ChipFind - документация

Электронный компонент: DMV1500HFD5

Скачать:  PDF   ZIP
1/8
Table 1: Main Product Characteristics
DAMPER
MODUL.
I
F(AV)
6 A
3 A
V
RRM
1500 V
600 V
t
rr
(max)
125 ns
50 ns
V
F
(max)
1.7 V
1.4 V
DMV1500H
DAMPER + MODULATION DIODE FOR VIDEO
1
2
3
TO-220FPAB
DMV1500HFD
DAMPER
1
2
3
MODULATION
1
2
3
TO-220FPAB F5 Bending
DMV1500HFD5
(optional)
September 2004
REV. 1
FEATURES AND BENEFITS
Full kit in one package
High breakdown voltage capability
Very fast recovery diode
Specified turn on switching characteristics
Low static and peak forward voltage drop for
low dissipation
Insulated version:
Insulated voltage = 2000 V
RMS
Capacitance = 7 pF
Planar technology allowing high quality and
best electrical characteristics
Outstanding performance of well proven DTV
as damper and new faster Turbo 2 600V
technology as modulation
DESCRIPTION
High voltage semiconductor especially designed
for horizontal deflection stage in standard and high
resolution video display with E/W correction.
The insulated TO-220FPAB package includes
both the DAMPER diode and the MODULATION
diode, thanks to a dedicated design.
Assembled on automated line, it offers very low
dispersion values on insulating and thermal
performanes.
Order Codes
Part Number
Marking
DMV1500HFD
DMV1500H
DMV1500HFD5
DMV1500H
DMV1500H
2/8
Table 3: Absolute Maximum Ratings
Table 4: Thermal Resistance
Table 5: Static Electrical Characteristics
Pulse test:
* tp = 5 ms,
< 2%
** tp = 380 s,
< 2%
To evaluate the maximum conduction losses of the DAMPER and MODULATION diodes use the following equations :
DAMPER: P = 1.35 x I
F(AV)
+ 0.59 x I
F
2
(RMS)
MODULATION: P = 1.12 x I
F(AV)
+ 0.092 x I
F
2
(RMS)
Table 6: Recovery Characteristics
Symbol
Parameter
Value
Unit
Damper
Modul.
V
RRM
Repetitive peak reverse voltage
1500
600
V
I
FSM
Surge non repetitive forward current
tp = 10ms sinusoidal
80
35
A
T
stg
Storage temperature range
-40 to +150
C
T
j
Maximum operating junction temperature
150
C
Symbol
Parameter
Value
Unit
R
th(j-c)
Junction to case thermal resistance
3.6
C/W
Symbol
Parameter
Test conditions
Value
Unit
T
j
= 25C
T
j
= 125C
Typ.
Max.
Typ.
Max.
I
R
*
Reverse leakage current
Damper
V
R
= 1500 V
100
100
1000
A
Modul.
V
R
= 600 V
20
3
50
V
F
**
Forward voltage drop
Damper
I
F
= 6 A
1.5
2.3
1.25
1.7
V
Modul.
I
F
= 3 A
1.8
1.1
1.4
Symbol
Parameter
Test conditions
Value
Unit
Damper
Modul.
Typ.
Max.
Typ.
Max.
t
rr
Reverse recovery time
I
F
= 100mA
I
R
=100mA
I
RR
= 10mA
T
j
= 25C
625
110
350
ns
I
F
= 1A
dI
F
/dt = -50 A/s
V
R
=30V
T
j
= 25C
95
125
35
50
DMV1500H
3/8
Table 7: Turn-On Switching Characteristics
Symbol
Parameter
Test conditions
Value
Unit
Typ.
Max.
t
fr
Forward recovery time
Damper
I
F
= 6 A
dI
F
/dt = 80 A/s
V
FR
= 3 V
T
j
= 100C
350
ns
Modul.
I
F
= 3 A
dI
F
/dt = 80 A/s
V
FR
= 2 V
T
j
= 100C
240
V
FP
Peak forward voltage
Damper
I
F
= 6 A
dI
F
/dt = 80 A/s
T
j
= 100C
18
25
V
Modul.
