHASE
COMPARATOR
DIGITAL
PHASE
COMPARATOR
CHARGE
PUMP
PROGRAM-
MABLE
CHARGE
PUMP
PROGRAMMABLE
REF DIVIDER
PROGRAMMABLE
MAIN DIVIDER
PROGRAMMABLE
REF DIVIDER
10
12
11
17
22
21
20
19
CP_MOD
TKAMOD
TKBMOD
TKACONV
OSC_IN
TKBCONV
TUNECONV
CP_CONV
23
LOCK
Fig.1 Block diagram.
1999 Dec 14
4
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
PINNING
SYMBOL
PIN
DESCRIPTION
OUTEN
1
output enable
BUF_OUT
2
output amplifier balanced output
BUF_OUTC
3
output amplifier balanced output
AGND2
4
converter analog ground 2
I_IN
5
I balanced input
I_INC
6
I balanced input
Q_IN
7
Q balanced input
Q_INC
8
Q balanced input
AGND1
9
modulator analog ground 1
TKAMOD
10
modulator VCO tank circuit input 2
TKBMOD
11
modulator VCO tank circuit input 1
CP_MOD
12
modulator charge pump output for
PLL loop filter
DVCC
13
digital supply voltage
CLK
14
3-wire bus serial control clock
DATA
15
3-wire bus serial control data input
EN
16
3-wire bus serial control enable
OSC_IN
17
crystal oscillator input
DGND
18
digital ground
CP_CONV
19
converter charge pump output for
PLL loop filter
TUNECONV
20
tuning voltage output for converter
VCO
TKBCONV
21
converter VCO tank circuit input 1
TKACONV
22
converter VCO tank circuit input 2
LOCK
23
lock detect signal
IF_FILT
24
IF balanced output to filter
IF_FILTC
25
IF balanced output to filter
AVCC1
26
modulator analog supply voltage
RF_OUTC
27
RF balanced output to filter
RF_OUT
28
RF balanced output to filter
AVCC2
29
converter analog supply voltage
RF_IN
30
RF balanced input to programmable
amplifier
RF_INC
31
RF balanced input to programmable
amplifier
SW_CAP
32
switch capacitor
Fig.2 Pin configuration.
handbook, halfpage
TDA8050
FCE182
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
OUTEN
BUF_OUT
BUF_OUTC
AGND2
I_IN
I_INC
Q_IN
Q_INC
AGND1
TKAMOD
TKBMOD
CP_MOD
DVCC
CLK
SW_CAP
RF_INC
RF_IN
AVCC2
RF_OUTC
AVCC1
RF_OUT
IF_FILTC
IF_FILT
LOCK
TKACONV
TKBCONV
TUNECONV
CP_CONV
DATA
DGND
OSC_IN
EN
1999 Dec 14
5
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
FUNCTIONAL DESCRIPTION
The I and Q are balanced analog signals at a level of
400 mV (p-p). These are mixed by two double balanced
mixers with the output signal generated by a first local
oscillator providing the modulated signal.
The modulated signal is then filtered by an IF filter. This
filtered signal together with a signal generated by a second
local oscillator is converted by a balanced mixer to
produce the QPSK signal.
The QPSK signal is amplified by a gain controlled amplifier
to a level suitable for transmission. The gain of the
controlled amplifier is bus controlled and this amplifier can
be disabled when not transmitting to provide signal
attenuation.
The amplified signal is applied to an on-chip amplifier
having two balanced outputs (open collector) linked to two
chip resistors (values 150
), and 9 V. The balanced
outputs are designed to drive a 2 : 1 transformer
(Siemens V944) with a 75
load giving an output level
of 55 dBmV. The output frequency range of the transmitter
is 5 to 40 MHz.
The frequency of the first local oscillator operates at twice
the frequency (i.e. 280 MHz) fixed by a Phase-Locked
Loop (PLL) implemented in the circuit.
The frequency of the second local oscillator operates in the
bandwidth 145 to 180 MHz and programmable due to a
PLL implemented in the circuit.
The VCO of both first and second local oscillators requires
an external LC tank circuit with two varicap diodes.
