ChipFind - документация

Электронный компонент: CXA1598M

Скачать:  PDF   ZIP
Description
The CXA1598M/S is a bipolar IC developed for
recording equalizer amplifier in analog cassette
decks. Incorporating the filter circuit has eliminated
the external inductor. Also, each of the six
parameters required for equalizer amplifiers can be
set independently with external resistance.
Features
Inductor (coil) is unnecessary
The six parameters (low frequency gain, medium
frequency gain, peaking gain, medium frequency
compensation frequency, peaking frequency, and
Q) required for recording equalizer amplifiers can
be set independently with external resistance
Low frequency boost is possible with an external
capacitor
Built-in recording mute function
(requiring only an external time constant circuit to
implement soft mute)
Built-in 2 channels
Small package
Applications
Recording equalizer amplifier for stereo analog
cassette decks
Structure
Bipolar silicon monolithic IC
Absolute Maximum Ratings
Supply voltage V
CC
17
V
Operating temperature
Topr
20 to +75
C
Storage temperature
Tstg
65 to +150
C
Allowable power dissipation
P
D
(CXA1598M)
570
mW
(CXA1598S)
880
mW
Operating Conditions
Power supply
Dual power supplies (V
CC
V
EE
)
6.5 to 8.0
V
Single power supply (V
CC
)
10.0 to 16.0
V
1
CXA1598M/S
E95131A8Y
Recording Equalizer Amplifier for Stereo Cassette Decks
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
CXA1598M
24 pin SOP (Plastic)
CXA1598S
22 pin SDIP (Plastic)
2
CXA1598M/S
Block Diagram and Pin Configuration
CXA1598M
G
N
D
BIAS
REC EQ
R
E
C

