ChipFind - документация

Электронный компонент: CXD2307

Скачать:  PDF   ZIP
--1--
E92928D01
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
Absolute Maximum Ratings (Ta=25 C)
Supply voltage
AV
DD
, DV
DD
7
V
Input voltage (All pins)
V
IN
V
DD
+0.5 to V
SS
0.5
V
Output current (for each channel)
I
OUT
0 to 15
mA
Storage temperature
Tstg
55 to +150
C
Recommended Operating Conditions
Supply voltage
AV
DD
, AV
SS
4.75 to 5.25
V
DV
DD
, DV
SS
4.75 to 5.25
V
Reference input voltage
V
REF
1.8 to 2.0
V
Clock pulse width
T
PW1,
T
PW0
9 ns (min.) to 1.1 s (max.)
Operating temperature
Topr
20 to +85
C
Description
The CXD2307R is a 10-bit high-speed D/A
converter for video band, featuring RGB 3-channel
I/O. This is ideal for use in high-definition TVs and
high-resolution displays.
Features
Resolution 10-bit
Maximum conversion speed 50MSPS
RGB 3-channel I/O
Differential linearity error 0.5LSB
Low power consumption; 300 mW (max.)
Single +5 V power supply
Low glitch
Stand-by function
Structure
Silicon gate CMOS IC
10-bit 50MSPS RGB 3-channel D/A Converter
64 pin LQFP (Plastic)
CXD2307R
--2--
CXD2307R
Block Diagram
4LSB'S
CURRENT
CELLS
6MSB'S
CURRENT
CELLS
CLOCK
GENERATOR
CURRENT CELLS
(FOR FULL SCALE)
4LSB'S
CURRENT
CELLS
6MSB'S
CURRENT
CELLS
CLOCK
GENERATOR
CURRENT CELLS
(FOR FULL SCALE)
4LSB'S
CURRENT
CELLS
6MSB'S
CURRENT
CELLS
CLOCK
GENERATOR
CURRENT CELLS
(FOR FULL SCALE)
BIAS VOLTAGE
GENERATOR
DECODER
LATCHES
DECODER
DECODER
LATCHES
DECODER
DECODER
LATCHES
DECODER
40
39
38
37
36
35
34
33
41
42
43
45
46
47
48
49
52
53
54
55
56
57
58
59
63
64
60
61
62
32
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
2
3
4
5
6
7
8
1
44
50
51
31
(LSB) R0
R1
R2
R3
R4
R5
R6
R7
R8
(MSB) R9
(LSB) G0
G1
G2
G3
G4
G5
G6
G7
G8
(MSB) G9
(LSB) B0
B1
B2
B3
B4
B5
B6
B7
B8
(MSB) B9
BLK
CE
DV
DD
AV
DD
AV
DD
VGR
RO
RO
RCK
ROR
VRR
IRR
AV
DD
AV
DD
VGG
GO
GO
GCK
ROG
VRG
IRG
AV
DD
AV
DD
VGB
BO
BO
BCK
ROB
VRB
IRB
VB
AV
SS
AV
SS
DV
SS
--3--
CXD2307R
Pin Configuration
52
53
54
55
56
57
58
59
60
63
64
61
62
49
50
51
20
21
22
23
24
25
26
27
28
29
30
31
32
17
18
19
40 39 38 37 36 35 34 33
41
42
43
44
45
46
47
48
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16
1
AVss
RO
RO
AV
DD
AV
DD
GO
GO
AV
DD
AV
DD
BO
BO
AV
DD
AV
DD
DV
DD
(LSB) R0
R1
GCK
RCK
CE
BLK
B9
B8
B7
B6
B5
B4
B3
B2
B1
B0 (LSB)
G9
G8
V
G
B
R
O
B
V
G
G
R
O
G
V
G
R
R
O
R
V
R
B
V
R
G
V
R
R
I
R
B
I
R
G
I
R
R
A
V
s
s
V
B
D
V
s
s
B
C
K
R
2
R
3
R
4
R
5
R
6
R
7
R
8
R
9
(
L
S
B
)