The data to the PLL is loaded in bursts framed by the
signal EN. Programming rising clock edges and their
appropriate data bits are ignored until EN goes active
(LOW). The internal latches are updated with the latest
programming data when EN returns inactive (HIGH).
The last 14 bits are stored in the programming register.
No check is made on the number of clock pulses received
during the time programming is enabled. A wrong active
clock edge will be generated causing a shift of data
bits, if EN goes HIGH while CLK is still LOW.
At power
up, EN should be HIGH. The lock detector output LOCK is
HIGH when both PLLs are in lock.
The main divider ratio and the reference divider ratios are
provided via the serial bus. A control register controls the
Digital-to-Analog Converter (DAC), the output amplifier
and the charge pump currents (Tables 1, 2 and 3).
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL
PARAMETER
MIN.
MAX.
UNIT
V
CC
supply voltage
-
0.3
+6.0
V
t
sc
short-circuit time (every pin to V
CC
or GND)
-
10
s
V
max
voltage on all pins except BUF_OUT, BUF_OUTC and TUNECONV
-
0.3
V
CC
V
V
o(tune)
output tuning voltage
-
0.3
+30
V
V
o(buf)
output buffer voltage on pins BUF_OUT and BUF_OUTC
-
10
V
P
tot
maximum power dissipation
-
800
mW
T
amb
operating ambient temperature
0
70
C
T
stg
storage temperature
-
40
+150
C
T
j(max)
junction temperature
-
150
C
1999 Dec 14
6
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
THERMAL CHARACTERISTICS
HANDLING
Human Body Model (HBM): The IC pins withstand 2 kV except pins 27 and 28 (1750 V).
Machine Model (MM): The IC pins withstand 100 V.
CHARACTERISTICS
Measured in application circuit (see Fig.9) with the following conditions: V
CC
= 5 V; T
amb
= 25
C; all AC units are RMS
values; unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
VALUE
UNIT
R
th(j-a)
thermal resistance from junction to ambient
in free air
63
K/W
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Supply
V
CCA(mod)
modulator analog supply voltage
4.75
5
5.25
V
I
CCA(mod)
modulator analog supply current
-
41
-
mA
V
CCA(conv)
converter analog supply voltage
4.75
5
5.25
V
I
CCA(conv)
converter analog supply current
-
48
-
mA
I
CC(buf)
buffer output supply current
-
44
-
mA
V
CCD
digital supply voltage
4.75
5
5.25
V
I
CCD
digital supply current
-
22
-
mA
V
CC(tune)
tuning supply voltage
-
-
9
V
Quadrature modulator I and Q inputs
V
I(DC)
input DC level
over the complete range of
temperature
-
0.5V
CC
-
V
V
i(p-p)
signal input level (balanced)
(peak-to-peak value)
indicative
-
400
500
mV
f
i(max)
I and Q maximum input frequency
indicative
-
10
-
MHz
Z
i(dif)
differential input impedance
-
4.4
-
k
B
(1dB)
1 dB amplifier bandwidth
indicative
-
10
-
MHz
M
ODULATOR
f
c
output centre frequency
-
-
140
MHz
A
amplitude imbalance
see Fig.3
-
-
1
dB
phase imbalance
-
-
2
deg
LO
(sup)
LO suppression
see Fig.3
-
-
28
-
dBc
Z
o(dif)
differential output impedance
-
1.8
-
k
M
ODULATOR VOLTAGE CONTROLLED OSCILLATOR
f
osc(mod)
oscillation frequency VCO
-
-
280
MHz
1999 Dec 14
7
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
Converter output
V
o
output level
f
i
= 30 MHz; V
i(dif)
= 100 mV
at I and Q inputs
37.5
40
42.5
dBmV
V
o
output flatness
f
i
= 5 to 40 MHz;
