ChipFind - документация

Электронный компонент: TAS3002PFB

Скачать:  PDF   ZIP
TAS3002
Digital Audio Processor With Codec
2001
Digital Audio: Digital Speakers
Data
Manual
SLAS307B
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its products to the specifications applicable at the time of sale in accordance with
TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary
to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except
those mandated by government requirements.
Customers are responsible for their applications using TI components.
In order to minimize risks associated with the customer's applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
products or services might be or are used. TI's publication of information regarding any third party's products
or services does not constitute TI's approval, license, warranty or endorsement thereof.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation
or reproduction of this information with alteration voids all warranties provided for an associated TI product or
service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.
Resale of TI's products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service,
is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.
Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm
Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265
Copyright
2001, Texas Instruments Incorporated
iii
Contents
Section
Title
Page
1
Introduction
11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1
Description
11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2
Features
11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3
Functional Block Diagram
12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4
Terminal Assignments
14
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.5
Terminal Functions
14
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2
Audio Data Formats
21
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1
Serial Interface Formats
21
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2
Digital Output Modes
22
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.1
MSB-First, Right-Justified, Serial-Interface Format
22
. . . . . .
2.2.2
I
2
S Serial-Interface Format
23
. . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.3
MSB-Left-Justified, Serial-Interface Format
24
. . . . . . . . . . . . .
2.3
Switching Characteristics
25
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
Analog Input/Output
31
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1
Analog Input
31
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2
Analog Output
31
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.1
Direct Analog Output
31
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.2
Analog Output With Gain
32
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.3
Reference Voltage Filter
33
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
Audio Control/Enhancement Functions
41
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1
Soft Volume Update
41
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2
Software Soft Mute
41
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3
Input Mixer Control
41
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4
Mono Mixer Control
42
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5
Treble Control
42
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6
Bass Control
43
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7
De-Emphasis Mode (DM)
43
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.8
Analog Control Register (40h)
44
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.9
Dynamic Loudness Contour
45
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.9.1
Loudness Biquads
45
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.9.2
Loudness Gain
45
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.9.3
Loudness Contour Operation
45
. . . . . . . . . . . . . . . . . . . . . . . . .
4.10
Dynamic Range Compression/Expansion (DRCE)
46
. . . . . . . . . . . . . . .
4.11
AllPass Function
46
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.12
Main Control Register 1 (01h)
47
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.13
Main Control Register 2 (43h)
47
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
Filter Processor
51
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
iv
5.1
Biquad Block
51
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.1
Filter Coefficients
51
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.2
Biquad Structure
51
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
I
2
C Serial Control Interface
61
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1
Introduction
61
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2
I
2
C Protocol
61
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.3
Operation
62
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.3.1
Write Cycle Example
62
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.3.2
TAS3002 I
2
C Readback Example
63
. . . . . . . . . . . . . . . . . . . . .
6.3.3
I
2
C Wait States
63
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4
SMBus Operation
64
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.1
Block Write Protocol
64
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.2
Write Byte Protocol
64
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.3
Wait States
65
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.4
TAS3002 SMBus Readback
65
. . . . . . . . . . . . . . . . . . . . . . . . . .
7
Microcontroller Operation
71
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1
General Description
71
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2
Power-Up/Power-Down Reset
71
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2.1
Power-Up Sequence
71
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2.2
Reset
71
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2.3
Reset Circuit
72
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2.4
Fast Load Mode
72
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2.5
Codec Reset
73
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.3
Power-Down Mode
73
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.3.1
Power-Down Timing Sequence
73
. . . . . . . . . . . . . . . . . . . . . . .
7.4
Test Mode
74
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.5
Internal Interface
74
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.6
GPI Terminal Programming
74
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.6.1
GPI Interface
74
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.6.2
GPI Architecture
75
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.7
External EEPROM Memory Maps
77
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
Electrical Characteristics
81
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.1
Absolute Maximum Ratings Over Operating Temperature Ranges
81
.
8.2
Recommended Operating Conditions
81
. . . . . . . . . . . . . . . . . . . . . . . . . .
8.3
Static Digital Specifications
81
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.4
ADC Digital Filter
82
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.5
Analog-to-Digital Converter
83
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.6
Input Multiplexer
84
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.7
DAC Interpolation Filter
84
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.8
Digital-to-Analog Converter
85
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.9
DAC Output Performance Data
85
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.10
I
2
C Serial Port Timing Characteristics
86
. . . . . . . . . . . . . . . . . . . . . . . . . .
9
System Diagrams
91
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10 Mechanical Information
101
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
v
A Software Interface
A1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.1
I
2
C Register Map
A1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.2
Main Control Register Map
A3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.2.1
Main Control Register 1
A3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.2.2
Main Control Register 2
A4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.2.3
Analog Control Register
A4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.3
Volume Gain Command
A6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.4
Treble Control Register Command
A7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.5
Bass Control Register Command
A8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.6
I
2
C Mixer Register Command
A8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.7
Programming Instruction for the Loudness Contour
A10
. . . . . . . . . . . . . .
A.8
Examples of Dynamic Range Compression/Expansion (DRCE)
A10
. . . .
A.8.1
DRCE On/Off
A10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.8.2
Above-Threshold Ratios
A11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.8.3
Below-Threshold Ratios
A12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.8.4
Threshold
A13
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.8.5
Time Constants
A13
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.8.6
DRCE Example With Threshold at 12 dB
A14
. . . . . . . . . . . . .
vi
List of Illustrations
Figure
Title
Page
11
TAS3002 Block Diagram
13
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12
TAS3002 Terminal Assignments
14
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21
MSB-First, Right-Justified, Serial-Interface Format
22
. . . . . . . . . . . . . . . . . .