G
0
G
1
G
2
G
3
G
4
G
5
G
6
G
7
Pin Description and Equivalent Circuit
63 to 8
9 to 18
19 to 28
29
30
31
32
33
34
R0 to R9
G0 to G9
B0 to B9
BLK
CE
RCK
GCK
BCK
DV
SS
I
--
Pin No.
Symbol
I/O
Equivalent circuit
Description
DV
DD
DV
SS
to
33
63
Digital input.
R0 (LSB) to R9 (MSB)
G0 (LSB) to G9 (MSB)
B0 (LSB) to B9 (MSB)
Blanking input.
This is synchronized with the clock
input signal for each channel.
No signal for High (0 V output).
Output generated for Low.
Chip enable pin.
This is not synchronized with the clock
input signal.
No signal at for High (0 V output) to
minimize power consumption.
Clock input.
Digital ground.
--4--
CXD2307R
35
36, 49
43
45
47
44
46
48
37
38
39
40
41
42
VB
AV
SS
ROR
ROG
ROB
VGR
VGG
VGB
IRR
IRG
IRB
VRR
VRG
VRB
O
--
O
I
O
I
Pin No.
Symbol
I/O
Equivalent circuit
Description
DV
DD
DV
SS
DV
DD
35
AV
SS
AV
SS
AV
DD
AV
DD
AV
SS
AV
DD
AV
SS
AV
DD
45
47
43
46
48
44
39
37
38
42
41
40
Connect to DV
SS
with a capacitor of
approximately 0.1 F.
Analog grounds.
Connect to VGR, VGG, and VGB
with the control method of output
amplitude. See Application Circuit.
Connect a capacitor of approximately
0.1 F.
Connect to AV
SS
with a resistance of
3.3 k
.
Set output full-scale value (2.0 V).
--5--
CXD2307R
50
54
58
51
55
59
52, 53, 56,
57, 60, 61
62
RO
GO
BO
RO
GO
BO
AV
DD
DV
DD
O
--
--
Pin No.
Symbol
I/O
Equivalent circuit
Description
AV
DD
AV
SS
AV
DD
AV
SS
50
54
58
51
55
59
Current output pins. Output can be
retrieved by connecting a resistance
of 200
to AV
SS
.
Reverse current output pins.
Normally connected to AV
SS
.
Analog V
DD
.
Digital V
DD
.
t
PW1
t
PW0
t
s
t
h
t
s
t
h
t
s
t
h
t
PD
t
PD
t
PD
CLK
DATA
D/A OUT
1.5V
100%
50%
0%
I/O Correspondence Table (output full-scale voltage: 2.00 V)
Input code
Output voltage
MSB
LSB
1 1 1 1 1 1 1 1 1 1
:
1 0 0 0 0 0 0 0 0 0
:
0 0 0 0 0 0 0 0 0 0
2.0 V
1.0 V
0 V
Timing Chart
--6--
CXD2307R
Electrical Characteristics
(F
CLK
=50 MHz, AV
DD
=DV
DD
=5 V, R
OUT
=200
, V
REF
=2.0 V, Ta=25 C)
Item
Resolution
Conversion speed
Integral non-linearity error
Differential non-linearity error
Precision guaranteed
output voltage range
Output full-scale voltage
Output full-scale ratio
1
Output full-scale current
Output offset voltage
Glitch energy
Crosstalk
Supply current
Analog input resistance
Input capacitance
Output capacitance
Digital input voltage
Digital input current
Setup time
Hold time
Propagation delay time
CE enable time
2
Symbol
n
F
CLK
E
L
E
D
V
OC
V
FS
F
SR
I
FS
V
OS
GE
CT
I
DD
I
STB
R
IN
C
I
C
o
V
IH
V
IL
I
IH
I
IL
ts
th
t
PD
t
E
t
D
Measurement conditions
AV
DD
=DV
DD
=4.75 to 5.25 V
Ta=20 to 85 C
Endpoint
For the same gain
(See the Application Circuit)
When "0000000000" data input
When 1 kHz sine wave input
CE= "L"
CE= "H"
VGR, VGG, VGB,
VRR, VRG, VRB
RO,GO,BO
AV
DD
=DV
DD
=4.75 to 5.25 V
Ta=20 to +75 C
AV
DD
=DV
DD
=4.75 to 5.25 V
Ta=20 to +75 C
CE=H
L
CE=L
H
Min.
0.5
2.0
0.5
1.8
1.8
0
1
2.15
5
7
3
Typ.
10
1.9
1.9
1.5
9.5
100
54
55
50
10
1
1
Max.
50
2.0
0.5
2.0
2.0
3.0
10
1
60
1
9
0.85
5
2
2
Unit
bit
MSPS
LSB
LSB
V
V
%
mA
mV
pVs
dB
mA
M
pF
pF
V
A
ns
ns
ns
ms
ms
Full-scale voltage for each channel
1
Full-scale output ratio =
Full-scale voltage average value for each channel
1
100 (%)
2
When the external capacitors for the VG pins are 0.1 F.