V
i(dif)
= 100 mV at I and Q
inputs
-
-
2
dB
f
c
output centre frequency
5
-
40
MHz
Z
o(dif)
differential output impedance
-
150
-
IM3
3rd-order intermodulation distortion see Fig.4
-
-
-
35
dBc
H
2
2nd-order harmonic of 5 to 40 MHz
signal
f
i
= 10 to 80 MHz;
V
i(dif)
= 100 mV at I and Q
inputs
-
-
-
45
dBc
H
3
3rd-order harmonic of 5 to 40 MHz
signal
f
i
= 15 to 120 MHz;
V
i(dif)
= 100 mV at I and Q
inputs
-
-
-
45
dBc
S
o
mixer spurious outputs of
5 to 40 MHz signal
f
i
= 5 to 40 MHz;
V
i(dif)
= 100 mV at I and Q
inputs
-
-
-
50
dBc
Converter voltage controlled oscillator
f
osc(min)
minimum oscillation frequency
-
-
145
MHz
f
osc(max)
maximum oscillation frequency
180
-
-
MHz
Programmable gain and output buffer; note 1
Z
i(dif)
differential input impedance
-
5.6
-
k
G
output level step size
-
-
2
dB
Buf
o
output level adjust range
V
i
= 30 dBmV sine wave;
40 MHz at pin
RF_IN and RF_INC;
DAC = 0 to 31
32
-
-
dB
V
o
output level
-
55
-
dBmV
V
o
output flatness
f
i
= 5 to 40 MHz;
V
i
= 30 dBmV sine wave;
DAC = 28
-
-
2
dB
V
O(ENL)
output controlled enable LOW
output buffer on
-
-
0.8
V
V
O(ENH)
output controlled enable HIGH
output buffer off
2.4
-
-
V
ISO
disable isolation
V
i(dif)
= 100 mV;
V
o
= 55 dBmV; DAC = 28;
f
i
= 40 MHz; OE = 0.5
-
35
-
-
dBc
G
(max)
maximum gain
see Fig.5
-
22
-
dB
V
o(1dB)
1 dB compression point
see Fig.5
60
-
-
dBmV
H
2
2nd-order harmonic of 5 to 40 MHz
signal
see Fig.6
f
i
= 10 to 40 MHz
-
-
-
45
dBc
f
i
= 54 to 120 MHz
-
-
-
35
dBc
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
1999 Dec 14
8
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
H
3
3rd-order harmonic of 5 to 40 MHz
signal
Fig.6
f
i
= 15 to 40 MHz
-
-
-
45
dBc
f
i
= 54 to 120 MHz
-
-
-
35
dBc
Overall; note 1
osc
phase noise
note 2;
at 10 kHz
-
-
70
-
dBc/Hz
at 100 kHz
-
-
90
-
dBc/Hz
S
o
spurious signals of 5 to 40 MHz
signal
f
i
= 5 to 40 MHz;
V
i(dif)
= 100 mV at I and Q
inputs; V
o
= 30 to 55 dBmV
-
-
-
50
dBc
ISO
tot
total isolation at I/Q mid-range
see Fig.7
-
-
-
65
dBc
C/N
carrier to noise ratio at final output
at 2 MHz from carrier
V
i(dif)
= 100 mV
V
o
= 35 to 55 dBmV;
f
i
= 26.5 MHz
-
113
-
dBc/Hz
Crystal oscillator
f
xtal
crystal frequency
note 3
1
-
4
MHz
Z
i
input impedance
f
xtal
= 4 MHz
600
1200
-
V
I(DC)
DC input level
-
2.9
-
V
Modulator synthesizer
f
ref(mod)
reference frequency
-
250
-
kHz
RDR1
reference divider ratio
programmable
4
-
16
ND1
fixed main divider ratio
-
1120
-
I
cp
charge-pump current
fixed
-
0.30
-
mA
Converter synthesizer
f
step
frequency step size
50
-
500
kHz
RD2
fixed reference divider ratio
-
2
-
RDR2
reference divider ratio
programmable
see Table 4
4
-
160
ND2
fixed main divider ratio
-
4
-
NDR2
programmable main divider ratio
see Table 4
290
-
3600
Three wire bus
V
IL
LOW-level input voltage
-
-
0.8
V
V
IH
HIGH-level input voltage
2.4
-
-
V
Lock detect pin
V
o(lock)
output voltage (lock)
-
5
-
V
V
o(unlock)
output voltage (unlock)
-
0.02
-
V
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
1999 Dec 14
9
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
Notes
1. All specification points of the output section and the overall circuit are measured after the 2 : 1 transformer
(siemens V944) connected with a load of 75
.