22
I
2
S Serial-Interface Format
23
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23
MSB-Left-Justified, Serial-Interface Format
24
. . . . . . . . . . . . . . . . . . . . . . . . .
24
For Right-/Left-Justified and I
2
S Serial Protocols
25
. . . . . . . . . . . . . . . . . . . .
31
Analog Input to the TAS3002 Device
31
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
VCOM Decoupling Network
32
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
Analog Output With External Amplifier
32
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
TAS3002 Reference Voltage Filter
33
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
41
TAS3002 Mixer Function
42
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
42
De-Emphasis Mode Frequency Response
43
. . . . . . . . . . . . . . . . . . . . . . . . .
43
Dynamic Loudness Contour Block Diagram
45
. . . . . . . . . . . . . . . . . . . . . . . .
44
TAS3002 Digital Signal Processing Block Diagram
46
. . . . . . . . . . . . . . . . . .
51
Biquad Cascade Configuration
51
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
61
Typical I
2
C Data Transfer Sequence
61
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
71
TAS3002 Reset Circuit
72
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
72
Power-Down Timing Sequence
74
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
73
Internal Interface Flow Chart
76
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
81
ADC Digital Filter Characteristics
82
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
82
ADC Digital Filter Stop-Band Characteristics
82
. . . . . . . . . . . . . . . . . . . . . . .
83
ADC Digital Filter Pass-Band Characteristics
83
. . . . . . . . . . . . . . . . . . . . . . .
84
ADC High-Pass Filter Characteristics
83
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
85
DAC Filter Overall Frequency Characteristics
84
. . . . . . . . . . . . . . . . . . . . . . .
86
DAC Digital Filter Pass-Band Ripple Characteristics
84
. . . . . . . . . . . . . . . . .
87
I
2
C Bus Timing
86
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
91
Stereo Application
91
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
92
TAS3002 Device, 2.1 Channels
92
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A1
TAS3002 DRCE Characteristics in the dB Domain
A11
. . . . . . . . . . . . . . . . . .
A2
DRCE Example With Threshold at 12 dB
A14
. . . . . . . . . . . . . . . . . . . . . . . . .
vii
List of Tables
Table
Title
Page
11
TAS3002 Terminal Functions
14
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21
Serial Interface Options
21
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
41
Analog Control Register Description
44
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
42
Main Control Register 1 Description
47
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
43
Main Control Register 2 Description
47
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
61
I
2
C Protocol Definitions
62
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
62
I
2
C Address Byte Table
62
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
63
I
2
C Wait States
64
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
71
GPI Terminal Programming
75
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
72
512-Byte EEPROM Memory Map 2.0 Channels
77
. . . . . . . . . . . . . . . . . . . .
73
512-Byte EEPROM Memory Map 2.1 Channels (with TAS3001)
78
. . . . .
74
2048-Byte EEPROM Memory Map--2.0 Speakers With
Multiple Equalizations
79
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
75
2048-Byte EEPROM Memory Map--2.1 Speakers With
Multiple Equalizations
710
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A1
I
2
C Register Map
A1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A2
Main Control Register 1 Description
A3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A3
Main Control Register 2 Description
A4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A4
Analog Control Register Description
A5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A5
Volume Versus Gain Values
A6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A6
Treble Control Register
A7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A7
Bass Control Register
A8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A8
Mixer1, Mixer2, and ADC Mixer Gain Values
A9
. . . . . . . . . . . . . . . . . . . . . .
A9
Example of a DRCE I
2
C Instruction With DRCE On
A10
. . . . . . . . . . . . . . . .
A10
Example of a DRCE I
2
C Instruction With DRCE Off
A10
. . . . . . . . . . . . . . . .
A11
Above-Threshold Ratios for Compression
A11
. . . . . . . . . . . . . . . . . . . . . . . . .
A12
Above-Threshold Ratios for Expansion
A12
. . . . . . . . . . . . . . . . . . . . . . . . . . .
A13
Below-Threshold Ratios for Expansion
A12
. . . . . . . . . . . . . . . . . . . . . . . . . . .
A14
Below-Threshold Ratios for Compression
A12
. . . . . . . . . . . . . . . . . . . . . . . . .
A15
Threshold Values
A13
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A16
Time Constants
A14
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
viii
11
1 Introduction
1.1
Description
The TAS3002 device is a system-on-a-chip that replaces conventional analog equalization to perform digital
parametric equalization, dynamic range compression, and loudness contour. Additionally, this device provides
high-quality, soft digital volume, bass, and treble control. All control parameters are uploaded from an outside MCU
through the I
2
C slave port or from an external EEPROM through the I
2
C master port.
The TAS3002 device also has an integrated 24-bit stereo codec with two I
2
C-selectable, single-ended inputs per
channel.
The digital parametric equalization consists of seven cascaded, independent biquad filters per channel. Each biquad
filter has five 24-bit coefficients that can be configured into many different filter functions (such as band-pass,
high-pass, and low-pass).
The internal loudness contour algorithm can be controlled and programmed with an I
2
C command.
Dynamic range compression/expansion (DRCE) is programmable through the I
2
C port. The system designer can set
the threshold, energy estimation time constant, compression ratio, and attack and decay time constants.
The TAS3002 device supports 13 serial interface formats (I
2
S, left justified, right justified) with data word lengths of
16, 18, 20, or 24 bits. The sampling frequency (f
S
) may be set to 32 kHz, 44.1 kHz, or 48 kHz. The 13 serial interface
formats are listed and described in Section 2.1.
The TAS3002 device uses a system clock generated by the internal phase-locked loop (PLL). The reference clock
for the PLL is provided by an external master clock (MCLK) of 256f
S
or 512f
S
, or a 256f
S
crystal.
