ChipFind - документация

Электронный компонент: LM224ADT

Скачать:  PDF   ZIP

Document Outline

February 2005
Revision 2
1/16
Wide gain bandwidth: 1.3MHz
Large voltage gain: 100dB
Very low supply current/ampli: 375A
Low input bias current: 20nA
Low input offset voltage: 3mV max.
Low input offset current: 2nA
Wide power supply range:
Single supply: +3V to +30V
Dual supplies: 1.5V to 15V
Input common-mode voltage range
includes ground
ESD internal protection: 2KV
Description
These circuits consist of four independent, high
gain, internally frequency compensated
operational amplifiers. They operate from a single
power supply over a wide range of voltages.
Operation from split power supplies is also
possible and the low power supply current drain is
independent of the magnitude of the power supply
voltage.
All the pins are protected against electrostatic
discharges up to 2KV (as a consequence, the
input voltages must not exceed the magnitude of
V
CC
+
or V
CC
-
.)
Order Codes
N
DIP14
(Plastic Package)
D
SO-14
(Plastic Micropackage)
P
TSSOP-14
(Thin Shrink Small Outline Package)
Part Number
Temperature Range
Package
Packaging
LM224AN
-40C, +105C
DIP
Tube
LM224AD/ADT
SO
Tube or Tape & Reel
LM224APT
TSSOP
(Thin Shrink Outline Package)
Tape & Reel
LM324AN
0C, +70C
DIP
Tube
LM324AD/ADT
SO
Tube or Tape & Reel
LM324APT
TSSOP
(Thin Shrink Outline Package)
Tape & Reel
LM224A - LM324A
Low Power Quad Operational Amplifiers
LM224A-LM324A
Pin & Schematic Diagram
2/16
1 Pin & Schematic Diagram
Figure 1: Pin connections (top view)
Figure 2: Schematic diagram (1/4 LM124A)
Inverting Input 2
Non-inverting Input 2
Non-inverting Input 1
CC
V
-
CC
V
1
2
3
4
8
5
6
7
9
10
11
12
13
14
+
Output 3
Output 4
Non-inverting Input 4
Inverting Input 4
Non-inverting Input 3
Inverting Input 3
-
+
-
+
-
+
-
+
Output 1
Inverting Input 1
Output 2
Absolute Maximum Ratings
LM224A-LM324A
3/16
2 Absolute
Maximum
Ratings
Table 1: Key parameters and their absolute maximum ratings
Symbol
Parameter
LM124A
LM224A
LM324A
Unit
VCC
Supply voltage
16 or 32
V
Vi
Input Voltage
-0.3 to Vcc + 0.3
V
V
id
Differential Input Voltage
1
1)
Either or both input voltages must not exceed the magnitude of V
CC
+
or V
CC
-
.
32
V
P
tot
Power DissipationN Suffix
D Suffix
500
500
400
500
400
mW
mW
Output Short-circuit Duration
2
2)
Short-circuits from the output to VCC can cause excessive heating if V
CC
> 15V. The maximum output current is approximately 40mA
independent of the magnitude of V
CC
. Destructive dissipation can result from simultaneous short-circuit on all amplifiers.
Infinite
I
in
Input Current
3
3)
This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the
input PNP transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this diode action, there is also
NPN parasitic action on the IC chip. this transistor action can cause the output voltages of the op-amps to go to the V
CC
voltage level (or
to ground for a large overdrive) for the time duration than an input is driven negative.
This is not destructive and normal output will set up again for input voltage higher than -0.3V.
50
mA
T
oper
Operating Free-air Temperature Range
-55 to +125
-40 to +105
0 to +70
C
T
stg
Storage Temperature Range
-65 to +150
C
R
thja
Thermal Resistance Junction to Ambient
SO14
TSSOP14
DIP14
103
100
66
C/W
LM224A-LM324A
Electrical Characteristics
4/16
3 Electrical
Characteristics
Table 2: V
CC
+
= +5V, V
CC
-
= Ground, V
o
= 1.4V, T
amb
= +25C (unless otherwise specified
Symbol
Parameter
Min.