O
U
T
1
B
O
O
S
T
1
V
E
E
R
E
C

I
N
1
f
M
D
G
N
D
f

Q
PARAMETER
CONTROL
REC EQ
V
CC
V
EE
9
10
11
2
3
4
5
6
7
8
1
12
23
24
13
14
15
16
17
18
19
20
21
22
VGS
F
P

C
A
L
R
E
C

M
U
T
E
f
/
Q
I
R
E
F
R
E
C

O
U
T
2
B
O
O
S
T
2
V
C
C
R
E
C

I
N
2
G
L
G
H

C
A
L
G
P
G
P

C
A
L
R
E
C

C
A
L
G
H
N
C
N
C
CXA1598S
G
N
D
BIAS
REC EQ
R
E
C

O
U
T
1
B
O
O
S
T
1
V
E
E
R
E
C

I
N
1
f
M
D
G
N
D
f

Q
PARAMETER
CONTROL
REC EQ
V
CC
V
EE
9
10
11
2
3
4
5
6
7
8
1
12
13
14
15
16
17
18
19
20
21
22
VGS
F
P

C
A
L
R
E
C

M
U
T
E
f
/
Q
I
R
E
F
R
E
C

O
U
T
2
B
O
O
S
T
2
V
C
C
R
E
C

I
N
2
G
L
G
H

C
A
L
G
P
G
P

C
A
L
R
E
C

C
A
L
G
H
3
CXA1598M/S
Pin Description
(Ta = 25C, V
CC
= 7.0V, V
EE
= 7.0V)
Pin No.
Symbol
I/O
Z (in)
Equivalent circuit
Description
Typical pin
voltage
DC
AC
1
2
3
22
23
24
fxQ
f/Q
fM
GL
GH
GP
O
--
Connection pins of
resistors for setting the
recording equalizer
amplifier parameters.
Current input pins
used to set the
parameters for the
recording equalizer
amplifier.
Setting currents for
each parameter are
generated by
attaching resistors
between these pins
and the DGND pin.
1.2V
--
27k
DGND
192
2
3
22
23
24
1
(20)
(21)
(22)
CXA
1598M
CXA
1598S
1
2
3
20
21
22
4
FP CAL
I
54k
Peaking frequency
calibration pin.
Controlled with DC
voltages of 0 to 5V.
High = Peaking
frequency
increased
Low = Peaking
frequency reduced
Leave this pin
open when not
using the peaking
frequency
calibration function.
2.5V
--
54k
4
19
(17)
4
19
REC CAL
I
54k
Recording level
calibration pin.
Controlled with
DC voltages of 0
to 5V.
High = Recording
level gain
increased
Low = Recording
level gain reduced
Leave this pin
open when not
using the
recording level
calibration
function.
Connected to GND.
2.5V
--
17
5
DGND
I
--
0.0V
--
5
4
CXA1598M/S
6
REC MUTE
I
--
Recording mute
ON/OFF selection pin.
Recording mute is
controlled with DC
voltages of 0 to 5V.
High = Recording
mute OFF
Low = Recording
mute ON
Soft mute and fader
can be switched
over by changing
the time constant of
the external time
constant circuit.
5.0V
--
30k
6
6
8
17
REC IN1
REC IN2
I
50k
Recording equalizer
amplifier input pin.
0.0V 18dBv
GND
50k
8
17
(16)
(7)
7
16
10
15
BOOST1
BOOST2
I
9.5k
Connection pin of an
external capacitor for
low frequency boost.
When low
frequency boost is
unnecessary,
connect to GND for
positive/negative
dual power
supplies; connect a
capacitor (3.3F or
more) for a single
power supply.
0.0V
--
4.8k 5.5k
35.5k
280
280
34k
GND
(9)
10
15
(14)
9
14
9
GND (VG)
I
--
Connect to GND for
positive/negative
dual power supplies.
V
CC
/2 (center
potential) for a single
power supply.
(Connect a capacitor
of 10F or more)
0.0V
--
8
Pin No.
Symbol
I/O
Z (in)
Equivalent circuit
Description
Typical pin
voltage
DC
AC
CXA
1598M
CXA
1598S
5
CXA1598M/S
11
V
EE
I
--
Connect to the
negative power supply
for positive/negative
dual power supplies.
Connect to GND for a
single power supply.
7.0V
--
10
12
13
REC OUT1
REC OUT2
O
--
Recording equalizer
amplifier output pin.
0.0V 3.0dBv
11
12
14
V
CC
I
--
Positive power
supply connection
pin.
7.0V
--
13
50k
200
200
12
13
(11)
(12)
16
IREF
O
--
Reference current
setting pin for
monolithic filter.
The reference
current can be set
by attaching a
resistor between
this pin and
DGND.
1.2V
--
15
(15)
16
27k
DGND
192
Pin No.
Symbol
I/O
Z (in)
Equivalent circuit
Description
Typical pin
voltage
DC
AC
CXA
1598M
CXA
1598S
6
CXA1598M/S
20
GH CAL
I
--
Medium frequency
calibration pin.
Controlled with
DC voltages of 0
to 5V.
High = Medium
frequency level
gain increased
Low = Medium
frequency level
gain reduced
Leave this pin
open when not
using the medium
frequency
calibration
function.
2.5V
--
54k
(18)
(19)
20
21
18
21
GP CAL
I
--
High frequency
calibration pin.
Controlled with
DC voltages of 0
to 5V.
High = High
frequency level
gain increased
Low = High
frequency level
gain reduced
Leave this pin
open when not
using the high
frequency
calibration
function.
2.5V
--
19
Pin No.
Symbol
I/O
Z (in)
Equivalent circuit
Description
Typical pin
voltage
DC
AC
CXA
1598M
CXA
1598S
7
CXA1598M/S
Electrical Characteristics
(Ta = 25C, V
CC
= 7.0V, V
EE
= 7.0V)
Standard settings
RGL: 36k//510k, RGH: 62k//220k,
RGP: 36k//110k, RfM: 39k//910k,
Rf/Q: 47k//750k, RfxQ: 47k//620k
Recording equalizer amplifier reference output level
(315Hz)
(This output level is the tape reference 0dB which
generates magnetic flux of 250nWb/m.)
Input level when the reference output level is 315Hz,
3.0dBv
(For measurement, input a 315Hz, 18.0dBv signal to the
REC IN pins and then measure the output level.)
Input a 1kHz signal and set the output so that THD (total
harmonic distortion) is 1%. RL = 2.7k
(Measure the
distortion of a +11dB level-up signal.)
Input a 1kHz, 0.0dB (reference input level) signal and
measure the distortion. RL = 2.7k
(Measure the distortion as THD + N.)
With no signal, measure the noise using the "A"-WGT
filter. Rg = 5.1k
(The measured value is indicated
as the relative value compared to the reference level.)
With no signal, measure the DC offset voltage of the
REC OUT pin.
REC-MUTE = 0.5V (Use a 1kHz BPF.)
Input a 1kHz signal (+12dB level up) and measure the
attenuation when REC MUTE is on.
REC-MUTE = 2.5V
Input a 1kHz, 0.0dB (reference level) signal and measure
the attenuation characteristics of the soft mute function.
REC-CAL = 5.0V
Input a 315Hz signal (20dB level down) and measure
the amount of change compared to when the REC-CAL
function is at the standard setting.
REC-CAL = 0.0V
Input a 315Hz signal (20dB level down) and measure
the amount of change compared to when the REC-CAL
function is at the standard setting.
10.0
6.5
10.0
--
19.8
11.0
--
57.0
500
--
6.0
5.0
7.5
13.6
7.0
14.0
3.0
18.3
11.5
0.12
65.0
0
100
4.5
6.0
6.5
17.4
8.0
16.0
--
16.8
--
0.6
--
500
80
3.0
7.0
5.5
mA
V
V
dBv
dBv
dB
%
dB
mV
dB
dB
dB
dB
Current consumption (I
CC
)
Operating voltage range 1
(positive/negative dual power
supplies)
Operating voltage range 2
(single power supply)
Recording reference output
level
Recording reference input level
Signal handling
(1kHz, THD = 1%, RL = 2.7k
)
Total harmonic distortion
(1kHz, 0.0dB, RL = 2.7k
)
S/N ratio
("A"-WGT filter)
Output DC offset voltage
(REC OUT pin)
Mute characteristics 1
(REC-MUTE = 0.5V)
Mute characteristics 2
(REC-MUTE = 2.5V)
REC-CAL characteristics 1
(REC-CAL = 5.0V)
REC-CAL characteristics 2
(REC-CAL = 0.0V)
Item
Conditions
Min.
Typ.
Max. Unit
Entire LSI
Recording equalizer amplifier
8
CXA1598M/S
GH-CAL = 5.0V
RGH: 62k//220k, RGL RGP: OPEN
RfM: 300k, Rf/Q: 18k, RfxQ: 12k
Input a 6.3kHz signal (20dB level down) and measure the
amount of change compared to when the GH-CAL function
is at the standard setting.
GH-CAL = 0.0V
RGH: 62k//220k, RGL RGP: OPEN
RfM: 300k, Rf/Q: 18k, RfxQ: 12k
Input a 6.3kHz signal (20dB level down) and measure the
amount of change compared to when the GH-CAL function
is at the standard setting.
GP-CAL = 5.0V
RGP: 36k//110k, RGL RGH: OPEN
RfM: 300k, Rf/Q: 47k//750k, RfxQ: 47k//620k
Input a signal (20dB level down) and measure the amount
of change compared to when the GP-CAL function is at the
standard setting.
GP-CAL = 0.0V
RGP: 36k//110k, RGL RGH: OPEN
RfM: 300k, Rf/Q: 47k//750k, RfxQ: 47k//620k
Input a signal (20dB level down) and measure the amount
of change compared to when the GP-CAL function is at the
standard setting.
FP-CAL = 5.0V
Input a signal (20dB level down) and measure the amount
of change compared to when the FP-CAL function is at the
standard setting.
FP-CAL = 0.0V
Input a signal (20dB level down) and measure the amount
of change compared to when the FP-CAL function is at the
standard setting.
RGL: 36k//510k, RGH RGP: OPEN or RGH: 62k//220k,
RGL RGP: OPEN
RfM: 39k//910k, Rf/Q: 18k, RfxQ: 12k
RGP: 36k//110k, RGL RGH: OPEN
RfM: 300k, Rf/Q: 47k//750k, RfxQ: 47k//620k
4.7
5.5
3.9
5.8
185
36
0.3
10
2
5
10
10
15
15
5.7
4.5
5.4
4.3
200
46
2.4
17.8
4.2
0
3
20.5
0
0
6.7
3.5
6.9
2.8
215
56
10
50
7
8
11
30
15
15
dB
dB
dB
dB
%
%
kHz
kHz
dB
dB
dB
%
%
GH-CAL characteristics 1
(GH-CAL = 5.0V)
GH-CAL characteristics 2
(GH-CAL = 0.0V)
GP-CAL characteristics 1
(GP-CAL = 5.0V)
GP-CAL characteristics 2
(GP-CAL = 0.0V)
FP-CAL characteristics 1
(FP-CAL = 5.0V)
FP-CAL characteristics 2
(FP-CAL = 0.0V)
fM medium frequency
compensation frequency
variable width
fp peaking frequency variable
width
Peaking Q variable width
GL low frequency gain variable
width
GH medium frequency gain
variable width
GP peaking gain variable width
fM medium frequency
compensation frequency
deviation
fp peaking frequency deviation
Recording equalizer amplifier
Item
Conditions
Min.
Typ.
Max. Unit
9
CXA1598M/S
RGP: 36k//110k, RGL RGH: OPEN
RfM: 300k, Rf/Q: 47k//750k, RfxQ: 47k//620k
RGP: 36k//510k, RGH RGP: OPEN
RfM: 9.1k, Rf/Q: 18k, RfxQ: 12k
RGH: 62k//220k, RGL RGP: OPEN
RfM: 300k, Rf/Q: 18k, RfxQ: 12k
RGP: 36k//110k, RGL RGH: OPEN
RfM: 300k, Rf/Q: 47k//750k, RfxQ: 47k//620k
Pins 8 and 17 (CXA1598M)
Pins 7 and 16 (CXA1598S)
20
0.5
0.8
2.0
40
0
0
0
0
50
20
0.5
0.8
2.0
60
%
dB
dB
dB
k
Peaking Q deviation
GL low frequency gain deviation
GH medium frequency gain
deviation
GP peaking gain deviation
Input impedance
Recording equalizer amplifier
Note: Unless otherwise specified, RGL, RGH, RGP, RfM, Rf/Q, and RfxQ settings are the characteristics
when set to the standard settings.
Item
Conditions
Min.
Typ.
Max. Unit
10
CXA1598M/S
Electrical Characteristics Measurement Circuit (CXA1598S)
RE
C O
UT
2
V
CC
BO
OS
T2
IR
EF
RE
C I
N2
RE
C C
AL
GH
C
AL
GP
C
AL
RE
C O
UT
1
V
EE
BO
OS
T1
GN
D
RE
C I
N1
RE
C M
UT
E
DG
ND
FP
C
AL
C
X
A
1
5
9
8
S
A
D
C

5
V
S
u
p
p
l
y
P
o
w
e
r
S
u
p
p
l
y
A
P
o
w
e
r
S
u
p
p
l
y
A
u
d
i
o
S
G
D
C
A
m
m
e
t
e
r
D
C
A
m
m
e
t
e
r
GN
D
R
2
4
3
6
k
/
/
3
0
0
k
C
1
0
.
1
R
2
8
1
k
S
2
0
D
C
V
o
l
t
m
e
t
e
r
A
C
V
o
l
t
m
e
t
e
r
D
i
s
t
o
r
t
i
o
n
A
n
a
l
y
z
e
r
O
s
c
i
l
l
o
s
c
o
p
e
"
A
"

W
T
G
D
I
N

A
u
d
i
o
1
k
H
z

B
P
F
N
o
i
s
e

F
i
l
t
e
r
1
.