The TAS3002 device has six internally configurable general-purpose input (GPI) terminals that control volume, bass,
treble, and equalization. Each GPI terminal has a debounce algorithm that is programmed into the TAS3002 internal
microcontroller.
1.2
Features
Programmable seven-band parametric equalization
Programmable digital volume control
Programmable digital bass and treble control
Programmable dynamic range compression/expansion (DRCE)
Programmable loudness contour/dynamic bass control
Configurable serial port for audio data
Two input data channels that can be mixed with digital data from the analog-to-digital converter (ADC) of
the codec (analog input). These channels are controlled by I
2
C commands.
Three output data channels: Left and right data go through equalization; bass, treble, DRCE, and volume
to SDOUT1; SDOUT2 mixes left and right data. SDOUT2 operates as a center channel or subwoofer
channel. The output of the ADC is available for additional processing.
Capability to digitally mix left and right input channels for a monaural output to facilitate subwoofer operation
Serial I
2
C master/slave port that allows:
Downloading of control data to the device externally from the EEPROM or an I
2
C master
Controlling other I
2
C devices
12
Two I
2
C-selectable, single-ended analog input stereo channels
Equalization bypass mode
Single 3.3-V power supply
Power down without reloading the coefficients
Sampling rates of 32 kHz, 44.1 kHz, or 48 kHz
Master clock frequency of 256f
S
or 512f
S
Can have crystal input to replace MCLK. Crystal input frequency is 256f
S
.
Six GPI terminals for volume, bass, treble up/down control, mute, and selection of equalization filters
1.3
Functional Block Diagram
Figure 11 is a block diagram showing the major functions of the TAS3002.
13
Control
PWR_DN
TEST
AINRP
AINRM
AINLM
AINLP
24-Bit
Stereo
ADC
RINA
RINB
AINRM
AINRP
AINLM
AINLP
LINA
LINB
Control
CS1
SDA
SCL
Controller
GPI0
GPI1
GPI2
GPI3
GPI4
GPI5
24-Bit
Stereo DAC
CAP_PLL
MCLK
XT
ALO
MCLKO
CLKSEL
SDIN2
SDIN1
SDATA
Control
LRCLK/O
SCLK/O
SDOUT1
L
L+R
SDOUT2
32-Bit Audio Signal
Processor
AOUTL
VCOM
AOUTR
L+R
R
32-Bit Audio Signal
Processor
OSC/CLK
Select
PLL
Reference
Voltage
Supplies
Analog
Supplies
Digital
IFM/S
RESET
INPA
ALLPASS
XT
ALI/
AV
SS(REF)
V
RFIL
T
AV
DD
AV
SS
V
REFM
DV
DD
DV
SS
V
REFP
I2
C
SDOUT0
Figure 11. TAS3002 Block Diagram
14
1.4
Terminal Assignments
Figure 12 shows the terminal locations on the package outline, along with the signal name assigned to each
terminal.
14 15
NC
AV
DD
NC
GPI5
GPI4
GPI3
GPI2
GPI1
GPI0
ALLPASS
SDOUT1
SDOUT0
36
35
34
33
32
31
30
29
28
27
26
25
16
1
2
3
4
5
6
7
8
9
10
11
12
LINA
V
RFILT
AV
SS(REF)
AV
SS
INPA
RESET
CS1
PWR_DN
TEST
CAP_PLL
CLKSEL
MCLKO
17 18 19 20
AINRM
AINRP
AOUTR
VCOM
47 46 45 44 43
48
42
LINB
AINLP
V
AINLM
40 39 38
41
21 22 23 24
37
13
AOUTL
RINA
RINB
PACKAGE
(TOP VIEW)
XT
ALI/MCLK
XT
ALO
SCL
SDA
DV
DD
DV
SS
LRCLK/O
SCLK/O
IFM/S
SDIN1
SDIN2
SDOUT2
REFM
V
REFP
Figure 12. TAS3002 Terminal Assignments
1.5
Terminal Functions
Table 11 lists the terminals in alphanumeric order by signal name, along with the terminal number, terminal type,
and a description of the terminal function.
Table 11. TAS3002 Terminal Functions
TERMINAL
I/O
DESCRIPTION
NAME
NO.
I/O
DESCRIPTION
AINLM
46
I
ADC left channel analog input (antialias capacitor)
AINLP
47
I
ADC left channel analog input (antialias capacitor)
AINRM
43
I
ADC right channel analog input (antialias capacitor)
AINRP
42
I
ADC right channel analog input (antialias capacitor)
ALLPASS
27
I
Logic high bypasses equalization filters
AOUTL
39
O
Left channel analog output
AOUTR
37
O
Right channel analog output
AVDD
35
I
Analog power supply (3.3 V)
AVSS
4
I
Analog voltage ground
AVSS(REF)
3
I
Analog ground voltage reference
15
Table 11. TAS3002 Terminal Functions (Continued)
TERMINAL
I/O
DESCRIPTION
NAME
NO.