I
F
= 3 A
dI
F
/dt = 80 A/s
T
j
= 100C
8
Figure 1: Power dissipation versus peak
forward current (triangular waveform,
=0.45)
Figure 2: Average forward current versus
ambient temperature
Figure 3: Forward voltage drop versus forward
current (damper diode)
Figure 4: Forward voltage drop versus forward
current (modulation diode)
P
(W)
F(AV)
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
DAMPER diode
MODULATION diode
I (A)
P
0
1
2
3
4
5
6
7
0
25
50
75
100
125
150
I
(A)
F(AV)
DAMPER diode
MODULATION diode
R
=
th(j-a)
R
th(j-c)
R
=
th(j-a)
R
th(j-c)
T
(C)
amb
T
=tp/T
tp
0
5
10
15
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
I
(A)
FM
V
(V)
FM
T =125C
(typical values)
j
T =125C
(maximum values)
j
T =25C
(maximum values)
j
0
1
2
3
4
5
6
7
8
9
10
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
I
(A)
FM
V
(V)
FM
T =125C
(typical values)
j
T =25C
(maximum values)
j
T =125C
(maximum values)
j
DMV1500H
4/8
Figure 5: Relative variation of thermal
impedance junction to case versus pulse
duration
Figure 6: Non repetitive peak forward current
versus overload duration (damper diode)
Figure 7: Non repetitive peak forward current
versus overload duration (modulation diode)
Figure 8: Reverse recovery charges versus
dI
F
/dt (damper diode)
Figure 9: Reverse recovery charges versus
dI
F
/dt (modulation diode)
Figure 10: Peak reverse recovery current
versus dI
F
/dt (damper diode)
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.E-03
1.E-02
1.E-01
1.E+00
1.E+01
1.E+02
Z
/R
th(j-c)
th(j-c)
t (s)
p
DAMPER diode
MODULATION diode
Single pulse
0
5
10
15
20
25
30
35
1.E-03
1.E-02
1.E-01
1.E+00
I (A)
M
T =25C
C
T =75C
C
T =125C
C
t(s)
I
M
t
=0.5
0
5
10
15
20
25
30
1.E-03
1.E-02
1.E-01
1.E+00
I (A)
M
T =25C
C
T =75C
C
T =125C
C
t(s)
I
M
t
=0.5
0
200
400
600
800
1000
1200
0.1
1.0
10.0
Q (nC)
rr
dI /dt(A/s)
F
I =
T =125C
90% confidence
F
j
I
P
0
50
100
150
200
0.1
1.0
10.0
100.0
Q (nC)
rr
dI /dt(A/s)
F
I =
T =125C
90% confidence
F
j
I
P
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
0.1
1.0
10.0
I
(A)
RM
dI /dt(A/s)
F
I =
T =125C
90% confidence
F
j
I
P
DMV1500H
5/8
Figure 11: Peak reverse recovery current
versus dI
F
/dt (modulation diode)
Figure 12: Transient peak forward voltage
versus dI
F
/dt (damper diode)
Figure 13: Transient peak forward voltage
versus dI
F
/dt (modulation diode)
Figure 14: Forward recovery time versus dI
F
/dt
(damper diode)
Figure 15: Forward recovery time versus dI
F
/dt
(modulation diode)
Figure 16: Relative variation of dynamic
parameters versus junction temperature
0.0
1.0
2.0
3.0
4.0
5.0
6.0
1
10
100
1000
I
(A)
RM
dI /dt(A/s)
F
I =
T =125C
90% confidence
F
j
I
P
0
5
10
15
20
25
30
35
40
0
20
40
60
80
100
120
140
V
(V)
FP
dI /dt(A/s)
F
I =
T =125C
90% confidence
F
j
I
P
0
1
2
3
4
5
6
7
8
9
10
11
12
0
20
40
60
80
100
120
140
160
180
200
V
(V)
FP
dI /dt(A/s)
F
I =
T =125C
90% confidence
F
j
I
P
t (ns)
fr
300
350
400
450
500
550
600
650
700
750
800
0
20
40
60
80
100
120
140
I =
T =125C
V
90% confidence
F
j
I
=3V
P
FR
dI /dt(A/s)
F
0
25
50
75
100
125
150
175
200
0
20
40
60
80
100
120
140
160
180
200
t (ns)
fr
I =
T =125C
V
90% confidence
F
j
I
=2V
P
FR
dI /dt(A/s)
F
0.0
0.2
0.4
0.6
0.8
1.0
1.2
25
50
75
100
125
Q
RR
T (C)
j
V
FP
I
RM
I
, V
, Q
[T ]/
RM
FP
RR
j
I
, V
, Q
[T =125C]
RM
FP
RR
j