ChipFind - документация

Электронный компонент: TDA7496SA

Скачать:  PDF   ZIP
www.docs.chipfind.ru
background image
1/13
TDA7496SA
September 2003
This is preliminary information on a new product now in development. Details are subject to change without notice.
s
5+5W OUTPUT POWER
R
L
= 8
@THD = 10% V
CC
= 22V
s
ST-BY AND MUTE FUNCTIONS
s
LOW TURN-ON TURN-OFF POP NOISE
s
LINEAR VOLUME CONTROL DC COUPLED
WITH POWER OP. AMP.
s
NO BOUCHEROT CELL
s
NO ST_BY RC INPUT NETWORK
s
SINGLE SUPPLY RANGING UP TO 35V
s
SHORT CIRCUIT PROTECTION
s
THERMAL OVERLOAD PROTECTION
s
INTERNALLY FIXED GAIN
s
SOFT CLIPPING
s
VARIABLE OUTPUT AFTER VOLUME
CONTROL CIRCUIT
s
CLIPWATT 15 PACKAGE
DESCRIPTION
The TDA7496SA is a stereo 5+5W class AB power
amplifier assembled i the @Clipwatt 15 package,
specially designed for high quality sound TV applica-
tions.
Features of the TDA7496SA include linear volume
control Stand-by and Mute functions.
The TDA7496SA is pin to pin compatible with
TDA7496, TDA7496S, TDA7496SA, TDA7495,
TDA7495SA, TDA7494S, TDA7494SA.
Clipwatt 15
ORDERING NUMBER: TDA7496SA
PRODUCT PREVIEW
5W+5W AMPLIFIER WITH DC VOLUME CONTROL
BLOCK DIAGRAM
VOLUME
OP AMP
+
-
MUTE/STBY
PROTECTIONS
1
470nF
INR
30K
VOLUME
OP AMP
+
-
30K
1000
F
1000
F
1
F
10K
5
470nF
INL
8
S_GND
2
14
9
10
12
3
4
300K
100nF
VOLUME
VAROUT_L
OUTR
STBY
MUTE
OUTL
11
PW_GND
470
F
SVR
7
D96AU440D
V
S
VAROUT_R
PW_GND
15
13
+5V
S1 ST-BY
+5V
S2 MUTE
+5V
S_GND
60K
MULTIPOWER BI50II TECHNOLOGY
background image
TDA7496SA
2/13
ABSOLUTE MAXIMUM RATINGS
PIN CONNECTION (top view)
THERMAL DATA
Symbol
Parameter
Value
Unit
V
S
DC Supply Voltage
35
V
V
IN
Maximum Input Voltage
8
Vpp
P
tot
Total Power Dissipation (T
amb
= 70C)
16
W
T
amb
Ambient Operating Temperature (1)
0 to 70
C
T
stg
,T
J
Storage and Junction Temperature
-40 to 150
C
V
3
Volume Control DC Voltage
7
V
Symbol
Parameter
Value
Unit
R
th j-case
Thermal Resistance junction-case
Typ. = 4.5; Max. = 5
C/W
R
th j-amb
Thermal Resistance junction-ambient Max.
48
C/W
ELECTRICAL CHARACTERISTCS
(Refer to the test circuit R
L
= 8
, f = 1KHz, R
g
= 50
, V
S
= 22V, T
amb
= 25C)
Symbol
Parameter
Test Condition
Min.
Typ.
Max.
Unit
V
s
Supply Voltage Range
10
32
V
I
q
Total Quiescent Current
25
50
mA
DCV
os
Output DC Offset Referred to SVR
Potential
No Input Signal
200
mV
V
O
Quiescent Output Voltage
11
V
P
O
Output Power
THD = 10%; R
L
= 8
;
THD = 1%; R
L
= 8
;
5
5.5
4
W
THD = 10%; R
L
= 4
; V
S
= 12V
THD = 1%; R
L
= 4
; V
S
= 12V
2.1
1.0
W
THD
Total Harmonic Distortion
G
v
= 30dB; P
O
= 1W; f = 1KHz
0.4
%
1
2
3
4
5
6
7
9
10
11
8
PW_GND
MUTE
STBY
S_GND
SVR
N.C.
