ChipFind - документация

Электронный компонент: CR03AM-12

Скачать:  PDF   ZIP
Regarding the change of names mentioned in the document, such as Mitsubishi
Electric and Mitsubishi XX, to Renesas Technology Corp.
The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)
Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi
Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names
have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.
Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been
made to the contents of the document, and these changes do not constitute any alteration to the
contents of the document itself.
Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices
and power devices.
Renesas Technology Corp.
Customer Support Dept.
April 1, 2003
To all our customers
Sep.2000
TYPE
NAME
VOLTAGE
CLASS
5.0 MAX
4.4
5.0 MAX
12.5 MIN
3.9 MAX
1.3
1.25 1.25
CIRCUMSCRIBE
CIRCLE
0.7
1
3 2
OUTLINE DRAWING
Dimensions
in mm
JEDEC : TO-92
2
1
3
1
2
3
CATHODE
ANODE
GATE
MITSUBISHI SEMICONDUCTOR
THYRISTOR
CR03AM
LOW POWER USE
NON-INSULATED TYPE, GLASS PASSIVATION TYPE
CR03AM
APPLICATION
Leakage protector, timer, gas ignitor
V
1. With gate to cathode resistance R
GK
=1k
.
Symbol
I
T (RMS)
I
T (AV)
I
TSM
I
2t
P
GM
P
G (AV)
V
FGM
V
RGM
I
FGM
T
j
T
stg
--
Parameter
RMS on-state current
Average on-state current
Surge on-state current
I
2t
for fusing
Peak gate power dissipation
Average gate power dissipation
Peak gate forward voltage
Peak gate reverse voltage
Peak gate forward current
Junction temperature
Storage temperature
Weight
Conditions
Commercial frequency, sine half wave, 180
conduction, T
a
=47
C
60Hz sine half wave 1 full cycle, peak value, non-repetitive
Value corresponding to 1 cycle of half wave 60Hz, surge on-state
current
Typical value
Unit
A
A
A
A
2
s
W
W
V
V
A
C
C
g
Ratings
0.47
0.3
20
1.6
0.5
0.1
6
6
0.3
40 ~ +110
40 ~ +125
0.23
I
T (AV)
........................................................................ 0.3A
V
DRM
..............................................................400V/600V
I
GT
......................................................................... 100
A
Symbol
V
RRM
V
RSM
V
R (DC)
V
DRM
V
DSM
V
D (DC)
Parameter
Repetitive peak reverse voltage
Non-repetitive peak reverse voltage
DC reverse voltage
Repetitive peak off-state voltage
V
1
Non-repetitive peak off-state voltage
V
1
DC off-state voltage
V
1
Voltage class
Unit
V
V
V
V
V
V
MAXIMUM RATINGS
8
400
500
320
400
500
320
12
600
800
480
600
800
480
Sep.2000
3V
DC
I
GS
I
GT
6V
DC
60
V
GT
2
1
TUT
1k
R
GK
A3
A2
V1
A1
SWITCH 1 : I
GT
measurement
SWITCH 2 : V
GT
measurement
(Inner resistance of voltage meter is about 1k
)
V
3. I
GT
, V
GT
measurement circuit.
SWITCH
MITSUBISHI SEMICONDUCTOR
THYRISTOR
CR03AM
LOW POWER USE
NON-INSULATED TYPE, GLASS PASSIVATION TYPE
ELECTRICAL CHARACTERISTICS
Symbol
I
RRM
I
DRM
V
TM
V
GT
V
GD
I
GT
I
H
R
th (j-a)
Test conditions
T
j
=110
C, V
RRM
applied
T
j
=110
C, V
DRM
applied, R
GK
=1k
T
a
=25
C, I
TM
=4A, instantaneous value
T
j
=25
C, V
D
=6V, I
T
=0.1A
V
3
Tj=110
C, V
D
=1/2V
DRM
, R
GK
=1k
T
j
=25
C, V
D
=6V, I
T
=0.1A
V
3
T
j
=25
C, V
D
=12V, R
GK
=1k
Junction to ambient
Unit
mA
mA
V
V
V
A
mA
C/ W
Typ.
--
--
--
--
--
--
1.5
--
Parameter
Repetitive peak reverse current
Repetitive peak off-state current
On-state voltage
Gate trigger voltage
Gate non-trigger voltage
Gate trigger current
Holding current
Thermal resistance
Limits
Min.
--
--
--
--
0.2
1
--
--
Max.
0.1
0.1
1.8
0.8
--
100
V
2
3
180
V
2. If special values of I
GT
are required, choose at least two items from those listed in the table below. (Example: AB, BC)
B
20 ~ 50
C
40 ~ 100
Item
I
GT
(
A)
A
1 ~ 30
The above values do not include the current flowing through the 1k
resistance between the gate and cathode.