R
e
s
i
s
t
o
r

t
o
l
e
r
a
n
c
e
2
.

C
a
p
a
c
i
t
o
r

t
o
l
e
r
a
n
c
e




C
o
u
p
l
i
n
g

C
a
p
a
c
i
t
o
r
5
%
1
%
5
%
2
%
1
0
%
:
:
S
3
7
2
c
h
1
c
h
S
3
8
F
i
l
t
e
r
O
U
T
I
N
S
4
1
S
4
0
S
3
9
R
2
3
6
2
0
S
1
8
C
3
1
0
5
0
V
R
2
5
3
6
k
/
/
3
0
0
k
C
2
0
.
1
S
1
9
C
4
1
0
5
0
V
R
2
7
5
0
k
R
3
3
1
k
S
3
6
2
c
h
1
c
h
C
5
1
2
5
V
S
2
3
C
8
1
2
5
V
C
1
0
2
.
2
5
0
V
R
3
5
5
.
1
k
S
2
5
C
1
2
1
0
0
2
5
V
S
2
7
C
1
3
0
.
4
7
S
2
8
C
1
5
1
0
0
C
1
7
4
.
7
5
0
V
R
4
1
1
0
0
R
3
8
2
.
7
k
S
3
0
R
4
0
1
0
k
S
3
2
S
3
3
R
4
3
1
0
k
S
3
5
R
3
9
2
.
7
k
S
3
1
C
1
8
4
.
7
5
0
V
R
4
2
1
0
0
S
3
4
C
1
6
1
0
0
S
2
9
C
1
4
0
.
4
7
R
3
7
2
7
k
R
3
6
5
.
1
k
S
2
6
C
1
1
2
.
2
5
0
V
C
9
1
2
5
V
S
2
4
S
2
2
S
2
1
C
7
1
2
5
V
R
2
9
1
k
C
6
1
2
5
V
R
3
0
5
0
k
R
3
2
5
0
k
R
2
6
5
0
k
R
3
1
1
k
R
3
4
1
k
S
1
R
1
1

1
6
0
k
R
1
2

1
6
0
k
R
1
0

3
9
k
R
8

3
6
k
/
/
1
1
0
k
R
9

6
.
8
k
R
7

1
0
0
k
R
5

6
2
k
/
/
2
2
0
k
R
6

6
.
8
k
R
4

1
1
0
k
R
2

3
6
k
/
/
5
1
0
k
R
3

1
0
k
R
1

6
2
k
R
1
6

5
.
1
k
R
1
7

3
3
k
R
1
3

3
9
k
R
1
4

4
7
k
/
/
7
5
0
k
R
2
2

9
.
1
k
R
2
0

3
0
0
k
R
1
8

1
8
k
R
1
9

1
2
k
R
1
5

4
7
k
/
/
6
2
0
k
R
2
1

3
9
k
/
/
9
1
0
k
S
2
S
3
S
4
S
5
S
6
S
7
S
8
S
9
S
1
0
S
1
1
S
1
2
S
1
3
S
1
4
S
1
5
S
1
6
S
1
7
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
9
1
0
1
1
2
3
4
5
6
7
8
1
GL
GH
GP
fM
f/Q
f
Q
N
o
t
e
.
11
CXA1598M/S
Electrical Characteristics Measurement Circuit (CXA1598M)
RE
C O
UT
2
V
CC
BO
OS
T2
IR
EF
RE
C I
N2
RE
C C
AL
GH
C
AL
GP
C
AL
RE
C O
UT
1
V
EE
BO
OS
T1
GN
D
RE
C I
N1
RE
C M
UT
E
DG
ND
FP
C
AL
C
X
A
1
5
9
8
M
A
D
C

5
V
S
u
p
p
l
y
P
o
w
e
r
S
u
p
p
l
y
A
P
o
w
e
r
S
u
p
p
l
y
A
u
d
i
o
S
G
D
C
A
m
m
e
t
e
r
D
C
A
m
m
e
t
e
r
GN
D
R
2
4
3
6
k
/
/
3
0
0
k
C
1
0
.
1
R
2
8
1
k
S
2
0
D
C
V
o
l
t
m
e
t
e
r
A
C
V
o
l
t
m
e
t
e
r
D
i
s
t
o
r
t
i
o
n
A
n
a
l
y
z
e
r
O
s
c
i
l
l
o
s
c
o
p
e
"
A
"

W
T
G
D
I
N

A
u
d
i
o
1
k
H
z

B
P
F
N
o
i
s
e

F
i
l
t
e
r
1
.

R
e
s
i
s
t
o
r

t
o
l
e
r
a
n
c
e
2
.

C
a
p
a
c
i
t
o
r

t
o
l
e
r
a
n
c
e




C
o
u
p
l
i
n
g

C
a
p
a
c
i
t
o
r
5
%
1
%
5
%
2
%
1
0
%
:
:
S
3
7
2
c
h
1
c
h
S
3
8
F
i
l
t
e
r
O
U
T
I
N
S
4
1
S
4
0
S
3
9
R
2
3
6
2
0
S
1
8
C
3
1
0
5
0
V
R
2
5
3
6
k
/
/
3
0
0
k
C
2
0
.
1
S
1
9
C
4
1
0
5
0
V
R
2
7
5
0
k
R
3
3
1
k
S
3
6
2
c
h
1
c
h
C
5
1
2
5
V
S
2
3
C
8
1
2
5
V
C
1
0
2
.
2
5
0
V
R
3
5
5
.
1
k
S
2
5
C
1
2
1
0
0
2
5
V
S
2
7
C
1
3
0
.
4
7
S
2
8
C
1
5
1
0
0
C
1
7
4
.
7
5
0
V
R
4
1
1
0
0
R
3
8
2
.
7
k
S
3
0
R
4
0
1
0
k
S
3
2
S
3
3
R
4
3
1
0
k
S
3
5
R
3
9
2
.
7
k
S
3
1
C
1
8
4
.
7
5
0
V
R
4
2
1
0
0
S
3
4
C
1
6
1
0
0
S
2
9
C
1
4
0
.
4
7
R
3
7
2
7
k
R
3
6
5
.
1
k
S
2
6
C
1
1
2
.
2
5
0
V
C
9
1
2
5
V
S
2
4
S
2
2
S
2
1
C
7
1
2
5
V
R
2
9
1
k
C
6
1
2
5
V
R
3
0
5
0
k
R
3
2
5
0
k
R
2
6
5
0
k
R
3
1
1
k
R
3
4
1
k
S
1
R
1
1