2. Overall phase noise converter: I
cp
= 0.36 mA; f
ref
= 12.5 kHz; V
I(diff)
= 100 mV; V
O(diff)
= 100 mV; V
O
= 55 dBmV;
DAC = 28; f
i
= 26.5 MHz.
3. Crystal oscillator; the crystal oscillator uses a 4, 2 or 1 MHz crystal in series with a capacitor. The crystal is serial
resonant with load a capacitance of 18 to 20 pF. The connection to V
CC
is preferred but can also be to GND.
Notes to the characteristics
Serial control clock
f
clk
clock frequency
-
330
-
kHz
t
su
input data to CLK set-up time
see Fig.3
-
2
-
s
t
h(CLK)
input data to CLK hold time
see Fig.3
-
1
-
s
t
d(strt)
delay to rising clock edge
see Fig.3
-
3
-
s
t
d(stp)
delay from last clock edge
see Fig.3
-
3
-
s
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Fig.3 Imbalance and LO suppression.
The amplitude imbalance and the LO suppression are measured in the spectrum of the signal measured at the output IF_FILT and are defined in the
following conditions:
Measure 1: I input frequency = 500 kHz. I input level = 400 mV (p-p) sine wave. Unused input as 0 V differential.
Measure 2: Q input frequency = 500 kHz. Q input level = 400 mV (p-p) sine wave. Unused input as 0 V differential.
handbook, full pagewidth
FCE183
LO(sup)
measure 2 fi(Q)
imbalance
measure 1 fi(I)
frequency
IF_FILT
1999 Dec 14
10
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
3rd-order intermodulation distortion;
Two tones of 260 mV (p-p) at each I and Q input:
2 sine waves with a total RMS values of 128 mV give:
90 mV (RMS) = 260 mV (p-p) and f
1
= 300 kHz,
f
2
= 500 kHz and f
RF
= 40 MHz.
V
av
( )
400
2
----------
10
4
20
------
128 mV RMS
(
)
=
=
2
x
2
128
=
x
128
2
---------- =
=
Fig.4 3rd-order intermodulation distortion in I and Q channels (IM3).
handbook, full pagewidth
500 kHz
300 kHz
I_IN
RF_OUT
Q_IN
I_INC
RF_OUTC
Q_INC
50
50
FCE184
f (MHz)
39.1
39.5
39.7
39.9
40
40.1
40.3
40.5
40.7
1999 Dec 14
11
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
handbook, full pagewidth
50
gain
(dB)
Vo(
-
1 dB)
Vo
Gmax
-
1
Gmax
FCE185
RF_IN
BUF_OUT
RF_INC
BUF_OUTC
150
150
Siemens V944
9 V
75
Vo2
Fig.5 Maximum gain and compression point.
DAC = 31.
f = 26.5 MHz.
V
i
is variable to have a variable output voltage.
Fig.6 Harmonics of output section H2 and H3.
DAC = 28.
f
i
= 5 to 40 MHz.
V
i
= 200 mV sine wave.
V
o
= 55 dBmV (RMS value).
handbook, full pagewidth
FCE186
RF_IN
BUF_OUT
RF_INC
BUF_OUTC
150
150
Siemens V944
9 V
75
1999 Dec 14
12
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
Fig.7 Isolation total.