Typ.
Max.
Unit
V
io
Input Offset Voltage - note
1
T
amb
= +25C
T
min
T
amb
T
max
2
3
5
mV
I
io
Input Offset Current
T
amb
= +25C
T
min
T
amb
T
max
2
20
40
nA
I
ib
Input Bias Current - note
2
T
amb
= +25C
T
min
T
amb
T
max
20
100
200
nA
A
vd
Large Signal Voltage Gain
V
CC
+
= +15V, R
L
= 2k
, V
o
= 1.4V to 11.4V
T
amb
= +25C
T
min
T
amb
T
max
50
25
100
V/mV
SVR
Supply Voltage Rejection Ratio (R
s
10k)
V
CC
+
= 5V to 30V
T
amb
= +25C
T
min
T
amb
T
max
65
65
110
dB
I
CC
Supply Current, all Amp, no load
T
amb
= +25C V
CC
= +5V
V
CC
= +30V
T
min
T
amb
T
max
V
CC
= +5V
V
CC
= +30V
0.7
1.5
0.8
1.5
1.2
3
1.2
3
mA
V
icm
Input Common Mode Voltage Range
V
CC
= +30V - note
3
T
amb
= +25C
T
min
T
amb
T
max
0
0
V
CC
-
1.5
V
CC
-2
V
CMR
Common Mode Rejection Ratio (R
s
10k)
T
amb
= +25C
T
min
T
amb
T
max
70
60
80
dB
I
source
Output Current Source (V
id
= +1V)
V
CC
= +15V, V
o
= +2V
20
40
70
mA
I
sink
Output Sink Current (V
id
= -1V)
V
CC
= +15V, V
o
= +2V
V
CC
= +15V, V
o
= +0.2V
10
12
20
50
mA
A
V
OH
High Level Output Voltage
V
CC
= +30V
T
amb
= +25C R
L
= 2k
T
min
T
amb
T
max
T
amb
= +25C R
L
= 10k
T
min
T
amb
T
max
V
CC
= +5V, R
L
= 2k
T
amb
= +25C
T
min
T
amb
T
max
26
26
27
27
3.5
3
27
28
V
Electrical Characteristics
LM224A-LM324A
5/16
VOL
Low Level Output Voltage (R
L
= 10k
)
T
amb
= +25C
T
min
T
amb
T
max
5
20
20
mV
SR
Slew Rate
V
CC
= 15V, V
i
= 0.5 to 3V, R
L
= 2k
, C
L
= 100pF, unity Gain
0.4
V/
s
GBP
Gain Bandwidth Product
V
CC
= 30V, f =100kHz,V
in
= 10mV, R
L
= 2k
, C
L
= 100pF
1.3
MHz
THD
Total Harmonic Distortion
f = 1kHz, A
v
= 20dB, R
L
= 2k
, V
o
= 2V
pp
, C
L
= 100pF, V
CC
= 30V
0.015
%
e
n
Equivalent Input Noise Voltage
f = 1kHz, R
s
= 100
, V
CC
= 30V
40
DV
io
Input Offset Voltage Drift
7
30
V/C
DI
Iio
Input Offset Current Drift
10
200
pA/C
V
o1
/V
o2
Channel Separation - note
4
1kHz
f 20kHZ
120
dB
1)
V
o
= 1.4V, R
s
= 0
, 5V < V
CC
+
< 30V, 0 < V
ic
< V
CC
+
- 1.5V
2)
The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so no loading
change exists on the input lines.
3)
The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end
of the common-mode voltage range is V
CC
+
- 1.5V, but either or both inputs can go to +32V without damage.
4)
Due to the proximity of external components insure that coupling is not originating via stray capacitance between these external parts.
This typically can be detected as this type of capacitance increases at higher frequences.
Table 2: V
CC
+
= +5V, V
CC
-
= Ground, V
o
= 1.4V, T
amb
= +25C (unless otherwise specified
Symbol
Parameter
Min.
Typ.
Max.