INL
VAROUT_L
VOLUME
VAROUT_R
INR
13
14
15
12
PW_GND
OUTR
V
S
OUTL
D03AU1505
background image
3/13
TDA7496SA
I
peak
Output Peak Current
(internally limited)
1.0
1.3
A
V
IN
Input Signal
2.8
Vrms
G
V
Closed Loop Gain
V
Ol Ctrl
>4.5V
28.5
30
31.5
dB
G
VLine
Monitor Out Gain
V
Ol Ctrl
>4.5V; Zload >30K
-1.5
0
1.5
dB
A
Min
V
OL
Attenuation at Minimum Volume
V
Ol Ctrl
<0.5V
80
dB
BW
0.6
MHz
e
N
Total Output Noise
f = 20Hz to 22KHz
PLAY, max volume
500
800
V
f = 20Hz to 22KHz
PLAY, max attenuation
100
250
V
f = 20Hz to 22KHz MUTE
60
150
V
SR
Slew Rate
5
8
V/
s
R
i
Input Resistance
22.5
30
K
R
Var Out
Variable Output Resistance
30
100
R
L Var Out
Variable Output Load
2
K
SVR
Supply Voltage Rejection
f = 1KHz; max volume
C
SVR
= 470
F; V
RIP
= 1Vrms
35
39
dB
f = 1KHz; max attenuation
C
SVR
= 470
F; V
RIP
= 1Vrms
55
65
dB
T
M
Thermal Muting
150
C
T
S
Thermal Shut-down
160
C
MUTE & INPUT SELECTION FUNCTIONS
V
ST-ON
Stand-by ON Threshold
3.5
V
V
ST-OFF
Stand-by OFF Threshold
1.5
V
V
MUTEON
Mute ON threshold
3.5
V
V
MUTEOFF
Mute OFF threshold
1.5
V
A
MUTE
Mute Attenuation
50
65
dB
I
qST-BY
Quiescent Current @ Stand-by
0.6
1
mA
I
stbyBIAS
Stand-by bias current
Stand by ON: V
ST-BY
= 5V;
V
mute
= 5V
80
A
Play or Mute
-20
-5
A
I
muteBIAS
Mute Bias Current
Mute
1
5
A
Play
0.2
2
A
ELECTRICAL CHARACTERISTCS (continued)
(Refer to the test circuit R
L
= 8
, f = 1KHz, R
g
= 50
, V
S
= 22V, T
amb
= 25C)
Symbol
Parameter
Test Condition
Min.
Typ.
Max.
Unit
background image
TDA7496SA
4/13
APPLICATION SUGGESTIONS
The recommended values of the external components are those shown on the application circuit of figure 1.
Different values can be used, the following table can help the designer.
Figure 1. Application Circui
COMPONENT
SUGGESTION
VALUE
PURPOSE
LARGER THAN
SUGGESTION
SMALLER THAN
SUGGESTION
R1
300K
Volume Control Circuit
Larger volume regulation
time
Smaller volume regulation
time
R2
10K
Mute time constant
Larger mute on/off time
Smaller mute on/off time
P1
50K
Volume Control Circuit
C1
1000
F
Supply voltage bypass
Danger of oscillation
C2
470nF
Input DC decoupling
Lower low frequency cutoff Higher low frequency cutoff
C3
470nF
Input DC decoupling
Lower low frequency cutoff Higher low frequency cutoff
C4
470
F
Ripple rejection
Better SVR
Worse SVR
C5
100nF
Volume control time
constant
Larger volume regulation
time
Smaller volume regulation
time
C6
1000
F
Output DC decoupling
Lower low frequency cutoff Higher low frequency cutoff
C7
1
F
Mute time constant
Larger mute on/off time
Smaller mute on/off time
C8
1000
F
Output DC decoupling
Lower low frequency cutoff Higher low frequency cutoff
C9
100nF
Supply voltage bypass
Danger of oscillation
VOLUME
OP AMP
+
-
MUTE/STBY
PROTECTIONS
1
C2 470nF
INR
30K
VOLUME
OP AMP
+
-
30K
C8 1000
F
C6 1000
F
C7
1
F
R2 10K
5
C3 470nF
INL
8
S_GND
2
14
9
10
12
3
4
R1 300K
C5
100nF
VOLUME
OUTR
S1 STBY
S2 MUTE
OUTL
11
C4 470
F
SVR
7
D96AU493D
V
S
VAROUT_R
PW_GND
15
13
C9
0.1
F
C1
1000
F
+V
S
PW_GND
VOL
P1
50K
LOG
+5V
TP1
PW_GND
PW_GND
S_GND
+5V
+5V
VAROUT_L
background image
5/13
TDA7496SA
MUTE STAND-BY TRUTH TABLE
Turn ON/OFF Sequences (for optimizing the POP performances)
Figure 1. USING ONLY THE MUTE FUNCTION
USING ONLY THE MUTE FUNCTION
To semplify the application, the stand-by pin can be connected directly to Ground. During the ON/OFF transi-
tions is recommended to respect the following conditions:
At the turn-on the transition mute to mute - play must be made when the SVR pin is higher than 2.5V
At the turn-off the TDA7496A must be brought to mute from the play condition when the SVR pin is
higher than 2.5V.