Electrical Characteristics Measurement Circuit
Analog Input Resistance
Measurement Circuit
Digital Input Current
CXD2307R
+5.25V
AV
DD
, DV
DD
AV
SS
, DV
SS
V
A
}
--7--
CXD2307R
VGR to VGB
44, 46, 48
ROR to ROB
43, 45, 47
VRR to VRB
40 to 42
IRR to IRB
37 to 39
RCK
10 bit
COUNTER
WITH
LATCH
CLK
50MH
Z
SQUARE
WAVE
GCK
BCK
0.1
DVss
200
AVss
200
AVss
200
AVss
3.3k
2V
0.1
AV
DD
OSCILLO
SCOPE
BLK
CE
VB
RO
RO
GO
BO
BO
R0 to R9
63 to 8
G0 to G9
9 to 18
B0 to B9
19 to 28
35
33
31
32
GO
29
30
DELAY
CONTROLLER
DELAY
CONTROLLER
50
51
54
55
58
59
Maximum Conversion Speed Measurement Circuit
VGR to VGB
44, 46, 48
VRR to VRB
40 to 42
IRR to IRB
37 to 39
RCK
10 bit
COUNTER
WITH
LATCH
CLK
50MH
Z
SQUARE
WAVE
GCK
BCK
0.1
DVss
200
AVss
200
AVss
200
AVss
3.3k
2V
0.1
AV
DD
OSCILLO
SCOPE
BLK
CE
VB
RO
RO
GO
BO
BO
R0 to R9
63 to 8
G0 to G9
9 to 18
B0 to B9
19 to 28
35
33
31
32
GO
29
30
50
51
54
55
58
59
ROR to ROB
43, 45, 47
Setup Time
Hold Time
Measurement Circuit
Glitch Energy
}
Cross Talk Measurement Circuit
CLK
50MH
Z
SQUARE
WAVE
DIGITAL
WAVEFORM
GENERATOR
ALL "1"
VGR to VGB
44, 46, 48
ROR to ROB
43, 45, 47
VRR to VRB
40 to 42
IRR to IRB
37 to 39
RCK
GCK
BCK
0.1
DVss
200
AVss
200
AVss
200
AVss
3.3k
2V
0.1
AV
DD
BLK
CE
VB
RO
RO
GO
BO
BO
R0 to R9
63 to 8
G0 to G9
9 to 18
B0 to B9
19 to 28
35
33
31
32
GO
29
30
50
51
54
55
58
59
SPECTRUM
ANALYZER
--8--
CXD2307R
VGR to VGB
44, 46, 48
ROR to ROB
43, 45, 47
VRR to VRB
40 to 42
IRR to IRB
37 to 39
RCK
CLK
50MH
Z
SQUARE
WAVE
GCK
BCK
0.1
DVss
200
AVss
200
AVss
200
AVss
3.3k
2V
0.1
AV
DD
OSCILLO
SCOPE
BLK
CE
VB
RO
RO
GO
BO
BO
R0 to R9
63 to 8
G0 to G9
9 to 18
B0 to B9
19 to 28
35
33
31
32
GO
29
30
50
51
54
55
58
59
FREQUENCY
DEMULTIPLIER
DC Characteristics Measurement Circuit
VGR to VGB
44, 46, 48
VRR to VRB
40 to 42
IRR to IRB
37 to 39
RCK
CLK
50MH
Z
SQUARE
WAVE
GCK
BCK
0.1
DVss
200
AVss
200
AVss
200
AVss
3.3k
2V
0.1
AV
DD
BLK
CE
VB
RO
RO
GO
BO
BO
R0 to R9
63 to 8
G0 to G9
9 to 18
B0 to B9
19 to 28
35
33
31
32
GO
29
30
50
51
54
55
58
59
ROR to ROB
43, 45, 47
CONTROLLER
DVM
Propagation Delay Time Measurement Circuit
--9--
CXD2307R
Application Circuit
(Gain equal)
0.1F
3.3k
NC
NC
1k
NC
NC
0.1F
DV
DD
DV
SS
AV
DD
AV
SS
200
ROUT
200
GOUT
200
BOUT
40 39 38 37 36 35 34 33
41
42
43
44
45
46
47
48
52
53
54
55
56
57
58
59
60
63
64
61
62
49
50
51
20
21
22
23
24
25
26
27
28
29
30
31
32
17
18
19
G channel input
R channel input
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16
1
Clock input
B channel input
0.1F
3.3k
1k
0.1F
DV
DD
DV
SS
AV
DD
AV
SS
200
ROUT
200
GOUT
200
BOUT
40 39 38 37 36 35 34 33
41
42
43
44
45
46
47
48
52
53
54
55
56
57
58
59
60
63
64
61
62
49
50
51
20
21
22
23
24
25
26
27
28
29
30
31
32
17
18
19
G channel input
R channel input
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16
1
Clock input
B channel input
(Gain independently)
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
--10--
CXD2307R
Notes on Operation
How to select the output resistance
The CXD2307R is a D/A converter of the current output type. To obtain the output voltage connect the
resistance to the current output pins RO, GO and BO. For specifications we have:
Output full scale voltage
V
FS
=1.8 to 2.0 [V]
Output full scale current
I
FS
=less than 15 [mA]
Calculate the output resistance value from the relation of V
FS
=I
FS
