ChipFind - документация

Электронный компонент: BYW51

Скачать:  PDF   ZIP
1/9
BYW51/F/G/FP/R-200
August 2002 - Ed: 3E
HIGH EFFICIENCY FAST RECOVERY RECTIFIER DIODES
TO-220AB
BYW51-200
s
SUITED FOR SMPS
s
VERY LOW FORWARD LOSSES
s
NEGLIGIBLE SWITCHING LOSSES
s
HIGH SURGE CURRENT CAPABILITY
s
INSULATED PACKAGES (ISOWATT220AB /
TO-220FP) :
Insulation voltage = 2000 V DC
Capacitance = 12 pF
FEATURES AND BENEFITS
Dual center tap rectifier suited for Switched Mode
Power Supplies and high frequency DC to DC
converters.
Packaged
in
TO-220AB,
ISOWATT220AB,
TO-220FP, D
2
PAK or I
2
PAK, this device is
intended for use in low voltage, high frequency
inverters, free wheeling and polarity protection
applications.
DESCRIPTION
ISOWATT220AB
BYW51F-200
Symbol
Parameter
Value
Unit
V
RRM
Repetitive peak reverse voltage
200
V
I
F(RMS)
RMS forward current
20
A
I
F(AV)
Average forward current
= 0.5
TO-220AB / D
2
PAK
I
2
PAK
Tc=120C Per diode
10
A
Per device
20
ISOWATT220AB
Tc=95
C
Per diode
10
Per device
20
TO-220FPAB
Tc=85C
Per diode
10
Per device
20
I
FSM
Surge non repetitive forward current
tp=10ms sinusoidal
100
A
Tstg
Storage temperature range
- 65 to + 150
C
Tj
Maximum operating junction temperature
150
C
ABSOLUTE RATINGS (limiting values, per diode)
A1
A2
K
A1
K
A2
A1
K
A2
I
F(AV)
2 x 10 A
V
RRM
200 V
Tj (max)
150 C
V
F
(max)
0.85 V
trr (max)
25 ns
MAIN PRODUCT CHARACTERISTICS
D
2
PAK
BYW51G-200
K
A2
A1
A1
A2
K
TO-220FPAB
BYW51FP-200
A1
A2
K
I
2
PAK
BYW51R-200
BYW51/F/G/FP/R-200
2/9
Symbol
Parameter
Test Conditions
Min.
Typ.
Max.
Unit
I
R
*
Reverse leakage current
T
j
= 25C
V
R
= V
RRM
15
A
T
j
= 100C
1
mA
V
F **
Forward voltage drop
T
j
= 125C
I
F
= 8 A
0.85
V
T
j
= 125
C
I
F
= 16 A
1.05
T
j
= 25
C
I
F
= 16 A
1.15
Pulse test :* tp = 5 ms,
< 2 %
** tp = 380
s,
< 2 %
To evaluate the conduction losses use the following equation :
P = 0.65 x I
F(AV)
+ 0.025 x I
F
2
(RMS)
STATIC ELECTRICAL CHARACTERISTICS (Per diode)
Symbol
Test Conditions
Typ.
Max.
Unit
trr
T
j
= 25C
I
F
= 0.5A
I
R
= 1A
Irr = 0.25A
25
ns
I
F
= 1A
V
R
= 30V
dI
F
/dt = -50A/
s
35
tfr
T
j
= 25C
I
F
= 1A
V
FR
= 1.1 x V
F
max
dI
F
/dt = -50A/
s
15
ns
V
FP
T
j
= 25C
I
F
= 1A
dI
F
/dt = -50A/
s
2
V
RECOVERY CHARACTERISTICS
Symbol
Parameter
Value
Unit
R
th (j-c)
Junction to case
TO-220AB / D
2
PAK / I
2
PAK
Per diode
2.5
C/W
Total
1.4
ISOWATT220AB
Per diode
5.1
Total
4.05
TO-220FPAB
Per diode
5.7
Total
4.6
R
th (c)
Coupling
TO-220AB / D
2
PAK / I
2
PAK
0.25
C/W
ISOWATT220AB
3.0
TO-220FPAB
3.5
When diodes 1 and 2 are used simultaneously :
Tc (diode 1) = P(diode 1) x R
th(j-c)
(Per diode) + P(diode 2) x R
th(c)
THERMAL RESISTANCES
BYW51/F/G/FP/R-200
3/9
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0
20
40
60
80
100
120
IM(A)
P=5W
P=15W
P=10W
T
=tp/T
tp
Fig. 2: Peak current versus form factor (per diode).