Unit
nV
Hz
------------
LM224A-LM324A
Electrical Characteristics
6/16
Figure 3: Input bias current vs. ambient
temperature
Figure 4: Input voltage range
Figure 5: Gain bandwidth product
-55-35-15 5 25 45 65 85 105 125
AMBIENT TEMPERATURE (C)
24
21
18
15
9
12
6
3
0
INPUT BIAS CURRENT
versus AMBIENT TEMPERATURE
IB (nA)
Figure 6: Current limiting
Figure 7: Supply current
Figure 8: Common mode rejection ratio
SUPPLY CURRENT (mA)
SUPPLY CURRENT
0
10
20
30
Tamb = -55C
VCC
mA
ID
-
+
Tamb = 0C to +125C
POSITIVE SUPPLY VOLTAGE (V)
4
3
2
1
Electrical Characteristics
LM224A-LM324A
7/16
Figure 9: Electrical curves
LM224A-LM324A
Electrical Characteristics
8/16
Figure 10: Input current
Figure 11: Power supply & common mode
rejection ratio
Figure 12: Voltage gain
Figure 13: Large signal voltage gain
Typical Single - Supply Applications
LM224A-LM324A
9/16
4 Typical Single - Supply Applications
Figure 14: AC coupled interting amplifier
Figure 15: AC coupled non inverting amplifier
Figure 16: Non-inverting DC gain
Figure 17: High input Z adjustable gain DC
instrumentation amplifier
Figure 18: DC summing amplifier
if
R1 = R5 and R3 = R4 = R6 = R7
e
0
=
(e
2
-e
1
)
As shown e
0
= 101 (e
2
- e
1
).
1
2R
1
R
2
-----------
+
e
0
= e
1
+e
2
-e
3
-e
4
Where (e
1
+e
2
)
(e
3
+e
4
)
to keep e
0
0V
LM224A-LM324A
Typical Single - Supply Applications
10/16
Figure 19: Low drift peak detector
Figure 20: Activer bandpass filter
F
o
= 1kHz
Q = 50
A
v
= 100 (40dB)
Figure 21: High input Z, DC differential
amplifier
Figure 22: Using symetrical amplifiers to
reduce input current (general
concept)
For
(CMRR depends on this resistor ratio match)
R
1
R
2
-------
R
4
R
3
-------
=
e
0
(e
2
- e
1
)
As shown e
0
= (e
2
- e
1
)
1
R
4
R
3
-------
+
Typical Single - Supply Applications
LM224A-LM324A
11/16
Table 3: V
cc
+
= +15V, V
cc
-
= 0V, T
amb
= 25C (unless otherwise specified)
Symbol
Conditions
Value
Unit
V
io
0
mV
A
vd
R
L
= 2k
100
V/mV
I
cc
No load, per amplifier
350
A
V
icm
0 to +13.5
V
V
OH
R
L
= 2k
(V
CC
+
=15V)
+13.5
V
V
OL
R
L
= 10k
5
mV
I
os
V
o
= +2V, V
CC
= +15V
+40
mA
GBP
R
L
= 2k
, C
L
= 100pF
1.3
MHz
SR
R
L
= 2k
, C
L
= 100pF
0.4
V/
s
LM224A-LM324A
Macromodel
12/16
5 Macromodel
Warning:
Please consider following remarks before using this macromodel:
All models are a trade-off between accuracy and complexity (i.e. simulation time).
Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design approach
and help to select surrounding component values.
A macromodel emulates the NOMINAL performance of a TYPICAL device within SPECIFIED OPERATING
CONDITIONS (i.e. temperature, supply voltage, etc.). Thus the macromodel is often not as exhaustive as
the datasheet, its goal is to illustrate the main parameters of the product.
Data issued from macromodels used outside of its specified conditions (Vcc, Temperature, etc) or even
worse: outside of the device operating conditions (Vcc, Vicm, etc) are not reliable in any way.