ISO
tot
= V
o1
(dB)
-
V
o2
(dB).
handbook, full pagewidth
FCE187
I_IN
BUF_OUT
Vi(dif) = 100 mV
OUTEN = 0 V
I_INC
Q_IN
Q_INC
BUF_OUTC
DAC = 28
150
150
Siemens V944
9 V
75
Vi(dif) = 100 mV
Vo1
I_IN
BUF_OUT
0 V
OUTEN = 5 V
I_INC
Q_IN
Q_INC
BUF_OUTC
DAC = 28
150
150
Siemens V944
9 V
75
0 V
Vo2
1999 Dec 14
13
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
APPLICATION INFORMATION
Table 1
Data format; note 1
Notes
1. X = don't care.
2. MP1 and MP0: modulator reference divider ratio (see Table 2).
3. When OEN (output enable) is at logic 0, output is disabled, at logic 1 output is enabled.
4. CR2 to CR0: converter synthesizer charge pump current (see Table 3).
5. When DAC4 to DAC0 is at logic 0 minimum gain is programmed, at logic 1 maximum gain is programmed.
DATA
ADDRESS
D11
first in
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
AD1
AD0
last in
Modulator reference divider
ratio
Converter reference divider ratio
X
X
MP1
(2)
MP0
(2)
R7
R6
R5
R4
R3
R2
R1
R0
0
1
Control register
X
X
X
OEN
(3)
CR2
(4)
CR1
CR0
(4)
DAC4
(5)
DAC3
DAC2
DAC1
DAC0
1
0
Main divider ratio
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0
1
1
handbook, full pagewidth
MBL113
CLK
DATA
EN
td(strt)
td(stp)
th(CLK)
tsu
Tcy
Fig.8 3-wire bus timing.
1999 Dec 14
14
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
Table 2
Modulator reference divider ratio
Table 3
Converter synthesizer charge pump current
Note
1. LOCK_CONV is an internal signal.
When at logic 0 converter PLL is out-of-lock. When at logic 1 converter PLL is in-lock.
Table 4
Converter synthesizer: f
comp
= f
osc
/RD
Table 5
Converter synthesizer; ND = 4; f
lo
= ND
NDR
f
comp
= NDR
step
MP1
MP0
PROGRAMMED RATIO
1
1
4
1
0
8
0
1
16
CR2
CR1
CR0
LOCK_CONV
(1)
I
cp
(mA)
0
0
0
0
1.2
0
0
0
1
0.36
0
0
1
0
0.36
0
0
1
1
0.1
0
1
0
-
0.1
0
1
1
-
0.36
1
0
0
-
1.2
f
osc
\f
comp
12.5 kHz
25 kHz
50 kHz
125 kHz
1 MHz
80
40
20
8
4 MHz
320
160
80
32
f
lo
\step
50 kHz
100 kHz
200 kHz
500 kHz
145 MHz
2900
1450
725
290
180 MHz
3600
1800
900
360
1999 Dec 14
15
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
handbook, full pagewidth
22 k
680
+
9 V
+
5 V
27 k
10 nF
100
nF
18 pF
100 nF
100 nF
100 nF
100 nF
100 pF
330 pF
8.2
pF
820 pF
BB132
(2
)
56 nH
68 nH
140 MHz
10 k
10 k
10 k
22 k
39 pF
27 pF
47 pF
39 pF
TDA8050
MBK982
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
OUTEN
BUF_OUT
BUF_OUTC
AGND2
I_IN
I_INC
Q_IN
Q_INC
AGND1
TKAMOD
TKBMOD
CP_MOD
DVCC
CLK
SW_CAP
RF_INC
RF_IN
AVCC2
RF_OUTC
AVCC1
RF_OUT
IF_FILTC
IF_FILT
LOCK
TKACONV
TKBCONV
TUNECONV
CP_CONV
DATA
DGND
OSC_IN
4 MHz
EN
18 pF
8.2 nF
330
pF
370
pF
10
pF
BB133
(2
)
22 nH
18 k
100
10 k
10 k
22 k
22 k
15 pF
100 nF
100 nF
100
150
150
Siemens
V944
100 nF
100 nF
15 pF
+
5 V
390 nH
390 nH
+
5 V
+
9 V
Fig.9 Application diagram.