1
6
0
k
R
1
2

1
6
0
k
R
1
0

3
9
k
R
8

3
6
k
/
/
1
1
0
k
R
9

6
.
8
k
R
7

1
0
0
k
R
5

6
2
k
/
/
2
2
0
k
R
6

6
.
8
k
R
4

1
1
0
k
R
2

3
6
k
/
/
5
1
0
k
R
3

1
0
k
R
1

6
2
k
R
1
6

5
.
1
k
R
1
7

3
3
k
R
1
3

3
9
k
R
1
4

4
7
k
/
/
7
5
0
k
R
2
2

9
.
1
k
R
2
0

3
0
0
k
R
1
8

1
8
k
R
1
9

1
2
k
R
1
5

4
7
k
/
/
6
2
0
k
R
2
1

3
9
k
/
/
9
1
0
k
S
2
S
3
S
4
S
5
S
6
S
7
S
8
S
9
S
1
0
S
1
1
S
1
2
S
1
3
S
1
4
S
1
5
S
1
6
S
1
7
1
3
1
4
1
5
1
6
1
7
1
9
2
0
2
1
2
2
2
3
2
4
1
0
1
1
1
2
2
3
4
5
6
8
9
1
GL
GH
GP
fM
f/Q
N
o
t
e
.
7
1
8
NC
NC
f
Q
12
CXA1598M/S
Application Circuit for Positive/Negative Dual Power Supplies (CXA1598S)
C
7
3
.
3
5
0
V
R
4
5
1
2
k
C
9
1
5
0
p
L
1
2
7
m
H
C
1
1
7
5
p
G
N
D
G
N
D
G
N
D
LIN
E I
N1
C
1
3
.
3
5
0
V
R
3
9
1
0
k
R
3
7
1
0
k
R
4
1
5
.
6
k
R
E
C

O
U
T
1
(
t
o

H
E
A
D
)
C
X
A
1
5
9
8
S
R
3
0
R
2
9
R
2
8
R
2
7
R
2
6
R
2
4
R
2
3
R
2
2
R
2
1
R
2
0
R
1
7
R
1
6
R
1
5
R
1
4
R
1
3
R
1
1
R
1
0
R
9
R
8
R
7
R
5
R
4
R
3
R
2
R
1
R
1
8
R
1
2
R
6
R
2
5
R
1
9
R
3
6
R
3
5
R
3
4
R
3
3
R
3
2
R
3
1
T
Y
P
E
I
N
O
R
M
A
L
C
3
0
.
4
7
RE
C M
UT
E
(S
OF
T M
UT
E/F
AD
ER
)
G
N
D
T
Y
P
E
I
I
C
r
O
2
T
Y
P
E
I
V
M
E
T
A
L
H
I
G
H
S
P
E
E
D
N
O
R
M
A
L
S
P
E
E
D
G
N
D
FP
C
AL
(D
C C
ON
TR
OL
)
R
E
C

O
U
T
2
(
t
o

H
E
A
D
)
G
N
D
C
1
2
7
5
p
L
2
2
7
m
H
C
1
0
1
5
0
p
R
4
6
1
2
k
C
8
3
.
3
5
0
V
B
I
A
S
O
S
C
R
4
2
5
.
6
k
C
4
0
.
4
7
G
N
D
R
3
8
1
0
k
R
4
0
1
0
k
C
2
3
.
3
5
0
V
V
C
C
C
5
1
0
0
2
5
V
G
N
D
GN
D
RE
C O
UT
1
BO
OS
T1
V
EE
RE
C I
N1
fM
DG
ND
f
Q
FP
C
AL
RE
C M
UT
E
f/Q
IR
EF
RE
C O
UT
2
BO
OS
T2
V
CC
RE
C I
N2
GL
GH
C
AL
GP
GP
C
AL
RE
C C
AL
GH
LIN
E I
N2
RE
C C
AL
(D
C C
ON
TR
OL
)
GH
C
AL
(D
C C
ON
TR
OL
)
GP
C
AL
(D
C C
ON
TR
OL
)
9
1
0
1
1
2
3
4
5
6
7
8
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
G
H
G
L
f

Q
f
/
Q
f
M
G
P
R
4
4
2
7
k
V
E
E
C
5
1
0
0
2
5
V
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility fo
r
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same
.
13
CXA1598M/S
Application Circuit for Positive/Negative Dual Power Supplies (CXA1598M)
C
7
3
.
3
5
0
V
R
4
5
1
2
k
C
9
1
5
0
p
L
1
2
7
m
H
C
1
1
7
5
p
G
N
D
G
N
D
G
N
D
LIN
E I
N1
C
1
3
.
3
5
0
V
R
3
9
1
0
k
R
3
7
1
0
k
R
4
1
5
.
6
k
R
E
C

O
U
T
1
(
t
o

H
E
A
D
)
C
X
A
1
5
9
8
M
R
3
0
R
2
9
R
2
8
R
2
7
R
2
6
R
2
4
R
2
3
R
2
2
R
2
1
R
2
0
R
1
7
R
1
6
R
1
5
R
1
4
R
1
3
R
1
1
R
1
0
R
9
R
8
R
7
R
5
R
4
R
3
R
2
R
1
R
1
8
R
1
2
R
6
R
2
5
R
1
9
R
3
6
R
3
5
R
3
4
R
3
3
R
3
2
R
3
1
T
Y
P
E
I
N
O
R
M
A
L
C
3
0
.
4
7
RE
C M
UT
E
(S
OF
T M
UT
E/F
AD
ER
)
G
N
D
T
Y
P
E
I
I
C
r
O
2
T
Y
P
E
I
V
M
E
T
A
L
H
I
G
H
S
P
E
E
D
N
O
R
M
A
L
S
P
E
E
D
G
N
D
FP
C
AL
(D
C C
ON
TR
OL
)
R
E
C

O
U
T
2
(
t
o

H
E
A
D
)
G
N
D
C
1
2
7
5
p
L
2
2
7
m
H
C
1
0
1
5
0
p
R
4
6
1
2
k
C
8
3
.
3
5
0
V
B
I
A
S
O
S
C
R
4
2
5
.
6
k
C
4
0
.
4
7
G
N
D
R
3
8
1
0
k
R
4
0
1
0
k
C
2
3
.
3
5
0
V
V
C
C
C
5
1
0
0
2
5
V
G
N
D
GN
D
RE
C O
UT
1
BO
OS
T1
V
EE
RE
C I
N1
fM
DG
ND
f
Q
FP
C
AL
RE
C M
UT
E
f/Q
IR
EF
RE
C O
UT
2
BO
OS
T2
V
CC
RE
C I
N2
GL
GH
C
AL
GP
GP
C
AL
RE
C C
AL
GH
LIN
E I
N2
RE
C C
AL
(D
C C
ON
TR
OL
)
GH
C
AL
(D
C C
ON
TR
OL
)
GP
C
AL
(D
C C
ON
TR
OL
)
1
0
1
1
1
2
2
3
4
5
6
8
9
1
1
3
1
4
1
5
1
6
1
7
1
8
2
0
2
1
2
2
2
3
2
4
G
H
G
L
f