I/O
DESCRIPTION
CAP_PLL
10
I
Loop filter for internal phase-locked loop (PLL)
CLKSEL
11
I
Logic low selects 256fS; logic high selects 512fS MCLK
CS1
7
I
I2C address bit A0; low = 68h, high = 6Ah
DVDD
17
I
Digital power supply (3.3 V)
DVSS
18
I
Digital ground
GPI0
GPI1
GPI2
GPI3
GPI4
GPI5
28
29
30
31
32
33
I
Switch input terminals
IFM/S
21
I
Digital audio I/O control (low = input; high = output)
INPA
5
O
Low when analog input A is selected (will sink 4 mA)
LINA
1
I
Left channel analog input 1
LINB
48
I
Left channel analog input 2
LRCLK/O
19
I/O
Left/right clock input/output (output when IFM/S is high)
MCLKO
12
O
MCLK output for slave devices
NC
34
No connection; Can be used as a printed circuit board routing channel
NC
36
No connection; Can be used as a printed circuit board routing channel
PWR_DN
8
I
Logic high places the TAS3002 device in power-down mode
RESET
6
I
Logic low resets the TAS3002 device to the initial state
RINA
40
I
Right channel analog input 1
RINB
41
I
Right channel analog input 2
SCL
15
I/O
I2C clock connection
SCLK/O
20
I/O
Shift (bit) clock input (output when IFM/S is high)
SDA
16
I/O
I2C data connection
SDIN1
22
I
Serial data input 1
SDIN2
23
I
Serial data input 2
SDOUT0
25
O
Serial data output from ADC
SDOUT1
26
O
Serial data output (from internal audio processing)
SDOUT2
24
O
Serial data output (a monaural mix of left and right, before processing)
TEST
9
I
Reserved manufacturing test terminal; connect to DVSS
VCOM
38
O
Digital-to-analog converter mid-rail supply (decouple with parallel combination of 10-
F and 0.1-
F
capacitors)
VREFM
45
I
ADC minus voltage reference
VREFP
44
I
ADC plus voltage reference
VRFILT
2
O
Voltage reference low pass filter
XTALI/MCLK
13
I
Crystal or external MCLK input
XTALO
14
I
Crystal input (crystal is connected between terminals 13 and 14)
16
21
2 Audio Data Formats
2.1
Serial Interface Formats
The TAS3002 device works in master or slave mode.
In the master mode, terminal 21 (IFM/S) is tied high. This activates the master clock (MCLK) circuitry. A crystal can
be connected across terminals 13 (XTALI/MCLK) and 14 (XTALO), or an external, TTL-compatible MCLK can be
connected to XTALI/MCLK. In that case, MCLK is outputs on terminal 12 (MCLKO), with terminals 19 (LRCLK/O) and
20 (SCLK/O) becoming outputs to drive slave devices.
In the slave mode, IFM/S is tied low. LRCLK/O and SCLK/O are inputs and the interface operates as a slave device
requiring externally supplied MCLK, LRCLK (left/right clock), and SCLK (shift clock) inputs. There are two options
for selecting the clock rates. If the 512f
S
MCLK rate is selected, terminal 11 (CLKSEL) is tied high and an MCLK rate
of 512f
S
must be supplied. If the 256f
S
MCLK is selected, CLKSEL is tied low and an MCLK of 256f
S
must be supplied.
In both cases, an LRCLK of 64SCLK must be supplied.
MCLK and SCLK must be synchronous and their edges must be at least 3 ns apart.
If the LRCLK phase changes by more than 10 cycles ofMCLK, the codec automatically resets.
The TAS3002 device is compatible with 13 different serial interfaces. Available interface options are I
2
S, right justified,
and left justified. Table 21 indicates how the 13 options are selected using the I
2
C bus and the main control register
(MCR, I
2
C address 01h). All serial interface options at either 16, 18, 20, or 24 bits operate with SCLK at 64f
S
.
Additionally, the 16-bit mode operates at 32f
S
.
Table 21. Serial Interface Options
MODE
MCR BIT (6)
MCR BIT (54)
MCR BIT (10)
SERIAL INTERFACE
SDIN1, SDIN2, SDOUT1, SDOUT2, AND SDOUT0
0
0
00
00
16-bit, 32fS
1
1
00
00
16-bit, left justified, 64fS
2
1
01
00
16-bit, right justified, 64fS
3
1
10
00
16-bit, I2S, 64fS
4
1
00
01
18-bit, left justified, 64fS
5
1
01
01
18-bit, right justified, 64fS
6
1
10
01
18-bit, I2S, 64fS
7
1
00
10
20-bit, left justified, 64fS
8
1
01
10
20-bit, right justified, 64fS
9
1
10
10
20-bit, I2S, 64fS
10
1
00
11
24-bit, left justified, 64fS
11
1
01
11
24-bit, right justified, 64fS
12
1
10
11
24-bit, I2S, 64fS
Figure 21 through Figure 23 illustrate the relationship between the SCLK, LRCLK, and the serial data I/O for the
different interface protocols.
22
2.2
Digital Output Modes
The digital output modes (SDOUT1, SDOUT2, SDOUT0) are described in Sections 2.2.1 through 2.2.3.
2.2.1
MSB-First, Right-Justified, Serial-Interface Format
The normal output mode for the MSB-first, right-justified, serial-interface format is for 16, 18, 20, or 24 bits. Figure 21
shows the following characteristics of this protocol:
Left channel is transmitted when LRCLK is high.
The SDIN(s) (recorded) data is justified to the trailing edge of the LRCLK.
The SDOUT(s) MSB (playback) data is transmitted at the same time as LRCLK edge and captured at the
next rising edge of SCLK.
If the LRCLK phase changes by more than 10 cycles ofMCLK, the codec automatically resets.
SCLK
LRCLK = fS
MSB
LSB
... ...
... ...
... ...
MSB
LSB
... ...
SDIN
MSB
LSB
... ...
... ...
MSB
LSB
... ...
Left Channel
Right Channel
SDOUT
... ...
Figure 21. MSB-First, Right-Justified, Serial-Interface Format
23
2.2.2
I
2
S Serial-Interface Format
The normal output mode for the I
2
S serial-interface format is for 16, 18, 20, or 24 bits.
Figure 22 shows the following characteristics of this protocol:
Left channel is transmitted when LRCLK is low.
SDIN is sampled with the rising edge of SCLK.
SDOUT is transmitted on the falling edge of SCLK.
If the LRCLK phase changes by more than 10 cycles ofMCLK, the codec automatically resets.
