ChipFind - документация

Электронный компонент: PC901V0NSZX

Скачать:  PDF   ZIP
PC901V0NSZX
PC901V0NSZX
s
Absolute Maximum Ratings
s
Outline Dimensions
(Unit : mm)
*1 Pulse width
100
s, Duty ratio
=
0.001
*2 40 to 60%RH, AC for 1 min
*3 For 10 s
Parameter
Symbol
Rating
Unit
Forward current
Peak forward current
I
F
I
FM
50
1
mA
A
Reverse voltage
Input
Output
V
R
6
V
V
Power dissipation
P
70
Supply voltage
High level output voltage
Power dissipation
Total power dissipation
150
mW
170
mW
mW
V
OH
P
O
P
tot
mA
Low level output current
50
I
OL
V
V
CC
V
iso (rms)
kV
Operating temperature
T
opr
-
40 to
+
125
-
25 to
+
85
16
16
C
C
Storage temperature
Isolation voltage
T
stg
*2
*1
*3
Soldering temperature
T
sol
260
5
C
(Ta
=
25
C)
1. Programmable controllers
2. PC peripherals
3. Electronic musical instruments
s
Features
s
Applications
Digital Output Type OPIC
Photocoupler
1. Normal ON operation, open collector output
2. TTL and LSTTL compatible output
3. Operating supply voltage (V
CC
:3 to 15V)
4. Isolation voltage (Viso (rms):5kV)
5. High sensitivity
(I
FLH
:MAX. 2.0mA at Ta
=
25
C)
6. Under preparation for UL standard
7. 6-pin DIP package
Notice
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP
devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.
Internet
Internet address for Electronic Components Group http://www.sharp.co.jp/ecg/
Internal connection
diagram
Anode
mark
PC901V
0.5
TYP.
Anode
Cathode
NC
Vo
GND
VCC
=
0 to 13
6.5
0.3
0.6
0.2
1.2
0.3
7.12
0.3
2.9
0.5
0.5
0.1
2.54
0.25
3.25
0.5
3.5
0.5
7.62
0.3
0.26
0.1
1
1
2
3
4
5
6
2
3
6
5
4
6
4
5
1
2
3
PC901VoNSZX
Amp
Voltage regulator
"OPIC"(Optical IC) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signal-
processing circuit integrated onto a single chip.
PC901V0NSZX
Parameter
Symbol
Unit
Input
Forward voltage
V
F
V
Reverse current
I
R
A
Terminal capacitance
Operating supply voltage
C
t
Ta
=
25C, V
=
0, f
=
1kHz
pF
Output
V
OL
V
CC
High level supply current
Hysteresis
I
CCH
mA
Low level supply current
I
CCL
mA
Transfer
charac-
teristics
V
CC
=
5V, R
L
=
280
V
CC
=
5V, R
L
=
280
V
CC
=
5V, R
L
=
280
mA
Isolation resistance
R
ISO
t
PLH
s
Rise time
t
r
Fall time
t
f
I
FHL
"High
Low" threshold
input current
I
FLH
I
FHL
/I
FLH
"Low
High" threshold
input current
I
F
=
0.3mA
Ta
=
25C, V
R
=
4V
Ta
=
25C
V
CC
=
5V, I
F
=
4mA
R
L
=
280
MIN.
0.7
-
-
5
10
10
-
-
-
-
-
-
-
MAX.
10
250
5.5
5.0
-
-
4.0
0.9
3
6
0.5
0.5
Conditions
"Low
High" propagation delay time
t
PHL
"High
Low" propagation delay time
Response time
I
OL
=
16mA, V
CC
=
5V, I
F
=
4mA
I
F
=
4mA
V
CC
=
5V, I
F
=
4mA
V
CC
=
5V, I
F
=
0
*4 I
FLH
represents forward current when output goes from low to high.
*5 I
FHL
represents forward current when output goes from high to low.
*6 Hysteresis stands for I
FHL
/I
FLH
.
*7 Test circuit for response time is shown below.
*8 Test circuit for CM
H
, CM
L
shown below.
Ta
=
25C, DC
=
500V, 40 to 60%RH
Ta
=
25C, V
CC
=
5V, R
L
=
280
Ta
=
25C, V
CC
=
5V, R
L
=
280
TYP.
-
High level output current
I
OH
V
O
=
V
CC
=
15V, I
F
=
0
A
-
100
-
30
V
-
0.4
0.2
V
3
15
-
2.7
2.5
-
-
2.0
1.1
0.4
0.5
-
0.8
0.7
mA
0.3
-
-
-
10
11
0.1
0.05
1.0
-
1.4
1.1
1
2
(Ta
=
0 to
+
70
C unless otherwise spesified)
Low level output voltage
*4
*5
*6
*7
Instantaneous common
mode rejection voltage
"Output : High level"
V
CM
=
600V(peak), V
O
(MIN.)
=
2V
I
F
=
4mA, R
L
=
280
, Ta
=
25C
V
CM
=
600V(peak), V
O
(MAX.)