Q
f
/
Q
f
M
G
P
R
4
4
2
7
k
V
E
E
C
5
1
0
0
2
5
V
1
9
NC
7
NC
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility fo
r
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same
.
14
CXA1598M/S
Application Circuit for a Single Power Supply (CXA1598S)
C
7
3
.
3
5
0
V
R
4
5
1
2
k
C
9
1
5
0
p
L
1
2
7
m
H
C
1
1
7
5
p
G
N
D
G
N
D
G
N
D
LIN
E I
N1
C
1
1
0
2
5
V
C
1
3
.
3
5
0
V
R
3
9
1
0
k
R
3
7
1
0
k
R
4
1
5
.
6
k
R
E
C

O
U
T
1
(
t
o

H
E
A
D
)
C
X
A
1
5
9
8
S
R
3
0
R
2
9
R
2
8
R
2
7
R
2
6
R
2
4
R
2
3
R
2
2
R
2
1
R
2
0
R
1
7
R
1
6
R
1
5
R
1
4
R
1
3
R
1
1
R
1
0
R
9
R
8
R
7
R
5
R
4
R
3
R
2
R
1
R
1
8
R
1
2
R
6
R
2
5
R
1
9
R
3
6
R
3
5
R
3
4
R
3
3
R
3
2
R
3
1
T
Y
P
E
I
N
O
R
M
A
L
C
3
0
.
4
7
RE
C M
UT
E
(S
OF
T M
UT
E/F
AD
ER
)
G
N
D
T
Y
P
E
I
I
C
r
O
2
T
Y
P
E
I
V
M
E
T
A
L
H
I
G
H
S
P
E
E
D
N
O
R
M
A
L
S
P
E
E
D
G
N
D
FP
C
AL
(D
C C
ON
TR
OL
)
R
E
C

O
U
T
2
(
t
o

H
E
A
D
)
G
N
D
C
1
2
7
5
p
L
2
2
7
m
H
C
1
0
1
5
0
p
R
4
6
1
2
k
C
8
3
.
3
5
0
V
B
I
A
S
O
S
C
R
4
2
5
.
6
k
C
4
0
.
4
7
G
N
D
R
3
8
1
0
k
R
4
0
1
0
k
C
2
3
.
3
5
0
V
V
C
C
C
5
1
0
0
2
5
V
G
N
D
GN
D
RE
C O
UT
1
BO
OS
T1
V
EE
RE
C I
N1
fM
DG
ND
f
Q
FP
C
AL
RE
C M
UT
E
f/Q
IR
EF
RE
C O
UT
2
BO
OS
T2
V
CC
RE
C I
N2
GL
GH
C
AL
GP
GP
C
AL
RE
C C
AL
GH
LIN
E I
N2
RE
C C
AL
(D
C C
ON
TR
OL
)
GH
C
AL
(D
C C
ON
TR
OL
)
GP
C
AL
(D
C C
ON
TR
OL
)
9
1
0
1
1
2
3
4
5
6
7
8
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
G
H
G
L
f

Q
f
/
Q
f
M
G
P
R
4
4
2
7
k
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility fo
r
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same
.
15
CXA1598M/S
Application Circuit for a Single Power Supply (CXA1598M)
C
7
3
.
3
5
0
V
R
4
5
1
2
k
C
9
1
5
0
p
L
1
2
7
m
H
C
1
1
7
5
p
G
N
D
G
N
D
G
N
D
LIN
E I
N1
C
1
1
0
2
5
V
C
1
3
.
3
5
0
V
R
3
9
1
0
k
R
3
7
1
0
k
R
4
1
5
.
6
k
R
E
C

O
U
T
1
(
t
o

H
E
A
D
)
C
X
A
1
5
9
8
M
R
3
0
R
2
9
R
2
8
R
2
7
R
2
6
R
2
4
R
2
3
R
2
2
R
2
1
R
2
0
R
1
7
R
1
6
R
1
5
R
1
4
R
1
3
R
1
1
R
1
0
R
9
R
8
R
7
R
5
R
4
R
3
R
2
R
1
R
1
8
R
1
2
R
6
R
2
5
R
1
9
R
3
6
R
3
5
R
3
4
R
3
3
R
3
2
R
3
1
T
Y
P
E
I
N
O
R
M
A
L
C
3
0
.
4
7
RE
C M
UT
E
(S
OF
T M
UT
E/F
AD
ER
)
G
N
D
T
Y
P
E
I
I
C
r
O
2
T
Y
P
E
I
V
M
E
T
A
L
H
I
G
H
S
P
E
E
D
N
O
R
M
A
L
S
P
E
E
D
G
N
D
FP
C
AL
(D
C C
ON
TR
OL
)
R
E
C

O
U
T
2
(
t
o

H
E
A
D
)
G
N
D
C
1
2
7
5
p
L
2
2
7
m
H
C
1
0
1
5
0
p
R
4
6
1
2
k
C
8
3
.
3
5
0
V
B
I
A
S
O
S
C
R
4
2
5
.
6
k
C
4
0
.
4
7
G
N
D
R
3
8
1
0
k
R
4
0
1
0
k
C
2
3
.
3
5
0
V
V
C
C
C
5
1
0
0
2
5
V
G
N
D
GN
D
RE
C O
UT
1
BO
OS
T1
V
EE
RE
C I
N1
fM
DG
ND
f
Q
FP
C
AL
RE
C M
UT
E
f/Q
IR
EF
RE
C O
UT
2
BO
OS
T2
V
CC
RE
C I
N2
GL
GH
C
AL
GP
GP
C
AL
RE
C C
AL
GH
LIN
E I
N2
RE
C C
AL
(D
C C
ON
TR
OL
)
GH
C
AL
(D
C C
ON
TR
OL
)
GP
C
AL
(D
C C
ON
TR
OL
)
1
0
1
1
1
2
2
3
4
5
6
8
9
1
1
3
1
4
1
5
1
6
1
7
1
9
2
0
2
1
2
2
2
3
2
4
G
H
G
L
f

Q
f
/
Q
f
M
G
P
R
4
4
2
7
k
7
NC
1
8
NC
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility fo
r
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same
.
16
CXA1598M/S
Description of Operation
1. Recording equalizer amplifier
The primary features of the CXA1598 recording equalizer amplifier are that by taking full advantage of
monolithic filter technology, an LC resonance circuit consisting of a coil and capacitor normally required for
high frequency compensation is dispensed with and medium and low frequency sensitivity compensation is
performed with its internal filter alone. In addition, the six parameters (low frequency gain, medium frequency
gain, peaking gain, medium frequency compensation frequency, peaking frequency, and Q) required for
recording equalizer amplifiers can be set as desired simply by attaching resistors to the GL, GH, GP, fM, f/Q,
and fxQ pins.
This IC has the circuit configuration shown in Fig. 1 to provide the optimum frequency response required for
recording equalizer amplifiers.
27mH
GND
GND
GND
R10
50k
V
CC
Gm2
1
1
Gm1
Gm4
OP3
1
OP2
OP1
VGS
R14
34k
R12
35k
R15
4.8k
C2
0.47
GND
C3
200p
R13
5.5k
R20
40k
GND
R21
50k
R19
24k
R18
8k
C5
100p
GND
C4
100p
R16
20k
R17
20k
VGS
VGS
Gm3
VGS
BIAS
PARAMETER
6dBv
6dBv
+6dBv
3dBv
7dBv
7dBv
0dBv
REC IN
18dBv
V
CC
V
EE
GND
IREF
DGND
V
EE
DGND
R9 27k
GND
REC HEAD
BIAS
OSC
C8
75p
R23
12k
C6
3.3
C7
150p
CONTROL
REC MUTE
DV
CC
R24
50k
BOOST
GND
R2
8.2k
R1
10k
C1
2.2
GL
GH
GP
fM
f/Q
f
Q
DGND
R3 Rf
Q
R4 Rf/Q
R5 RfM
R6 RGP
R7 RGH
R8 RGL
GP CAL
CALIBRATION
FP CAL
GH CAL
REC CAL
REC OUT
GND
DGND
R25
50k
to Control IC
R26
50k
R22
50k
R11
5k
BOOST
From LINE IN
DGND
Fig. 1. CXA1598M/S functional circuit block diagram
2. Low frequency boost
The CXA1598 implements low frequency boost simply by attaching an external capacitor to the BOOST pins.
Signals are boosted by approximately 6dB. The boost cut-off frequency can be freely set with the value of the
external capacitor.
f
2
f
1
G
a
i
n