SCLK
LRCLK = fS
X
LSB
SDIN
X
LSB
Left Channel
Right Channel
SDOUT
... ...
... ...
...
...
MSB
MSB
X
LSB
X
LSB
... ...
... ...
...
...
MSB
MSB
Figure 22. I
2
S Serial-Interface Format
24
2.2.3
MSB-Left-Justified, Serial-Interface Format
The normal output mode for the MSB-left-justified, serial-interface format is for 16, 18, 20, or 24 bits.
Figure 23 shows the following characteristics of this protocol:
Left channel is transmitted when LRCLK is high.
The SDIN data is justified to the leading edge of the LRCLK.
The MSBs are transmitted at the same time as LRCLK edge and captured at the next rising edge of SCLK.
SCLK
LRCLK = fS
MSB
LSB
... ...
MSB
LSB
... ...
SDIN
MSB
LSB
... ...
MSB
LSB
... ...
Left Channel
Right Channel
SDOUT
... ...
... ...
... ...
... ...
Figure 23. MSB-Left-Justified, Serial-Interface Format
25
2.3
Switching Characteristics
PARAMETER
MIN
TYP
MAX
UNIT
tc(SCLK)
SCLK cycle time
325.5
ns
td(SLR)
SCLK rising to LRCLK edge
20
ns
td(SDOUT)
SDOUT valid from SCLK falling edge (see Note 1)
(1/256fS) + 10
ns
tsu(SDIN)
SDIN setup before SCLK rising edge
20
ns
th(SDIN)
SDIN hold after SCLK rising edge
100
ns
f(LRCLK)
LRCLK frequency
32
44.1
48
kHz
Duty cycle
50
%
NOTE 1: Maximum of 50-pF external load on SDOUT.
SCLK
LRCLK
SDIN1
SDIN2
SDOUT1
SDOUT2
SDOUT0
tc(SCLK)
td(SDOUT)
tsu(SDIN)
th(SDIN)
td(SLR)
tf(SCLK)
tr(SCLK)
td(SLR)
Figure 24. For Right-/Left-Justified and I
2
S Serial Protocols
26
31
3 Analog Input/Output
The TAS3002 device contains a stereo 24-bit ADC with two single-ended inputs per channel. Selection of the A or
B analog input is accomplished by setting a bit in the analog control register (ACR) by an I
2
C command. Additionally,
the TAS3002 device has a stereo 24-bit digital-to-analog converter (DAC).
3.1
Analog Input
Figure 31 shows the technique and components required for analog input to the TAS3002 device. The maximum
input signal must not exceed 0.7 V
rms
. Selection of the above component values gives a frequency response from
20 Hz to 20 kHz at a sampling frequency of 48 kHz without alias frequency problems.
AINRP
AINRM
AINLM
AINLP
24-Bit
Stereo
ADC
RINA
RINB
AINRM
AINRP
AINLM
AINLP
LINA
LINB
Reference
Voltage
1200 pF
1200 pF
0.47
F
0.47
F
1
1
0.47
F
0.47
F
1
1
2
2
1
Analog Inputs Use 0.47
F for 20-Hz Cutoff
2
Anti-Alias Capacitors for fS = 48 kHz
Input Select Command
From Internal Controller
3
Tie unused analog inputs to analog ground through 0.1-
F capacitors.
Figure 31. Analog Input to the TAS3002 Device
3.2
Analog Output
3.2.1
Direct Analog Output
The full scale analog output from the TAS3002 device is 0.707 V
rms
. It is referenced to VCOM which is approximately
1.5 Vdc. VCOM must be decoupled with the network shown in Figure 32.
32
AOUTR
10
F
24-Bit
DAC
AOUTL
VCOM
+
0.1
F
AGND
Analog Output
(Adjust Capacitors for Desired
Low Frequency Response)
Figure 32. VCOM Decoupling Network
3.2.2
Analog Output With Gain
Because the maximum analog output from the TAS3002 device is 0.707 V
rms
, the output level can be increased by
using an external amplifier. The circuit shown in Figure 33 boosts the output level to 1 V
rms
(when it has a gain of
1.414) and provides improved signal-to-noise ratio (SNR). Since this circuit lowers the noise floor, THD + N is
improved also.
AOUTR
10
F
Analog Output
(Adjust Capacitors for Desired
Low Frequency Response)
24-Bit
DAC
AOUTL
VCOM
+
0.1
F
AGND
+
+5 Op Amp/2
+
+5 Op Amp/2
TLV2362
or Equilvalent
TLV2362
or Equilvalent
C1
C2
C3
C5
C5
C4
C1 = C2 = C3
C4 = C5
Figure 33. Analog Output With External Amplifier
33
3.2.3
Reference Voltage Filter
Figure 34 shows the TAS3002 reference voltage filter.
0.1
F
15
F
+
0.1
F
1
F
+
0.1
F
4
2
3
45
44
VREFP
AV
SS
AV
SS(REF)
V
RFIL
T
V
REFM
TAS3002
Figure 34. TAS3002 Reference Voltage Filter
34
41
4 Audio Control/Enhancement Functions
4.1
Soft Volume Update
The TAS3002 device implements a TI proprietary soft volume update. This feature allows a smooth and
pleasant-sounding change from one volume level to another over the entire range of volume control (18 dB to mute).
The volume is adjustable by downloading a gain coefficient through the I
2
C interface in 4.16 format--4 bits for the
integer and 16 bits for the fractional part. Table A5 lists the 4.16 coefficients converted into dB for the range of 70
dB to 18 dB with 0.5-dB step resolution.
Right and left channel volumes can be unganged and set to different values. This feature implements a balance
control.
