ChipFind - документация

Электронный компонент: DMV1500LF5

Скачать:  PDF   ZIP
1/9
DMV1500L
July 2001 - Ed: 3A
DAMPER + MODULATION DIODE FOR VIDEO
Symbol
Parameter
Value
Unit
MODUL DAMPER
V
RRM
Repetitive peak reverse voltage
600
1500
V
I
FSM
Surge non repetitive forward current
tp = 10 ms sinusoidal
35
50
A
T
stg
Storage temperature range
- 40 to + 150
C
T
j
Maximum operating junction temperature
150
ABSOLUTE RATINGS (limiting values, per diode)
Insulated TO-220AB
(Bending option F5 available)
s
Full kit in one package
s
High breakdown voltage capability
s
Very fast recovery diode
s
Specified turn on switching characteristics
s
Low static and peak forward voltage drop for low
dissipation
s
Insulated version:
Insulated voltage = 2500 V
RMS
Capacitance = 7 pF
s
Planar technology allowing high quality and
best electrical characteristics
s
Outstanding performance of well proven DTV
as damper and new faster Turbo 2 600V
technology as modulation
FEATURES AND BENEFITS
High voltage semiconductor especially designed
for horizontal deflection stage in standard and high
resolution video display with E/W correction.
The insulated TO-220AB package includes both
the DAMPER diode and the MODULATION diode.
Assembled on automated line, it offers excellent
insulating and dissipating characteristics, thanks
to the internal ceramic insulation layer.
DESCRIPTION
MODUL
DAMPER
I
F(AV)
3 A
4 A
V
RRM
600 V
1500 V
t
rr
(max)
50 ns
170 ns
V
F
(max)
1.4 V
1.5 V
MAIN PRODUCT CHARACTERISTICS
1
2
3
DAMPER
MODULATION
1
2
3
DMV1500L
2/9
Symbol
Parameter
Value
Unit
R
th(j-c)
Damper junction to case
5.5
C/W
R
th(j-c)
Modulation junction to case
6
THERMAL RESISTANCES
Symbol
Parameter
Test conditions
Value
Unit
Tj = 25C
Tj = 125C
Typ.
Max.
Typ.
Max.
V
F
*
Forward voltage drop
I
F
= 4 A
1.2
1.7
1.1
1.5
V
I
R
**
Reverse leakage current
V
R
= 1500V
100
100
1000
A
Pulse test :
* tp = 380
s,
< 2%
**tp = 5 ms,
< 2%
To evaluate the maximum conduction losses of the DAMPER diode use the following equations :
P = 1.2 x IF(AV) + 0.075 x IF
2
(RMS)
STATIC ELECTRICAL CHARACTERISTICS OF THE DAMPER DIODES
Symbol
Parameter
Test
conditions
Value
Unit
Tj = 25C
Tj = 125C
Typ.
Max.
Typ.
Max.
V
F
*
Forward voltage drop
I
F
= 3A
1.8
1.1
1.4
V
I
R
**
Reverse leakage current
V
R
= 600V
20
3
50
A
Pulse test :
* tp = 380
s,
< 2%
** tp = 5 ms,
< 2%
To evaluate the maximum conduction losses of the MODULATION diode use the following equations :
P = 1.12 x IF(AV) + 0.092 x IF
2
(RMS)
STATIC ELECTRICAL CHARACTERISTICS OF THE MODULATION DIODE
Symbol
Parameter
Test conditions
Value
Unit
Typ.
Max.
t
rr
Reverse recovery time
I
F
= 100mA
I
R
= 100mA
I
RR
= 10mA
Tj = 25C
850
ns
t
rr
Reverse recovery time
I
F
= 1A
dI
F
/dt = -50A/
s
V
R
= 30V
Tj = 25C
130
170
ns
RECOVERY CHARACTERISTICS OF THE DAMPER DIODE
DMV1500L
3/9
Symbol
Parameter
Test conditions
Value
Unit
Typ.