[
d
B
]
Frequency [Hz]
6dB
oct
Fig. 2. CXA1598M/S low frequency boost frequency response
17
CXA1598M/S
3. Recording mute function
The CXA1598 contains a built-in recording mute circuit which varies the recording equalizer amplifier gain
according to the magnitude of the DC voltage applied to the REC MUTE pin just like an electronic volume
control. Also, any desired soft mute or fader can be freely set depending on momentary changes in the DC
voltage applied to the REC MUTE pin. Fig. 3 illustrates the recording mute waveforms.
Fig. 3. Recording mute waveform
4. Recording level calibration function
The CXA1598 allows the recording level to be finely adjusted with a DC voltage. The recording equalizer
amplifier gain can be varied by approximately 5dB simply by applying a DC voltage to the REC CAL pin.
When not using the recording level calibration function, simply leave the REC CAL pin open, and the REC
CAL pin is matched to the internal reference voltage (2.5V), with the recording level set for the standard
output gain.
5. Medium frequency equalizer amplifier calibration function
The CXA1598 allows the medium frequency equalizer amplifier characteristics to be finely adjusted with a DC
voltage. By simply applying a DC voltage to the GH CAL pin, the medium frequency equalizer amplifier gain
can be varied by approximately 4dB. When not using this calibration function, simply leave the GH CAL pin
open, and the GH CAL pin is matched to the internal reference voltage (2.5V), with the medium frequency
equalizer amplifier characteristics set for the standard output gain.
6. High frequency equalizer amplifier calibration function
The CXA1598 allows the high frequency equalizer amplifier characteristics to be finely adjusted with a DC
voltage. By simply applying a DC voltage to the GP CAL pin, the high frequency equalizer amplifier gain can
be varied by approximately 4dB. Also, when not using this calibration function, simply leave the GP CAL pin
open, and the GP CAL pin is matched to the internal reference voltage (2.5V), with the high frequency
equalizer amplifier characteristics set for the standard output gain.
7. fp peaking frequency calibration function
The CXA1598 allows the fp peaking frequency to be finely adjusted with a DC voltage. By simply applying a
DC voltage to the FP CAL pin, the fp peaking frequency can be varied by approximately 46% to 200%. Also,
when not using this calibration function, simply leave the FP CAL pin open, and the FP CAL pin is matched to
the internal reference voltage (2.5V), with the fp peaking frequency response set for the standard fp peaking
frequency.
18
CXA1598M/S
FP CAL
fp
REC CAL
G
a
i
n

[
d
B
]
Frequency [Hz]
REC CAL
REC CAL
GP CAL
GP CAL
GP CAL
REC CAL
REC CAL
GH CAL
GH CAL
GH CAL
Fig. 4. Conceptual diagram of recording level/medium frequency
equalizer amplifier/high frequency equalizer amplifier/fp
peaking frequency calibration functions
Control Voltage for Each Control Pin
Pin
NO.
Pin Name
Pin voltage [V], referenced to DGND
0.0
0.5
2.5
4.5
5.0
Reduce < < < < < < < < Increase
46
--
--
--
200
Reduce < < < < < < < < Increase
--
100
4.5
--
--
Reduce < < < < < < < < Increase
6.5
--
--
--
6.0
Reduce < < < < < < < < Increase
4.5
--
--
--
5.7
Reduce < < < < < < < < Increase
4.2
--
--
--
5.4
Remarks
4
(4)
6
(6)
17
(19)
18
(20)
19
(21)
FP CAL
REC MUTE
REC CAL
GH CAL
GP CAL
Amount of fp peaking frequency change
[%] compared to when FP CAL is at the
standard setting.
REC OUT attenuation [dB] compared to
when REC MUTE is at the standard
setting. f = 1kHz
Amount of change [dB] compared to when
REC CAL is at the standard setting.
f = 315Hz
Amount of GH medium frequency gain
change [dB] compared to RGH standard.
RGL, RGP: OPEN
Amount of GP peaking frequency gain
change [dB] compared to RGP standard.
RGL, RGH: OPEN
19
CXA1598M/S
R44
27k
CXA1598S
GND
D
G
N
D
f
M
f

Q
f
/
Q
I
R
E
F
G
L
G
P
G
H
R30
R29
R28
R27
R26
R24
R23
R22
R21
R20
R17
R16
R15
R14
R13
R11
R10
R9
R8
R7
R5
R4
R3
R2
R1
R18
R12
R6
R25
R19
R36
R35
R34
R33
R32
R31
GH
GL
f
Q
f/Q
fM
GP
2
1
15
21
22
5
3
20
5
V
SS
INH
V
EE
7
6
4
COM
3
C
A
B
0
2
V
DD
1
9
10
11
12
13
14
15
16
2
3
4
5
6
7
8
1
4
0
5
1
B
V
DD
V
EE
SPEED
HIGH/NORM
TYPE
IV
/
I
,
II
70s/120s
R44
27k
CXA1598S
GND
D
G
N
D
f
M
f