0
25
50
75
100
125
150
0
2
4
6
8
10
12
Tamb(C)
IF(av)(A)
Rth(j-a)=15C/W
Rth(j-a)=Rth(j-c)
T
=tp/T
tp
Fig. 3-1: Average forward current versus ambient
temperature (
= 0.5, D
2
PAK, TO-220AB).
1E-3
1E-2
1E-1
1E+0
0
10
20
30
40
50
60
70
80
90
100
t(s)
IM(A)
Tc=25C
Tc=100C
Tc=75C
I
M
t
=0.5
Fig. 4-1: Non repetitive surge peak forward current
versus overload duration (D
2
PAK, TO-220AB)
0
1
2
3
4
5
6
7
8
9
10 11 12 13
0
2
4
6
8
10
12
14
IF(av) (A)
PF(av)(W)
= 0.05
= 0.1
= 0.2
= 0.5
= 1
T
=tp/T
tp
Fig. 1: Average forward power dissipation versus
average forward current (per diode).
1E-3
1E-2
1E-1
1E+0
0
10
20
30
40
50
60
70
80
t(s)
IM(A)
Tc=25C
Tc=100C
Tc=75C
I
M
t
=0.5
Fig. 4-2: Non repetitive surge peak forward current
versus overload duration (ISOWATT220AB).
0
25
50
75
100
125
150
0
2
4
6
8
10
12
Tamb(C)
IF(av)(A)
Rth(j-a)=15C/W
Rth(j-a)=Rth(j-c)
ISOWATT220AB
TO-220FP
T
=tp/T
tp
Fig.
3-2:
Average
forward
current
versus
ambient temperature (
= 0.5, ISOWATT220AB,
TO-220FPAB).
BYW51/F/G/FP/R-200
4/9
1E-3
1E-2
1E-1
1E+0
0.1
1.0
t(s)
K=[Zth(j-c)/Rth(j-c)]
= 0.5
= 0.2
= 0.1
Single pulse
T
=tp/T
tp
Fig. 5-1: Relative variation of thermal impedance
junction to case versus pulse duration (D
2
PAK,
TO-220AB).
1E-2
1E-1
1E+0
1E+1
0.1
1.0
t(s)
K=[Zth(j-c)/Rth(j-c)]
= 0.5
= 0.2
= 0.1
Single pulse
T
=tp/T
tp
Fig. 5-2: Relative variation of thermal impedance
junction
to
case
versus
pulse
duration
(ISOWATT220AB, TO-220FPAB).
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
0.1
1.0
10.0
100.0
VFM(V)
IFM(A)
Tj=125C
Tj=25C
Fig. 6: Forward voltage drop versus forward
current (maximum values, per diode).
1
10
100
200
10
20
50
100
VR(V)
C(pF)
F=1MHz
Tj=25C
Fig. 7: Junction capacitance versus reverse
voltage applied (typical values, per diode).
1E-3
1E-2
1E-1
1E+0
0
10
20
30
40
50
60
70
80
t(s)
IM(A)
Tc=25C
Tc=100C
Tc=75C
I
M
t
=0.5
Fig. 4-3: Non repetitive surge peak forward current
versus overload duration (TO-220FPAB).
10
20
50
100
200
500
10
20
50
100
200
500
dIF/dt(A/s)
Qrr(nC)
IF=IF(av)
90% confidence
Tj=125C
Fig. 8: Reverse recovery charges versus dI
F
/dt
(per diode).
BYW51/F/G/FP/R-200
5/9
10
20
50
100
200
500
1
10
50
dIF/dt(A/s)
IRM(A)
IF=IF(av)
90% confidence
Tj=125C
Fig. 9: Peak reverse recovery current versus dI
F
/dt
(per diode).
0
25
50
75
100
125
150
0.25
0.50
0.75
1.00
1.25
Tj(C)
Qrr;IRM [Tj] / Qrr;IRM [Tj=125C]
IRM
Qrr
Fig. 10: Dynamic parameters versus junction
temperature.
0
5
10
15
20
25
30
35
40
0
10
20
30
40
50
60
70
80
S(Cu) (cm)
Rth(j-a) (C/W)
Fig. 11: Thermal resistance junction to ambient
versus copper surface under tab (Epoxy printed
circuit board FR4, copper thickness: 35
m)
(D
2
PAK) .