R
OUT
. Also, 16 times resistance of the
output resistance is connected to reference current pin IRR, IRG and IRB. In some cases, however, this
turns out to be a value that does not actually exist. In such a case a value close to it can be used as a
substitute.
Here please note that V
FS
becomes V
FS
=V
REF
16R
OUT
/R
IR
. V
REF
is the voltage set at V
RR
,V
RG
and the VRB
pin, and R
OUT
is the resistance connected to the current output pins RO, GO and BO while R
IR
is connected
to IRR, IRG and IRB. Increasing the resistance value can curb power consumption. On the other hand glitch
energy and data settling time will inversely increase. Set the most suitable value according to the desired
application.
Phase relation between data and clock
To obtain the expected performance as a D/A converter, it is necessary to set properly the phase relation
between data and clock applied from the exterior. Be sure to satisfy the provisions of the setup time (t
S
) and
hold time (t
H
) as stipulated in the Electrical Characteristics.
Power supply and ground
To reduce noise effects separate analog and digital systems in the device periphery. For power supply pins,
both digital and analog, bypass respective grounds by using a ceramic capacitor of about 0.1 F, as close as
possible to the pin.
Latch up
Analog power supply and digital power supply have to be common at the PCB power supply source. This is
to prevent latch up due to voltage difference between AV
DD
and DV
DD
pins when power supply is turned ON.
RO, GO and BO pins
The RO, GO and BO pins are the inverted current output pins described in the Pin Description. The sums
shown below become the constant value for any input data.
a) The sum of the currents output from RO and RO
b) The sum of the currents output from GO and GO
c) The sum of the currents output from BO and BO
However, the performances such as the linearity error of the inverted current output pin output current is not
guaranteed.
Output full-scale voltage
For the applications using the RGB signal, the color balance may be broken up when the no-adjusted output
full-scale voltage is used.
--11--
CXD2307R
C
AV
SS
DV
SS
AV
SS
DV
SS
AV
DD
DV
DD
CXD2307R
C
DV
DD
DIGITAL IC
+5V
Latch Up Prevention
The CXD2307R is a CMOS IC which requires latch up precautions. Latch up is mainly generated by the lag in
the voltage rising time of AV
DD
and DV
DD
, when power supply is ON.
1. Correct usage
a. When analog and digital supplies are from different sources
b. When analog and digital supplies are from a common source
(i)
(ii)
AV
DD
+5V
AV
SS
DV
SS
AV
SS
DV
SS
AV
DD
DV
DD
CXD2307R
C
DV
DD
DIGITAL IC
C
+5V
AV
SS
DV
SS
AV
SS
DV
SS
AV
DD
DV
DD
CXD2307R
C
DV
DD
DIGITAL IC
C
+5V
--12--
CXD2307R
2. Example when latch up easily occurs
a. When analog and digital supplies are from different sources
b. When analog and digital supplies are from common source
(i)
(ii)
AV
DD
+5V
AV
SS
DV
SS
AV
SS
DV
SS
AV
DD
DV
DD
CXD2307R
DV
DD
DIGITAL IC
C
+5V
C
C
AV
SS
DV
SS
AV
SS
DV
SS
AV
DD
DV
DD
CXD2307R
DV
DD
DIGITAL IC
AV
DD
C
+5V
+5V
AV
SS
DV
SS
AV
SS
DV
SS
AV
DD
DV
DD
CXD2307R
DV
DD
DIGITAL IC
AV
DD
C
--13--
CXD2307R
Example of Representative Characteristics
Output frequency vs. Crosstalk
Output frequency F
O
[H
Z
]
100k
1M
10M
C
r
o
s
s
t
a
l
k