Volume is changed by writing the desired value into the volume control registers. This is done by asserting the
volume-up or volume-down GPI terminal (see Section 7.6.1) for a limited range of volume control. Alternatively,
volume control settings can be sent to the TAS3002 device over the I
2
C bus.
4.2
Software Soft Mute
Soft mute is implemented by loading all zeros in the volume control register. This causes the volume to ramp down
over a duration of 2048f
S
samples to a final output of 0 ( infinity dB).
Soft mute can be enabled by either asserting the mute GPI terminal (see Section 7.6.1) or sending a mute command
over the I
2
C bus. Subsequent assertions of the mute GPI terminal toggle soft mute off and on.
4.3
Input Mixer Control
The TAS3002 device is capable of mixing and multiplexing three channels (SDIN1, SDIN2, and the ADC output) of
serial audio data. The mixing is controlled through three mixer control registers. This is accomplished by loading
values into the corresponding bytes of the mixer left gain (07h) and mixer right gain (08h) control registers. See
Figure 41 for a functional block diagram of the input mixer.
The values loaded into these registers are in 4.20 format--4 bits for the integer and 20 bits for the fractional part.
Table A8 lists the 4.20 numbers converted into dB for the range of 70 dB to 18 dB, although any positive 4.20
number may be used.
To mute any of the channels, 0s are loaded into the respective mixer control register.
Mixer controls are updated instantly and can cause audible artifacts for large changes in setting when updated
dynamically outside of the fast load mode; therefore, it is desirable to use fast load in conjunction with the soft-volume
mode.
SDIN1, SDIN2, and the ADC output can be mixed with a user-selectable gain for each channel. The gain control
registers are represented in 4.20 format.
42
SDIN2_L
7 Biquad
Filters
Tone
Soft
Volume
DRCE
SDIN1_L
ADC_L
SDOUT1
7 Biquad
Filters
Tone
Soft
Volume
DRCE
SDIN2_R
SDIN1_R
ADC_R
SDOUT2
1/2
L + R_SUM
Right Channel Mix Coefficients
I2C Register Address 07h
SDIN1 ^ SDIN2 ^ ADC
= (3) 24-Bit Right Mix Coefficient
Left Channel Mix Coefficients
I2C Register Address 08h
= (3) 24-Bit Left Mix Coefficient
SDIN1 ^ SDIN2 ^ ADC
1/2
L_SUM
R_SUM
Figure 41. TAS3002 Mixer Function
4.4
Mono Mixer Control
The TAS3002 device contains a second mixer that performs the function of mixing left and right channel digital audio
data from the input mixer in order to derive a monaural channel. This mixer has a fixed gain of 6 dB so that full scale
inputs on L_sum and R_sum do not produce clipping on the resulting L+R_sum.
The output of this mixer is present on terminal 24 (SDOUT2) and is generally used for a digitally-mixed subwoofer
or center channel application.
4.5
Treble Control
The treble gain level may be adjusted within the range of 15 dB to 15 dB with 0.5-dB step resolution. The level
changes are accomplished by downloading treble codes (shown in Table A6) into the treble gain register.
Alternatively, a limited range of treble control is available by asserting the treble-up or treble-down GPI terminal (see
Section 7.6.1).
The treble control has a corner frequency of 6 kHz at a 48-kHz sample rate.
The gain values for treble control can be found in Section A.4.
43
4.6
Bass Control
The bass gain level can be adjusted within the range of 15 dB to 15 dB with 0.5-dB step resolution. The level changes
are accomplished by downloading bass codes (shown in Table A7) into the bass frequency control register.
Alternatively, a limited range of bass control is available by asserting the bass-up or bass-down GPI terminal (see
Section 7.6.1).
Bass control is a shelf filter with a corner frequency of 250 Hz at a 48-kHz sample rate.
The gain values for bass control can be found in Section A.5.
4.7
De-Emphasis Mode (DM)
De-emphasis is implemented in the DAC and is software controlled. De-emphasis is valid at 44.1 kHz and 48 kHz.
To enable de-emphasis, values are written into the analog control register via the I
2
C command. See Section 4.8 for
analog control register operation.
Figure 42 illustrates the frequency response of the de-emphasis mode.
Response (dB)
3.18
(50
s)
10.6
(15
s)
Frequency (kHz)
De-Emphasis
Figure 42. De-Emphasis Mode Frequency Response
44
4.8
Analog Control Register (40h)
The analog control register (ACR) allows control of de-emphasis, selection of the analog input channel to the ADC,
and analog power down.
An I
2
C master is required to write the appropriate command into the ACR. The ACR subaddress is 40h.
Bit
7
6
5
4
3
2
1
0
Type
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Default
0
0
0
0
0
0
0
0
Table 41. Analog Control Register Description
BIT
FIELD NAME
TYPE
DESCRIPTION
7
Reserved
R/W
Reset to 0
6
Reserved
R/W
Reset to 0
54
Reserved
R/W
Reserved. Bits 5 and 4 return 0s when read.
32
DM(10)
R/W
De-emphasis control
00 = De-emphasis off (initial condition after reset)
01 = 48 kHz sample rate de-emphasis selected
10 = 44.1 kHz sample rate de-emphasis selected
11 = Reserved
1
INP
R/W
Analog input select
0 = LINA and RINA selected (initial condition after reset)
1 = LINB and RINB selected
0
APD
R/W
Analog power down
0 = Normal operation (initial condition after reset)
1 = Power down
45
4.9
Dynamic Loudness Contour
The necessity for applying loudness compensation to playback systems to compensate for the fact that the ear
perceives bass and treble less audibly at low levels than at high ones has been established since the first data was
published by Fletcher and Munson in 1933.
There are many equal-loudness contours in publication, like Steven's contours, Robinson and Dadson contours.
Some have even reached the acceptance level of ISO recommendation.