MUTE
St-BY
OPERATING CONDITION
H
H
STAND-BY
L
H
STAND-BY
H
L
MUTE
L
L
PLAY
OFF
STBY MUTE
PLAY
STBY
OFF
MUTE
V
S
(V)
5
ST-BY
pin#9 (V)
5
MUTE
pin#10 (V)
INPUT
(mV)
VOUT
(V)
IQ
(mA)
D97AU684
VSVR
pin#7(V)
2.5V
background image
TDA7496SA
6/13
Figure 2. P.C.B. and Component layoutPCB and Component Layout
Figure 3.
background image
7/13
TDA7496SA
Figure 4. Quiescent Current vs. Supply Voltage
Figure 5. Output Dc Offset vs. Supply Voltage
Figure 6. Output Power vs. Supply Voltage
Figure 7. Output DC Offset vs. Supply Voltage
Figure 8. Output Power vs Supply Voltage
Figure 9. Distortion vs Output Power
10
12
14
16
18
20
22
24
26
28
30
32
16
18
20
22
24
26
28
30
Supply Voltage (V)
Iq
(mA)
Vi=0
D03AU1494
10
12
14
16
18
20
22
24
26
28
30
32
4
5
6
7
8
9
10
11
12
13
14
15
16
Supply Voltage (V)
Vi=0
Vodc
(V)
D03AU1495
10
12
14
16
18
20
22
24
26
0
1
2
3
4
5
6
7
8
Output Power
(W)
Rl=8
F=1KHz
THD=10%
THD=1%
D03AU1497
Supply Voltage (V)
10
12
14
16
18
20
22
24
26
28
30
32
100
120
140
160
180
200
220
240
260
280
Supply Voltage (V)
Vi=0
Vodc-Vsvr
(mV)
D03AU1496/mod
10
10.5
11
11.5
12
12.5
13
13.5
14
0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
Output Power
(W)
Rl=4
F=1KHz
THD=10%
THD=1%
D03AU1498
Supply Voltage (V)
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
0.1
0.01
1
Distortion
(%)
Vs=22V
Rl=8
F=15KHz
F=1KHz
D03AU1499
Output Power (W)
background image
TDA7496SA
8/13
Figure 10. Distortion vs Output Power
Figure 11. Closed Loop Gain vs. Frequency
Figure 12. St-By Attenuation vs Vpin 9
Figure 13. Mute Attenuation vs Vpin 10
PINS DESCRIPTION
Figure 14. PIN SVR
Figure 15. PINS: INL,INR
Distortion
(%)
Vs=12V
Rl=4
F=15KHz
F=1KHz
D03AU1500
Output Power (W)
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4 1.6
1.8
2.0
0.1
0.01
1
20
0.02
0.2
2
20
22
24
26
28
30
Closed loop
Gain
(dB)
Frequency (KHz)
D03AU1501
Rl=8
Pout=0.5W
Cin=470nF
Cout=1000
F
Csvr=470
F
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
St-by Attenuation
(dB)
Vpin # 9 (V)
D03AU1502
Rl=8
0dB @ Pout=1W
-140
-120
-100
-80
-60
-40
-20
0
Mute Attenuation
(dB)
-120
-100
-80
-60
-40
-20
0
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2
Vpin # 10 (V)
D03AU1503
Rl=8
0dB @ Pout=1W
+
-
+
-
6K
6K
1K
1K
30K
30K
SVR
20K
20K
V
S
V
S
V
S
OUT L
OUT R
100
A
D97AU585A
500
A
30K
V
S
INn
SVR
D97AU589
6K
background image
9/13
TDA7496SA
Figure 17. PIN ST-BY
Figure 18. PIN: MUTE
Figure 19. PINS: OUT R, OUT L
Figure 20. PINS: VAROUT-L VAROUT-R
Figure 21. PIN: VOLUME
Figure 22. PINS: PW-GND, S-GND
10
A
65K
V
S
STBY
D97AU594
200
50
A
200
MUTE