C
T

[
d
B
]
80
70
60
50
40
AV
DD
=DV
DD
=5V
F
CLK
=50MSPS
R
OUT
=200
R
IR
=3.3k
Ta=25C
Ambient temperature vs. Current consumption
Ambient temperature Ta [C]
C
u
r
r
e
n
t

c
o
n
s
u
m
p
t
i
o
n

I
D
D

[
m
A
]
60
50
20
0
25
50
75
Ambient temperature vs. Full-scale voltage

F
u
l
l
-
s
c
a
l
e

v
o
l
t
a
g
e

V
F
S

[
V
]
1.9
1.8
20
0
25
50
75
Ambient temperature Ta [C]
AV
DD
=DV
DD
=5V
F
CLK
=50MSPS
V
REF
=2.0V
R
OUT
=200
R
IR
=3.3k
AV
DD
=DV
DD
=5V
F
CLK
=50MSPS
V
REF
=2.0V
R
OUT
=200
R
IR
=3.3k
SONY CODE
EIAJ CODE
JEDEC CODE
PACKAGE MATERIAL
LEAD TREATMENT
LEAD MATERIAL
PACKAGE MASS
EPOXY RESIN
PLATING
42/COPPER ALLOY
PACKAGE STRUCTURE
12.0 0.2
10.0 0.1
(0.22)
0.18 0.03
+ 0.08
1
16
17
32
33
48
49
64
0.1 0.1
0
.
5


0
.
2
0 to 10
64PIN LQFP (PLASTIC)
LQFP-64P-L01
LQFP064-P-1010
0.3g
DETAIL A
0
.
5


0
.
2
(
1
1
.
0
)
0.127 0.02
+ 0.05
A
1.5 0.1
+ 0.2
0.1
SOLDER/PALLADIUM
NOTE: Dimension "
" does not include mold protrusion.
0.13 M
0.5
Package Outline Unit : mm
CXD2307R
--14--