1999 Dec 14
16
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
INTERNAL PIN CONFIGURATION
SYMBOL
PIN
DESCRIPTION
DC VOLTAGE
OUTEN
1
-
SW_CAP
32
1.7 V
BUF_OUT
2
5.8 V
BUF_OUTC
3
5.8 V
AGND2
4
0
I_IN
5
2.5 V
I_INC
6
2.5 V
1
32
FCE004
2
3
FCE005
FCE023
4
5
6
FCE006
1999 Dec 14
17
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
Q_IN
7
2.5 V
Q_INC
8
2.5 V
AGND1
9
0 V
TKAMOD
10
3.1 V
TKBMOD
11
3.1 V
CP_MOD
12
2.1 V
DVCC
13
supply voltage
5 V
SYMBOL
PIN
DESCRIPTION
DC VOLTAGE
7
8
FCE007
FCE008
9
10
11
FCE009
12
FCE010
1999 Dec 14
18
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
CLK
14
-
DATA
15
-
EN
16
-
OSC_IN
17
2.9 V
DGND
18
0
SYMBOL
PIN
DESCRIPTION
DC VOLTAGE
14
FCE011
15
FCE012
16
FCE013
VCC
17
FCE014
FCE015
18
1999 Dec 14
19
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
CP_CONV
19
2.1 V
TUNECONV
20
V
VT
TKBCONV
21
3.1 V
TKACONV
22
3.1 V
LOCK
23
0 V
5 V
SYMBOL
PIN
DESCRIPTION
DC VOLTAGE
VCC
down
up
19
FCE016
20
FCE017
21
22
FCE018
23
FCE019
1999 Dec 14
20
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
IF_FILT
24
2.1 V
IF_FILTC
25
2.1 V
AVCC1
26
supply voltage
5 V
RF_OUTC
27
3.7 V
RF_OUT
28
3.7 V
AVCC2
29
supply voltage
5 V
RF_IN
30
2.1 V
RF_INC
31
2.1 V
SYMBOL
PIN
DESCRIPTION
DC VOLTAGE
24
25
FCE020
FCE021
27
28
30
31
FCE022
1999 Dec 14
21
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
PACKAGE OUTLINE
UNIT
A
max.
A
1
A
2
A
3
b
p
c
D
(1)
E
(1)
e
H
E
L
L
p
Q
Z
y
w
v
REFERENCES
OUTLINE
VERSION
EUROPEAN
PROJECTION
ISSUE DATE
IEC
JEDEC
EIAJ
mm
inches
2.65
0.10
0.25
0.01
1.4
0.055
0.3
0.1
2.45
2.25
0.49
0.36
0.27
0.18
20.7
20.3
7.6
7.4
1.27
10.65
10.00
1.2
1.0
0.95
0.55
8
0
o
o
0.25
0.1
0.004
0.25
DIMENSIONS (inch dimensions are derived from the original mm dimensions)
Note
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
1.1
0.4
SOT287-1
(1)
0.012
0.004
0.096
0.086
0.02
0.01
0.050
0.047
0.039
0.419
0.394
0.30
0.29
0.81
0.80
0.011
0.007
0.037
0.022
0.01
0.01
0.043
0.016
w
M
b
p
D
H
E
Z
e
c
v
M
A
X
A
y
32
17
16
1
A
A
1
A
2
L
p
Q
detail X
L
(A )
3
E
pin 1 index
0
5
10 mm
scale
SO32: plastic small outline package; 32 leads; body width 7.5 mm
SOT287-1
95-01-25
97-05-22
1999 Dec 14
22
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
SOLDERING
Introduction to soldering surface mount packages
This text gives a very brief insight to a complex technology.
A more in-depth account of soldering ICs can be found in
our
"Data Handbook IC26; Integrated Circuit Packages"
(document order number 9398 652 90011).
There is no soldering method that is ideal for all surface
mount IC packages. Wave soldering is not always suitable
for surface mount ICs, or for printed-circuit boards with
high population densities. In these situations reflow
soldering is often used.
Reflow soldering
Reflow soldering requires solder paste (a suspension of
fine solder particles, flux and binding agent) to be applied
to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement.
Several methods exist for reflowing; for example,
infrared/convection heating in a conveyor type oven.
Throughput times (preheating, soldering and cooling) vary
between 100 and 200 seconds depending on heating
method.
Typical reflow peak temperatures range from
215 to 250
C. The top-surface temperature of the
packages should preferable be kept below 230
C.