PERFORMANCE CURVES
3.8
0.6
1.4
2.2
3.0
1.0
1.8
2.6
3.4
10
1
7
5
3
2
10
0
7
5
3
2
10
1
7
5
3
2
10
2
T
a
= 25
C
10
0
2 3
5 7 10
1
8
4
2 3
5 7 10
2
4
4
12
16
20
6
2
10
14
18
0
MAXIMUM ON-STATE CHARACTERISTICS
ON-STATE CURRENT (A)
ON-STATE VOLTAGE (V)
RATED SURGE ON-STATE CURRENT
SURGE ON-STATE CURRENT (A)
CONDUCTION TIME
(CYCLES AT 60Hz)
Sep.2000
MITSUBISHI SEMICONDUCTOR
THYRISTOR
CR03AM
LOW POWER USE
NON-INSULATED TYPE, GLASS PASSIVATION TYPE
10
2
10
2
10
0
10
1
10
1
7
5
3
2
10
1
7
5
3
2
10
0
7
5
3
2
7
5
3
2
5 7
2 3 5 7
10
1
10
2
2 3 5 7
2 3 5
2 3 5
7
V
FGM
= 6V
V
GT
= 0.8V
(T
j
= 25
C)
I
GT
= 100
A
(T
j
= 25
C)
P
GM
= 0.5W
P
G(AV)
= 0.1W
V
GD
= 0.2V
I
FGM
= 0.3A
2 3
10
3
5 710
2
2 3 5 710
1
2 3 5 7 10
0
200
0
80
100
120
140
160
180
40
60
20
2 3
10
0
5 7 10
1
2 3 5 7 10
2
2 3 5 7 10
3
60
20
40
0
20
40
80 100
10
3
7
5
3
2
10
2
7
5
3
2
10
1
7
5
3
2
10
0
120
TYPICAL EXAMPLE
1.0
0.8
0.7
0.6
0.3
0.4
0.1
0
60 40 20
20
80
140
120
0.2
0.5
0.9
0
60
40
100
160
120
60
40
20
140
100
80
0
0
0.2
0.4
0.1
0.3
0.5
= 30
60
120
90
180
360
RESISTIVE,
INDUCTIVE
LOADS
NATURAL
CONVECTION
0.3
0.2
0.1
0.4
0
0.5
0.4
0
0.1
0.2
0.3
0.5
= 30
60
120
90
180
360
RESISTIVE,
INDUCTIVE
LOADS
MAXIMUM AVERAGE POWER DISSIPATION
(SINGLE-PHASE HALF WAVE)
AVERAGE POWER DISSIPATION (W)
AVERAGE ON-STATE CURRENT (A)
GATE TRIGGER VOLTAGE VS.
JUNCTION TEMPERATURE
GATE TRIGGER VOLTAGE
( V
)
JUNCTION TEMPERATURE (
C)
MAXIMUM TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(JUNCTION TO AMBIENT)
TRANSIENT THERMAL IMPEDANCE (
C/
W)
TIME (s)
GATE CHARACTERISTICS
GATE VOLTAGE (V)
GATE CURRENT (mA)
GATE TRIGGER CURRENT VS.
JUNCTION TEMPERATURE
JUNCTION TEMPERATURE (
C)
100 (%)
GATE TRIGGER CURRENT
(T
j
=
t
C
)
GATE TRIGGER CURRENT
(T
j
=
25
C
)
ALLOWABLE AMBIENT TEMPERATURE VS.
AVERAGE ON-STATE CURRENT
(SINGLE-PHASE HALF WAVE)
AMBIENT TEMPERATURE (
C)
AVERAGE ON-STATE CURRENT (A)
DISTRIBUTION
I
GT
(25
C) = 35
A
TYPICAL EXAMPLE
Sep.2000
MITSUBISHI SEMICONDUCTOR
THYRISTOR
CR03AM
LOW POWER USE
NON-INSULATED TYPE, GLASS PASSIVATION TYPE
160
120
60
40
20
140
100
80
0
120
40
0
40
80
20
20
60
100
R
GK
= 1k
TYPICAL EXAMPLE
2 3
10
1
5 7 10
0
2 3 5 7 10
1
2 3 5 7 10
2
160
0
80
100
120
140
40
60
20
T
j
= 110
C
TYPICAL EXAMPLE
0.3
0.2
0.1
0.5
0.4
0
0
0.2
0.4
0.1
0.3
0.5
= 30
60
120
90
180
360
RESISTIVE LOADS
0.3
0.2
0.1
0.5
0.4
0
0
0.2
0.4
0.1
0.3
0.5
= 30
60
90
180
270
DC
120
360
RESISTIVE,
INDUCTIVE
LOADS
160
120
60
40
20
140
100
80
0
0.5
0
0.2
0.4
0.1
0.3
360
= 30
120
180
DC
270
60
90
NATURAL
CONVECTION
RESISTIVE,
INDUCTIVE
LOADS
160
120
60
40
20
140
100
80
0
0
0.2
0.4
0.1
0.3
0.5
60
120
180
= 30
90
360
RESISTIVE LOADS
NATURAL
CONVECTION
MAXIMUM AVERAGE POWER DISSIPATION
(SINGLE-PHASE FULL WAVE)
AVERAGE POWER DISSIPATION (W)
AVERAGE ON-STATE CURRENT (A)
ALLOWABLE AMBIENT TEMPERATURE VS.
AVERAGE ON-STATE CURRENT
(SINGLE-PHASE FULL WAVE)
AMBIENT TEMPERATURE (
C)
AVERAGE ON-STATE CURRENT (A)
MAXIMUM AVERAGE POWER DISSIPATION
(RECTANGULAR WAVE)
AVERAGE POWER DISSIPATION (W)
AVERAGE ON-STATE CURRENT (A)
ALLOWABLE AMBIENT TEMPERATURE VS.
AVERAGE ON-STATE CURRENT
(RECTANGULAR WAVE)
AMBIENT TEMPERATURE (
C)
AVERAGE ON-STATE CURRENT (A)
BREAKOVER VOLTAGE VS.
GATE TO CATHODE RESISTANCE
GATE TO CATHODE RESISTANCE (k
)
100 (%)
BREAKOVER VOLTAGE
( R
GK
=
r
k
)
BREAKOVER VOLTAGE
( R
GK
= 1k
)
BREAKOVER VOLTAGE VS.
JUNCTION TEMPERATURE
JUNCTION TEMPERATURE (
C)
100 (%)
BREAKOVER VOLTAGE
( T
j
= t
C
)
BREAKOVER VOLTAGE
( T
j
= 2
5
C
)