Q
f
/
Q
I
R
E
F
G
L
G
P
G
H
R30
R29
R28
R27
R26
R24
R23
R22
R21
R20
R17
R16
R15
R14
R13
R11
R10
R9
R8
R7
R5
R4
R3
R2
R1
R18
R12
R6
R25
R19
R36
R35
R34
R33
R32
R31
GH
GL
f
Q
f/Q
fM
GP
2
1
15
21
22
5
3
20
5
V
SS
INH
V
EE
7
6
4
COM
3
C
A
B
0
2
V
DD
1
9
10
11
12
13
14
15
16
2
3
4
5
6
7
8
1
4
0
5
1
B
V
DD
SPEED
HIGH/NORM
TYPE
IV
/
I
,
II
70s/120s
8. Mode control methods
Refer to the application circuits shown in Figs. 5 and 6 for mode control methods using a manual switch.
When tape mode is implemented with logic, use the same ground for the 27k
resistance connected to the
common pin (analog switch connection) of the used analog switch IC and to the DGND and IREF pins.
Figs. 5 and 6 show examples when using the 4051B (8-channel multiplexer/demultiplexer).
Fig. 5. For positive/negative dual power supplies
Fig. 6. For a single power supply
9. Temperature characteristics and accuracy of the recording equalizer amplifier
The temperature and cut-off frequency of the CXA1598 depend on the external resistance connected to the
IREF, GL, GH, GP, fM, f/Q, and fxQ pins. For low frequency boost, however, the cut-off frequency becomes
uneven depending on the temperature characteristics or unevenness of the internal resistance since its time
constant is configured by the product of an external capacitor and the internal resistance.
Also, the recording equalizer amplifier frequency response depends on unevenness in the absolute, as well
as relative values of the internal capacitance. Furthermore, the high frequency response indicates a high
element sensitivity at the filter because the band-pass filter Q is high. Compared to low frequency, although
the unevenness inherent in the IC is more likely to occur, this occurs relatively, and not individually for
channels 1 and 2.
20
CXA1598M/S
V
CC
14pin (13pin)
V
EE
11pin (10pin)
GND 9pin (8pin)
Positive/negative
dual power supplies
Single power supply
Positive power supply
Power supply
Negative power supply
GND
GND
--
DGND 5pin (5pin)
GND
GND
Notes on Operation
1. Power supply
The CXA1598 is designed basically for positive/negative dual power supplies, and can also operate with a
single power supply. Connect the power supplies for each case as shown below:
Pin Nos. in parentheses are those for the CXA1598S.
For a single power supply, connect a decoupling capacitor (10F or more) to the GND (VG) pin. The ripple
rejection ratio depends on the capacitance of this capacitor.
2. Low frequency boost
The CXA1598 can implement low frequency boost simply by connecting a capacitor to the BOOST pins.
Although the boost is fixed to 6dB, the time constant which determines the cut-off frequency can be set to
any desired value depending on the external capacitor. The pole (f
1
) and zero (f
2
) shown in Fig. 3. Low
frequency boost frequency response can be expressed, with the external capacitor assumed to be C
B
, as
follows:
f
1
=
= = [Hz]
= = [Hz]
When not using low frequency boost, follow the procedure described below.
For positive/negative dual power supplies
Connect the BOOST pins to GND.
For single power supply
Connect a fairly large capacitor (3.3F or more) to the BOOST pins or simply leave the BOOST pins open. If
the BOOST pins are left open, note that the output level increases by 6dB, so the input level should be set
6dB down. The CXA1598 is basically designed for positive/negative dual power supplies and the BOOST
pins cannot be easily connected to GND as in the case of positive/negative dual power supplies.
3. Resistance connected to the IREF pin as well as the GL, GH, GP, fM, f/Q, and fxQ pins
The recording equalizer amplifier frequency response is determined by the resistance connected to the IREF
pin as well as the GL, GH, GP, fM, f/Q, and fxQ pins. This means that the accuracy of the recording equalizer
amplifier frequency response is determined by the resistance connected to these pins. Therefore, the
resistors used for this purpose must be free of unevenness and have excellent temperature characteristics
(e.g., a metallic film resistor).
R13 + R14
2
C
B
(R13 R14 + R14 R15 + R15 R13)
1
2
C
B
(R13 R14 / (R13 + R14) + R15)
1
2
C
B
(9.53k
)
1
2
C
B
(4.8k
)
1
2
C
B
R15
21
CXA1598M/S
V
CC
, V
EE
= 7V
RGL OPEN
RfM 300k
Rf/Q 47k//750k
Rf
Q 47k//620k
0dB = 315Hz,
23dBv (20dB)
RGH OPEN
RGH 31.5k
RGL gain characteristics
RGL [
]
1k
G
L

[
d
B
]
25
20
15
10
5
0
5
10
15
20
10k
100k
1M
V
CC
, V
EE
= 7V
RGH OPEN
RGP OPEN
RfM 9.1k
Rf/Q 18k
Rf
Q 12k
0dB = 315Hz,
23dBv (20dB)
f = 1kHz
RGH gain characteristics
RGH [
]
1k
G
H

[
d
B
]
25
20
15
10
5
0
5
10
15
20
10k
100k
1M
V
CC
, V
EE
= 7V
RGH OPEN
RGP OPEN
RfM 300k
Rf/Q 18k
Rf
Q 12k
0dB = 315Hz,
23dBv (20dB)
f = 1kHz
RGP gain characteristics
RGP [
]
1k
G
P

[
d
B
]
5
40
35
30
25
20
15
10
5
0
10k
100k
1M
RfM cut-off frequency characteristics
RfM [
]
1k
f
M

[
H
z
]
100
100k
10k
1k
10k
100k
1M
V
CC
, V
EE
= 7V
RGL 36k//510k
RGH OPEN
RGP OPEN
Rf/Q 18k
Rf
Q 12k
RfxQ cut-off frequency characteristics
Rf
Q [
]
1k
f

Q

[
H
z
]
1k
1M
100k
10k
10k
100k
1M
Rf/Q cut-off frequency characteristics
Rf/Q [
]
1k
f
/
Q

[
H
z
]
100
100k
10k
1k
10k
100k
1M
V
CC
, V
EE
= 7V
RGL OPEN
RGH OPEN
RGP 36k//110k
RfM 300k
Rf
Q 37.4k
V
CC
, V
EE
= 7V
RGL OPEN
RGH OPEN
RGP 36k//110k
RfM 300k
Rf/Q 38.6k
Example of Representative Characteristics
22
CXA1598M/S
Output level vs. Mute characteristics 1
REC MUTE pin voltage [V]
0.0
O
u
t
p
u
t

l
e
v
e
l

[
%
]
0
V
CC
, V
EE
= 7V
RGL 36k//510k
RGH 62k//220k
RGP 36k//110k
RfM 39k//910k
Rf/Q 47k//750k
Rf
Q 47k//620k
100% = 1kHz, +12dB
(at 315Hz, 3dBv)
f = 1kHz
1.0
2.0
3.0
4.0
5.0
6.0
7.0
20
40
60
80
100
Output level vs. Mute characteristics 2
REC MUTE pin voltage [V]
0.0
O
u
t
p
u
t

l
e
v
e
l

[
d
B
]
100
V
CC
, V
EE
= 7V
RGL 36k//510k
RGH 62k//220k
RGP 36k//110k
RfM 39k//910k
Rf/Q 47k//750k
Rf
Q 47k//620k
0dB = 1kHz, +12dB
(at 315Hz, 3dBv)
f = 1kHz
1.0
2.0
3.0
4.0
5.0
6.0
7.0
80
60
40
20
0
Output level vs. Mute characteristics 3
REC MUTE pin voltage [V]
O
u
t
p
u
t

l
e
v
e
l

[
d
B
]
V
CC
, V
EE
= 7V
RGL 36k//510k
RGH 62k//220k
RGP 36k//110k
RfM 39k//910k
Rf/Q 47k//750k
Rf
Q 47k//620k
0dB = 1kHz, +12dB
(at 315Hz, 3dBv)
f = 1kHz
0.5
1.0
80
60
40
20
0
5.0
10.0
Current consumption vs. Supply voltage
Positive/negative
dual power supplies
RGL 36k//510k
RGH 62k//220k
RGP 36k//110k
RfM 39k//910k
Rf/Q 47k//750k
Rf
Q 47k//620k
Supply voltage [V]
3
I
C
C
/
I
E
E

[
m
A
]
11
14
13
12
11
4
5
6
7
8
9
10
I
CC
I
EE
23
CXA1598M/S
Total harmonic distortion
Output level [dB]
10
T
.

H
.