The TAS3002 device has a simplified loudness contour algorithm that diminishes the effect of weak bass at low
listening levels. Since contour has volume level dependency, the user must define the relation between the gain of
the contour circuit and the volume level.
Figure 43 is a block diagram of this circuit.
Volume
Biquad
Gain
Figure 43. Dynamic Loudness Contour Block Diagram
The loudness contour is activated by sending an activation command via I
2
C from an external device. Optionally, a
contour gain command can be sent by an external device to provide tracking with the system volume control.
4.9.1
Loudness Biquads
Loudness biquad filters for the left and right channels are independently programmable via I
2
C. Their subaddresses
are 21h and 22h, respectively. The digital filters are written as five 24-bit (4.20) hex coefficients for each channel.
4.9.2
Loudness Gain
Loudness gain values for the left and right channels are independently programmable via I
2
C. Their subaddresses
are 23h and 24h, respectively. The gain values are written as one 4.20 hex coefficient for each channel.
4.9.3
Loudness Contour Operation
When the frequency of the loudness contour is determined, a digital filter must be developed. Then, the gain of the
filter is determined. These values are placed in the storage area of the system controller (microcontroller) and sent
to the TAS3002 device when it is desired to activate the loudness contour.
If it is necessary to change the frequency or gain of the contour, new gain and filter coefficients are sent by the system
controller. This function is performed normally when the volume control is changed (that is, more volume, less
contour). The gain of the loudness contour filter then tracks the volume control.
The loudness contour biquad filters are provided in addition to the seven equalization biquad filters.
See Section A.7 for programming instructions.
46
4.10 Dynamic Range Compression/Expansion (DRCE)
The TAS3002 device provides the user with the ability to manage the dynamic range of the audio system. The DRCE
receives data, and affects scaling after the volume/loudness block. As shown in Figure 44, the DRCE is applied after
the volume/loudness control block as a DRCE scale factor. The DRCE must be adjusted such that the signal does
not reach the hard limit value. However, if the signal does reach the maximum digital value, the saturation logic serves
as a hard limiter that does not allow the signal to extend beyond the available range.
SDIN2_L
(7)
2nd Order
IIR Filters
Bass/
Treble
Soft
Volume/
LEFT_OUT
Loudness
(Parametric
Equalization)
(Tone)
LEFT_SUM
SDIN1_L
(Left Channel Mixer)
ANALOGIN_L
(DRCE Scaling)
Saturation
Logic
Dynamic
Range
Control
(Analog in From ADC)
SDIN2_R
(7)
2nd Order
IIR Filters
Bass/
Treble
Soft
Volume/
RIGHT_OUT
Loudness
(Parametric
Equalization)
(Tone)
RIGHT_SUM
SDIN1_R
(Right Channel Mixer)
ANALOGIN_R
(DRCE Scaling)
Saturation
Logic
Figure 44. TAS3002 Digital Signal Processing Block Diagram
The DRCE instruction consists of eight bytes that must be sent each time in the order shown in the example code
of Table A9. Each instruction downloaded must be eight bytes. If only one byte is changed, all eight bytes must be
transmitted. The first two bytes remain the same for every instruction, however the last six bytes can be programmed
using hexadecimal values from the corresponding tables referred to in Section A.8.
With high compression ratios and fast attack times available, this function is suited for a commercial killer in a
television set application.
4.11 AllPass Function
This function is enabled by setting terminal 27 (ALLPASS) on the TAS3002 device to 1. When asserted, the internal
equalization filters are set into AllPass (flat) mode. When this terminal is reset to 0, the equalization filters are returned
to the equalization that was in use before the terminal was asserted.
In AllPass mode, the bass and treble controls are still functional.
This function is frequently used for headphones. When the headphone plug is inserted into its jack, a switched contact
in the jack enables the AllPass function.
The AllPass function also can be activated by writing a 1 to bit 2 of the analog control register.
47
4.12 Main Control Register 1 (01h)
The TAS3002 device contains two main control registers: main control register 1 (MCR1) and main control register 2
(MCR2). The MCR1 register contains the bits associated with load speed, SCLK frequency, serial-port mode, and
serial-port word length. It is accessed via I
2
C with the address 01h.
MCR1 (01h)
Bit
b7
b6
b5
b4
b3
b2
b1
b0
Type
R/W
R/W
R/W
R/W
R
R
R/W
R/W
Default
1
X
X
X
X
X
X
X
Table 42. Main Control Register 1 Description
BIT
FIELD NAME
TYPE
DESCRIPTION
7
FL
R/W
Fast load
0 = Normal operation mode
1 = Fast -load mode (default)
6
SC
R/W
SCLK frequency
0 = SCLK is 32 fS
.
1 = SCLK is 64 fS.
54
E
R/W
Serial port mode
00 = Left justified
01 = Right justified
10 = I2S
11 = Reserved
32
Reserved
R
Reserved
10
W
R/W
Serial port word length
00 = 16-bit
01 = 18-bit
10 = 20-bit
11 = 24-bit
4.13 Main Control Register 2 (43h)
The TAS3002 device contains two main control registers: main control register 1 (MCR1) and main control register 2
(MCR2). The MCR2 register contains the bits associated with the AllPass function and the download of bass and
treble control information, and it is accessed via I
2
C with the address 43h.
MCR2 (43h)
Bit
7
6
5
4
3
2
1
0
Type
R/W
R
R
R
R
R
R/W
R
Default
0
0
0
x
x
x
0
0
Table 43. Main Control Register 2 Description
BIT
FIELD NAME
TYPE
DESCRIPTION
7
Reserved
R/W
0 = Normal operation (initial condition after reset)
1 = Download bass and treble
65
Reserved
R
Reserved. Bits 6 and 5 return 0s when read.