D97AU592
10K
V
S
OUT
D97AU588
V
S
VAROUT-L
D97AU590
V
S
VOL
D97AU591
V
S
10
A
GND
D97AU593
V
S
background image
TDA7496SA
10/13
HEAT SINK DIMENSIONING:
In order to avoid the thermal protection intervention, that is placed approximatively at T
j
= 150C, it is important
the dimensioning of the Heat Sinker R
Th
(C/W).
The parameters that influence the dimensioning are:
Maximum dissipated power for the device (P
dmax
)
Max thermal resistance Junction to case (R
Th j-c
)
Max. ambient temperature T
amb max
Quiescent current I
q
(mA)
Example:
V
CC
= 22V, R
load
= 8ohm, R
Th j-c
= 5 C/W , T
amb max
= 50C
P
dmax
= (N channels)
P
dmax
= 2 ( 3.0 ) + 0.5 = 6.5 W
(Heat Sinker)
In figure 23 is shown the Power derating curve for the device.
Figure 23. Power derating curve
V
cc
2
2
2
R
lo ad
------------------------------
I
q
V
cc
+
R
Th c-a
150
T
am b max
P
d max
-----------------------------------------
R
T h j-c
150
50
6.5
----------------------
5.0
10
C /W
=
=
=
a)
Infinite Heatsink
b)
7 C/ W
c)
10 C/ W
(c)
(a)
(b)
0
5
10
15
20
0
40
80
120
160
Tamb (C)
Pd
(
W
)
a)
Infinite Heatsink
b)
7 C/ W
c)
10 C/ W
(c)
(a)
(b)
0
5
10
15
20
0
40
80
120
160
Tamb (C)
Pd
(
W
)
background image
11/13
TDA7496SA
Clipwatt Assembling Suggestions
The suggested mounting method of Clipwatt on external heat sink, requires the use of a clip placed as much
as possible in the plastic body center, as indicated in the example of figure 24.
A thermal grease can be used in order to reduce the additional thermal resistance of the contact between pack-
age and heatsink.
A pressing force of 7 - 10 Kg gives a good contact and the clip must be designed in order to avoid a maximum
contact pressure of 15 Kg/mm2 between it and the plastic body case.
As example , if a 15Kg force is applied by the clip on the package , the clip must have a contact area of 1mm2
at least.
Figure 24. Example of right placement of the clip
background image
TDA7496SA
12/13
OUTLINE AND
MECHANICAL DATA
0044538
DIM.
mm
inch
MIN.
TYP.
MAX.
MIN.
TYP.
MAX.
A
3.2
0.126
B
1.05
0.041
C
0.15
0.006
D
1.55
0.061
E
0.49
0.55
0.019
0.022
F
0.67
0.73
0.026
0.029
G
1.14
1.27
1.4
0.045
0.050
0.055
G1
17.57
17.78
17.91
0.692
0.700
0.705
H1
12
0.480
H2
18.6
0.732
H3
19.85
0.781
L
17.95
0.707
L1
14.45
0.569
L2
10.7
11
11.2
0.421
0.433
0.441
L3
5.5
0.217
M
2.54
0.100
M1
2.54
0.100
Clipwatt15
Weight:
1.92gr
background image
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
2003 STMicroelectronics - All rights reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
www.st.com
13/13
TDA7496SA