Max.
t
fr
Forward recovery time
I
F
= 4A
dI
F
/dt = 80A/
s
V
FR
= 3V
Tj = 100C
450
ns
I
F
= 6.5A
dI
F
/dt = 50A/
s
V
FR
= 3V
Tj = 25C
450
V
FP
Peak forward voltage
I
F
= 4A
dI
F
/dt = 80A/
s
Tj = 100C
28
36
V
I
F
= 6.5A
dI
F
/dt = 50A/
s
Tj = 25C
13
17
TURN-ON SWITCHING CHARACTERISTICS OF THE DAMPER DIODE
Symbol
Parameter
Test conditions
Value
Unit
Typ.
Max.
t
rr
Reverse recovery time
I
F
= 100mA
I
R
= 100mA
I
RR
= 10mA
Tj = 25C
110
350
ns
t
rr
Reverse recovery time
I
F
= 1A
dI
F
/dt = -50A/
s
V
R
= 30V
Tj = 25C
50
ns
RECOVERY CHARACTERISTICS OF THE MODULATION DIODE
Symbol
Parameter
Test conditions
Value
Unit
Typ.
Max.
t
fr
Forward recovery time
I
F
= 3A
dI
F
/dt = 80A/
s
V
FR
= 2V
Tj = 100C
240
ns
V
FP
Peak forward voltage
I
F
= 3A
dI
F
/dt = 80A/
s
Tj = 100C
8
V
TURN-ON SWITCHING CHARACTERISTICS OF THE MODULATION DIODE
DMV1500L
4/9
0
1
2
3
4
5
6
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
Ip(A)
PF(av)(W)
Fig. 1-2: Power dissipation versus peak forward
current (triangular waveform,
= 0.45) (modula-
tion diode).
0
1
2
3
4
5
6
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
Ip(A)
PF(av)(W)
Fig. 1-1: Power dissipation versus peak forward
current (triangular waveform,
= 0.45) (damper
diode).
0
25
50
75
100
125
150
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
Tamb(C)
IF(av)(A)
Rth(j-a)=Rth(j-c)
T
=tp/T
tp
Fig. 2-2: Average forward current versus ambient
temperature (modulation diode).
0
25
50
75
100
125
150
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
Tamb(C)
IF(av)(A)
Rth(j-a)=Rth(j-c)
T
=tp/T
tp
Fig. 2-1: Average forward current versus ambient
temperature (damper diode).
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0
5
10
15
20
25
30
VFM(V)
IFM(A)
Typical
Tj=125C
Maximum
Tj=25C
Maximum
Tj=125C
Fig. 3-2: Forward voltage drop versus forward cur-
rent (modulation diode).
0.0
0.5
1.0
1.5
2.0
2.5
3.0
0
5
10
15
20
25
30
VFM(V)
IFM(A)
Typical
Tj=125C
Maximum
Tj=25C
Maximum
Tj=125C
Fig. 3-1: Forward voltage drop versus forward cur-
rent (damper diode).
DMV1500L
5/9
1E-3
1E-2
1E-1
1E+0
0.1
0.2
0.5
1.0
tp(s)
K=[Zth(j-c)/Rth(j-c)]
= 0.5
= 0.2
= 0.1
Single pulse
T
=tp/T
tp
Fig. 4: Relative variation of thermal impedance
junction to case versus pulse duration.
1E-3
1E-2
1E-1
1E+0
0
5
10
15
20
25
30
t(s)
IM(A)
Tc=100C
I
M
t
=0.5
Fig. 5-2: Non repetitive surge peak forward current
versus overload duration (modulation diode).
1E-3
1E-2
1E-1
1E+0
0
5
10
15
20
25
30
t(s)
IM(A)
Tc=100C
I
M
t
=0.5
Fig. 5-1: Non repetitive surge peak forward current
versus overload duration (damper diode).
0.1
1.0
10.0
100.0
0
50
100
150
200
dIF/dt(A/s)
Qrr(nC)
IF=IF(av)
90% confidence
Tj=125C
Fig. 6-2: Reverse recovery charges versus diF/dt
(modulation diode).
0.1
0.2
0.5
1.0
5.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
dIF/dt(A/s)
Qrr(nC)
IF=IF(av)
90% confidence
Tj=125C
Fig. 6-1: Reverse recovery charges versus diF/dt
(damper diode).
0.1
0.2
0.5
1.0
5.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
dIF/dt(A/s)
IRM(A)
IF=IF(av)
90% confidence
Tj=125C
Fig. 7-1: Reverse recovery current versus diF/dt
(damper diode).