Wave soldering
Conventional single wave soldering is not recommended
for surface mount devices (SMDs) or printed-circuit boards
with a high component density, as solder bridging and
non-wetting can present major problems.
To overcome these problems the double-wave soldering
method was specifically developed.
If wave soldering is used the following conditions must be
observed for optimal results:
Use a double-wave soldering method comprising a
turbulent wave with high upward pressure followed by a
smooth laminar wave.
For packages with leads on two sides and a pitch (e):
larger than or equal to 1.27 mm, the footprint
longitudinal axis is preferred to be parallel to the
transport direction of the printed-circuit board;
smaller than 1.27 mm, the footprint longitudinal axis
must be parallel to the transport direction of the
printed-circuit board.
The footprint must incorporate solder thieves at the
downstream end.
For packages with leads on four sides, the footprint must
be placed at a 45
angle to the transport direction of the
printed-circuit board. The footprint must incorporate
solder thieves downstream and at the side corners.
During placement and before soldering, the package must
be fixed with a droplet of adhesive. The adhesive can be
applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the
adhesive is cured.
Typical dwell time is 4 seconds at 250
C.
A mildly-activated flux will eliminate the need for removal
of corrosive residues in most applications.
Manual soldering
Fix the component by first soldering two
diagonally-opposite end leads. Use a low voltage (24 V or
less) soldering iron applied to the flat part of the lead.
Contact time must be limited to 10 seconds at up to
300
C.
When using a dedicated tool, all other leads can be
soldered in one operation within 2 to 5 seconds between
270 and 320
C.
1999 Dec 14
23
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
Suitability of surface mount IC packages for wave and reflow soldering methods
Notes
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum
temperature (with respect to time) and body size of the package, there is a risk that internal or external package
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the
Drypack information in the
"Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
3. If wave soldering is considered, then the package must be placed at a 45
angle to the solder wave direction.
The package footprint must incorporate solder thieves downstream and at the side corners.
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.
DEFINITIONS
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
PACKAGE
SOLDERING METHOD
WAVE
REFLOW
(1)
BGA, SQFP
not suitable
suitable
HLQFP, HSQFP, HSOP, HTSSOP, SMS
not suitable
(2)
suitable
PLCC
(3)
, SO, SOJ
suitable
suitable
LQFP, QFP, TQFP
not recommended
(3)(4)
suitable
SSOP, TSSOP, VSO
not recommended
(5)
suitable
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
Philips Electronics N.V.
SCA
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Internet: http://www.semiconductors.philips.com
1999
68
Philips Semiconductors a worldwide company
For all other countries apply to: Philips Semiconductors,
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
Argentina: see South America
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2 68 9211, Fax. +359 2 68 9102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800 234 7381, Fax. +1 800 943 0087
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,
Tel. +45 33 29 3333, Fax. +45 33 29 3905
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615 800, Fax. +358 9 6158 0920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427
Germany: Hammerbrookstrae 69, D-20097 HAMBURG,
Tel. +49 40 2353 60, Fax. +49 40 2353 6300
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22 493 8541, Fax. +91 22 493 0966
Indonesia: PT Philips Development Corporation, Semiconductors Division,
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),
Tel. +39 039 203 6838, Fax +39 039 203 6800
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Pakistan: see Singapore
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,
Tel. +48 22 5710 000, Fax. +48 22 5710 001
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,
Tel. +27 11 471 5401, Fax. +27 11 471 5398
South America: Al. Vicente Pinzon, 173, 6th floor,
04547-130 SO PAULO, SP, Brazil,
Tel. +55 11 821 2333, Fax. +55 11 821 2382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 93 301 6312, Fax. +34 93 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745
Switzerland: Allmendstrasse 140, CH-8027 ZRICH,
Tel. +41 1 488 2741 Fax. +41 1 488 3263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 800 234 7381, Fax. +1 800 943 0087
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 62 5344, Fax.+381 11 63 5777
Printed in The Netherlands
545004/25/04/pp
24
Date of release:
1999 Dec 14
Document order number:
9397 750 06555