** Standard Linear Ics Macromodels, 1993.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
.SUBCKT LM324 1 2 3 4 5
***************************
.MODEL MDTH D IS=1E-8 KF=3.104131E-15 CJO=10F
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 2.600000E+01
RIN 15 16 2.600000E+01
RIS 11 15 2.003862E+02
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0
VOFN 13 14 DC 0
IPOL 13 5 1.000000E-05
CPS 11 15 3.783376E-09
DINN 17 13 MDTH 400E-12
VIN 17 5 0.000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 2.000000E+00
FCP 4 5 VOFP 3.400000E+01
FCN 5 4 VOFN 3.400000E+01
FIBP 2 5 VOFN 2.000000E-03
FIBN 5 1 VOFP 2.000000E-03
* AMPLIFYING STAGE
FIP 5 19 VOFP 3.600000E+02
FIN 5 19 VOFN 3.600000E+02
RG1 19 5 3.652997E+06
RG2 19 4 3.652997E+06
CC 19 5 6.000000E-09
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 7.500000E+03
VIPM 28 4 1.500000E+02
HONM 21 27 VOUT 7.500000E+03
VINM 5 27 1.500000E+02
EOUT 26 23 19 5 1
VOUT 23 5 0
ROUT 26 3 20
COUT 3 5 1.000000E-12
DOP 19 25 MDTH 400E-12
VOP 4 25 2.242230E+00
DON 24 19 MDTH 400E-12
VON 24 5 7.922301E-01
ENDS
Package Mechanical Data
LM224A-LM324A
13/16
6 Package Mechanical Data
6.1 DIP14 Package
DIM.
mm.
inch
MIN.
TYP
MAX.
MIN.
TYP.
MAX.
a1
0.51
0.020
B
1.39
1.65
0.055
0.065
b
0.5
0.020
b1
0.25
0.010
D
20
0.787
E
8.5
0.335
e
2.54
0.100
e3
15.24
0.600
F
7.1
0.280
I
5.1
0.201
L
3.3
0.130
Z
1.27
2.54
0.050
0.100
Plastic DIP-14 MECHANICAL DATA
P001A
LM224A-LM324A
Package Mechanical Data
14/16
6.2 SO-14 Package
DIM.
mm.
inch
MIN.
TYP
MAX.
MIN.
TYP.
MAX.
A
1.75
0.068
a1
0.1
0.2
0.003
0.007
a2
1.65
0.064
b
0.35
0.46
0.013
0.018
b1
0.19
0.25
0.007
0.010
C
0.5
0.019
c1
45 (typ.)
D
8.55
8.75
0.336
0.344
E
5.8
6.2
0.228
0.244
e
1.27
0.050
e3
7.62
0.300
F
3.8
4.0
0.149
0.157
G
4.6
5.3
0.181
0.208
L
0.5
1.27
0.019
0.050
M
0.68
0.026
S
(max.)
SO-14 MECHANICAL DATA
PO13G
8
Package Mechanical Data
LM224A-LM324A
15/16
6.3 TSSOP14 Package
DIM.
mm.
inch
MIN.
TYP
MAX.
MIN.
TYP.
MAX.
A
1.2
0.047
A1
0.05
0.15
0.002
0.004
0.006
A2
0.8
1
1.05
0.031
0.039
0.041
b
0.19
0.30
0.007
0.012
c
0.09
0.20
0.004
0.0089
D
4.9
5
5.1
0.193
0.197
0.201
E
6.2
6.4
6.6
0.244
0.252
0.260
E1
4.3
4.4
4.48
0.169
0.173
0.176
e
0.65 BSC
0.0256 BSC
K
0
8
0
8
L
0.45
0.60
0.75
0.018
0.024
0.030
TSSOP14 MECHANICAL DATA
c
E
b
A2
A
E1
D
1
PIN 1 IDENTIFICATION
A1
L
K
e
0080337D
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners
2005 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
LM224A-LM324A
Summary of Changes
16/16
7 Summary of Changes
Date
Revision
Description of Changes
01 March 2001
1
First Release
01 Feb. 2005
2
-
Table 1 on page 3
: explanation of Vid and Vi limits
- Macromodel updated