D

+

N

[
%
]
10
1.0
0.1
0
10
20
V
CC
, V
EE
= 7V
RGL 36k//510k
RGH 62k//220k
RGP 36k//110k
RfM 39k//910k
Rf/Q 47k//750k
Rf
Q 47k//620k
0dB = 3dBv
RL = 2.7k
315Hz
1kHz
3kHz
6.3kHz
10kHz
15kHz
Load characteristics
M
a
x
i
m
u
m

o
u
t
p
u
t

l
e
v
e
l

[
d
B
]
0
R
L
load resistance [
]
100
5
10
15
1k
10k
Output level vs. REC CAL voltage
REC CAL pin voltage [V]
O
u
t
p
u
t

l
e
v
e
l

[
d
B
]
V
CC
, V
EE
= 7V
RGL 36k//510k
RGH 62k//220k
RGP 36k//110k
RfM 39k//910k
Rf/Q 47k//750k
Rf
Q 47k//620k
0dB = REC CAL pin 2.5V,
20dB
(at 315Hz, 3dBv)
2.0
1.0
8
4
0
4
8
4.0
7.0
2
2
6
6
1.0
0.0
2.0
3.0
5.0
6.0
V
CC
, V
EE
= 7V
RGL 36k//510k
RGH 62k//220k
RGP 36k//110k
RfM 39k//910k
Rf/Q 47k//750k
Rf
Q 47k//620k
0dB = 3dBv
THD + N = 1%
315Hz
1kHz
315Hz
8kHz
24
CXA1598M/S
Output level vs. GH CAL voltage
GH CAL pin voltage [V]
O
u
t
p
u
t

l
e
v
e
l

[
d
B
]
4
0
4
6
2
2
6
2.0
1.0
4.0
7.0
1.0
0.0
2.0
3.0
5.0
6.0
Output level vs. GP CAL voltage
Gp CAL pin voltage [V]
O
u
t
p
u
t

l
e
v
e
l

[
d
B
]
4
0
4
6
2
2
6
3kHz
8kHz
12kHz
12kHz
Setting 1
RGL 36k//510k
RGH 62k//220k
RGP 36k//110k
RfM 39k//910k
Rf/Q 47k//750k
Rf
Q 47k//620k
0dB = Gp CAL pin 2.5V,
20dB
(at 315Hz, 3dBv)
Setting 2
RGL OPEN
RGH OPEN
RGP 36k//110k
RfM 300k
Rf/Q 47k//750k
Rf
Q 47k//620k
fp peaking frequency vs. FP CAL pin voltage
FP CAL pin voltage [V]
f
p

p
e
a
k
i
n
g

f
r
e
q
u
e
n
c
y

v
a
r
i
a
t
i
o
n

r
a
t
i
o

[
%
]
60
140
220
100
180
20
V
CC
, V
EE
= 7V
fp peaking frequency 100%
when FP CAL pin is 2.5V
RGL OPEN
RGH OPEN
RGP 36k//110k
RfM 300k
Rf/Q 47k//750k
Rf
Q 47k//620k
2.0
1.0
4.0
7.0
1.0
0.0
2.0
3.0
5.0
6.0
2.0
1.0
4.0
7.0
1.0
0.0
2.0
3.0
5.0
6.0
Setting 1
Setting 2
V
CC
, V
EE
= 7V
Setting 1
RGL 36k//510k
RGH 62k//220k
RGP 36k//110k
RfM 39k//910k
Rf/Q 47k//750k
Rf
Q 47k//620k
0dB = GH CAL pin 2.5V,
20dB
(at 315Hz, 3dBv)
Setting 2
RGL OPEN
RGH 62k//220k
RGP OPEN
RfM 300k
Rf/Q 18k
Rf
Q 12k
V
CC
, V
EE
= 7V
Setting 1
Setting 2
3kHz
8kHz
12kHz
3kHz
25
CXA1598M/S
REC CAL and GH CAL frequency response
Frequency [Hz]
O
u
t
p
u
t

r
e
s
p
o
n
s
e

[
d
B
]
10
0
20
30
100k
10
10
V
CC
, V
EE
= 7V
0dB = 315Hz, 23dBv (20dB), REC CAL,
GH CAL, GP CAL, FP CAL = 2.5V
10k
1k
100
5.0V
f1
f2
f3
2.5V
f4
f5
f6
0.0V
f7
f8
f9
5.0V
2.5V
0.0V
REC CAL
GH CAL
f1
f4
f7
f3
f6
f9
f5
f2
f8
REC CAL and GP CAL frequency response
Frequency [Hz]
O
u
t
p
u
t

r
e
s
p
o
n
s
e

[
d
B
]
10
0
20
30
100k
10
10
V
CC
, V
EE
= 7V
0dB = 315Hz, 23dBv (20dB), REC CAL,
GH CAL, GP CAL, FP CAL = 2.5V
10k
1k
100
5.0V
f1
f2
f3
2.5V
f4
f5
f6
0.0V
f7
f8
f9
5.0V
2.5V
0.0V
REC CAL
GP CAL
f1
f4
f7
f3
f6
f9
f5
f2
f8
REC CAL and FP CAL frequency response
Frequency [Hz]
O
u
t
p
u
t

r
e
s
p
o
n
s
e

[
d
B
]
10
0
20
30
100k
10
10
10k
1k
100
5.0V
f1
f2
f3
2.5V
f4
f5
f6
0.0V
f7
f8
f9
5.0V
2.5V
0.0V
REC CAL
FP CAL
f1
f4
f7
f3
f6
f9
f5
f2
f8
V
CC
, V
EE
= 7V
0dB = 315Hz, 23dBv (20dB), REC CAL,
GH CAL, GP CAL, FP CAL = 2.5V
26
CXA1598M/S
Package Outline
Unit: mm
CXA1598M
CXA1598S
SONY CODE
EIAJ CODE
JEDEC CODE
M
PACKAGE STRUCTURE
MOLDING COMPOUND
LEAD TREATMENT
LEAD MATERIAL
PACKAGE WEIGHT
EPOXY/PHENOL RESIN
SOLDER PLATING
COPPER ALLOY / 42ALLOY
24PIN SOP (PLASTIC)
15.0 0.1
+ 0.4
1
12
13
24
1.27
0.45 0.1
5
.
3


0
.
1
+

0
.
3
7
.
9


0
.
4
0.2 0.05
+ 0.1
0
.
5


0
.
2
0.1 0.05
+ 0.2
0.15
1.85 0.15
+ 0.4
6
.
9
0.12
SOP-24P-L01
SOP024-P-0300-A
0.3g
SONY CODE
EIAJ CODE
JEDEC CODE
PACKAGE STRUCTURE
MOLDING COMPOUND
LEAD TREATMENT
LEAD MATERIAL
PACKAGE WEIGHT
EPOXY RESIN
SOLDER PLATING
COPPER ALLOY
22PIN SDIP (PLASTIC)
SDIP-22P-01
SDIP022-P-0300
0.95g
1.778
11
12
1
22
19.2 0.1
+ 0.4
7
.
6
2
6
.
4


0
.
1
+

0
.
3
0
.
2
5


0
.
0
5
+

0
.
1
0 to 15
0.5 0.1
0.9 0.1
+ 0.15
3
.
2
5


0
.
2
+

0
.
1
5
0
.
5
1

M
I
N
3
.
9


0
.
1
+

0
.
4