=
0.8V
I
F
=
0, R
L
=
280
, Ta
=
25C
V/
s
CM
L
V/
s
-
-
-
-
CM
H
*8
*8
-
2 000
2 000
Instantaneous common
mode rejection voltage
"Output : Low level"
s
Electro-optical Characteristics
Fig.1
Test Circuit for Response Time
5V
1.5V
Amp
t
r
=
t
f
=
0.01
s
Z
O
=
50
V
IN
47
0.1
F
V
O
280
V
IN
t
PHL
t
PLH
V
OH
90%
10%
t
r
V
OL
50%
V
O
Voltage
regulator
t
f
PC901V0NSZX
10
20
60
50
40
30
0
-
25
0
25
50
75
100
85
Ambient temperature T
a
(C)
Forward current I
F
(mA)
0
100
0
25
50
75
100
85
50
150
200
170
Power dissipation P
O
, P
tot
(mW)
Ambient temperature T
a
(C)
P
tot
P
O
-
25
Fig.3
Forward Current vs. Ambient
Temperature
Fig.5
Forward Current vs. Forward Voltage
Fig.4
Power Dissipation vs. Ambient
Temperature
Fig.6 Relative Threshold Input Current vs.
Supply Voltage
50C
25C
0C
0
1
2
5
10
20
50
100
200
500
0.5
1
1.5
2
2.5
3
Forward voltage V
F
(V)
-
25C
T
a
=
75C
Forward current I
F
(mA)
0.2
Relative threshold input current
0.4
0.6
1.4
5
10
20
0
15
1.2
1
0.8
I
FLH
I
FHL
Supply voltage V
CC
(V)
T
a
=
25C
I
FLH
=
1 at V
CC
=
5V
Voltage regulator
B
A
Amp.
5V
600V
GND
GND
+
-
V
CM
Switch for
Infrared LED
V
CM
Switch for Infrared LED at A (I
F
=
0)
V
O
(MAX.)
=
0.8V
V
OL
Switch for Infrared LED at B (I
F
=
4mA)
V
O
(MIN.)
=
2V
0.1
F
280
V
O
I
F
Fig.2
Test Circuit for CM
H
and CM
L
PC901V0NSZX
0.2
0.3
0.5
0
-
25
25
50
100
0.1
0
0.4
75
16mA
5mA
Ambient temperature T
a
(C)
Low level output voltage V
OL
(V)
V
CC
=
5V
I
OL
=
30mA
0.1
0
0.2
0.5
1
10
10
60
2
5
20
30
40
50
Forward current I
F
(mA)
High level output current I
OH
(
A)
V
CC
=
5V
T
a
=
25C
Fig.9
Low Level Output Current vs. Ambient
Temperature
Fig.11
High Level Output Current vs. Ambient
Temperature
Fig.10
High Level Output Current vs. Forward
Current
0.05
0.5
1
2
0
-
25
25
50
75
100
0.2
0.1
Ambient temperature T
a
(C)
High level output current I
OH
(
A)
V
CC
=
V
O
=
15V
I
F
=
4mA
Fig.12
Supply Current vs. Supply Voltage
0
1
2
9
0
12
5
4
3
6
7
8
10
14
6
8
2
4
16
18
Supply voltage V
CC
(V)
Supply current I
CC
(mA)
T
a
=
-
25C{
25C{
85C{
I
CCL
I
CCH
I
CCL
I
CCH
I
CCL
I
CCH
Fig.7
Relative Threshold Input Current vs.
Ambient Temperature
Fig.8
Low Level Output Voltage vs. Low
Level Output Current
0
0.4
Relative threshold input current
0.6
0.8
1.6
0
25
50
100
-
25
75
1.4
1.2
1
0.2
V
CC
=
5V
I
FLH
I
FHL
Ambient temperature T
a
(C)
I
FLH
=
1 at T
a
=
25C
0.01
1
0.02
0.05
0.1
1
2
5
10
100
50
20
0.2
0.5
Low level output voltage V
OL
(V)
Low level output current I
OL
(mA)
V
CC
=
5V
I
F
=
0
T
a
=
25C
PC901V0NSZX
1. It is recommended that a by-pass capacitor of more than 0.01
F is added between V
CC
and GND near the device in order to
stabilize power supply line.
2. Handle this product the same as with other integrated circuits against static electricity.
3. As for other general cautions, please refer to the chapter "Precautions for Use".
s
Precautions for Use
Fig.13
Propagation Delay Time vs. Forward
Current
0
1
2
3
5
6
10
20
30
40
60
0
50
4
Forward current I
F
(mA)
Propagation delay time t
PHL
, t
PLH
(
s)
V
CC
=
5V
R
L
=
280
T
a
=
25C
t
PHL
t
PLH
Fig.14
Rise Time, Fall Time vs. Load
Resistance
0
0.1
0.2
0.5
1
2
5
10
20
0.2
0.3
0.4
0.5
0.6
Load resistance R
L
(k
)
Rise time, fall time t
r
, t
f
(
s)
V
CC
=
5V
I
F
=
4mA
T
a
=
25C
t
r
t
f