42
Reserved
R
Undefined.
1
DM(10)
R/W
0 = Normal operation (initial condition after reset)
1 = AllPass mode (bass and treble are still functional)
0
INP
R
Reserved. Bit 0 returns 0 when read.
48
51
5 Filter Processor
5.1
Biquad Block
The biquad block consists of seven digital biquad filters per channel organized in a cascade structure, as shown in
Figure 51. Each of these biquad filters has five downloadable 24-bit (4.20) coefficients. Each stereo channel has
independent coefficients.
Biquad 1 ...
Biquad 0
Biquad 6
Figure 51. Biquad Cascade Configuration
5.1.1
Filter Coefficients
The filter coefficients for the TAS3002 device are downloaded through the I
2
C port and loaded into the biquad memory
space. Each biquad filter memory space has an independent address. Digital audio data coming into the device is
processed by the biquad block and then converted into analog waveforms by the DAC. Alternatively, filters can be
loaded by asserting terminals on the GPI port.
5.1.2
Biquad Structure
The biquad structure that is used for the parametric equalization filters is as follows:
H(z)
+
b
0
)
b
1
z
*
1
)
b
2
z
*
2
a
0
)
a
1
z
*
1
)
a
2
z
*
2
NOTE: a
0
is fixed at value 1 and is not downloadable.
The coefficients for these filters are represented in 4.20 format--4 bits for the integer part and 20 bits for the fractional
part. In order to transmit them over I
2
C, it is necessary to separate each coefficient into three bytes. The upper 4 bits
of byte 2 comprise the integer part; the lower 4 bytes of byte 2 plus byte 1 and byte 0 comprise the fractional part.
The filters can be designed using the automatic loudspeaker equalization program (ALE) or a script running under
MatLab named Filtermaker. Both of these tools are available from Texas Instruments.
(1)
52
61
6 I
2
C Serial Control Interface
6.1
Introduction
Control parameters for the TAS3002 device can be loaded from an I
2
C serial EEPROM by using the TAS3002 master
interface mode. If no EEPROM is found, the TAS3002 device becomes a slave device and loads from another I
2
C
master interface. Information loaded into the TAS3002 registers is defined in Appendix A.
The I
2
C bus uses terminals 16 (SDA for data) and 15 (SCL for clock) to communicate between integrated circuits in
a system. These devices can be addressed by sending a unique 7-bit slave address plus R/W bit (1 byte). All
compatible devices share the same terminals via a bidirectional bus using a wired-AND connection. An external
pullup resistor must be used to set the high level on the bus. The TAS3002 device operates in standard mode up to
100 kbps with as many devices on the bus as desired up to the capacitance load limit of 400 pF.
Furthermore, the TAS3002 device supports a subset of the SMBus protocol. When it is attached to the SMBus, then
byte, word, and block transfers are supported. The SMBus NAK function is not supported and care must be taken
with the sequence of the instructions sent to the TAS3002 device.
Additionally, the TAS3002 device operates in either master or slave mode; therefore, at least one device connected
to the I
2
C bus must operate in master mode.
6.2
I
2
C Protocol
The bus standard uses transitions on SDA while the clock is high to indicate start and stop conditions. A high-to-low
transition on SDA indicates a start and a low-to-high transition indicates a stop. Normal data bit transitions must occur
within the low time of the clock period. Figure 61 shows these conditions. These start and stop conditions for the
I
2
C bus are required by standard protocol to be generated by the master. The master must also generate the 7-bit
slave address and the read/write (R/W) bit to open communication with another device and then wait for an
acknowledge condition. The slave holds SDA low during acknowledge clock period to indicate an acknowledgment.
When this occurs, the master transmits the next byte of the sequence.
After each 8-bit word, an acknowledgment must be transmitted by the receiving device. There is no limit on the
number of bytes that can be transmitted between start and stop conditions. When the last word transfers, the master
generates a stop condition to release the bus. Figure 61 shows a generic data transfer sequence.
8-Bit Register Data
for Address (N+2)
SCL
SDA
Start
0
A
1
6
7
8-Bit Register Data
for Address (N+1)
0
A
1
6
7
8-Bit Register Data
for Address (N)
0
A
1
6
7
7-Bit
Slave Address
0
A
1
6
7
R/
W
Stop
Figure 61. Typical I
2
C Data Transfer Sequence
62
Table 61 lists the definitions used by the I
2
C protocol.
Table 61. I
2
C Protocol Definitions
DEFINITION
DESCRIPTION
Transmitter
The device that sends data
Receiver
The device that receives data
Master
The device that initiates a transfer, generates clock signals, and terminates the transfer
Slave
The device addressed by the master
Multimaster
More than one master can attempt to control the bus at the same time without corrupting the message.
Arbitration
Procedure to ensure the message is not corrupted when two masters attempt to control the bus.
Synchronization
Procedure to synchronize the clock signals of two or more devices
6.3
Operation
The 7-bit address for the TAS3002 device is 0110 10X R/W where X is a programmable address bit, set by terminal 7
(CS1). Combining CS1 and the R/W bit, the TAS3002 device can respond to four different I
2
C addresses (two read
and two write). These two addresses are licensed I
2
C addresses that do not conflict with other licensed I
2
C audio
devices. In addition to the 7-bit device address, subaddresses direct communication to the proper memory location
within the device. A complete table of subaddresses and control registers is provided in Appendix A. For example,
to change bass to 10-dB gain, Section 6.3.1 shows the data that is written to the I
2
C port:
Table 62. I
2
C Address Byte Table
I2C ADDRESS BYTE
A6A1
CS1 (A0)
R/W
68h
011010
0
0
69h
011010
0
1
6Ah
011010
1
0
6Bh
011010
1
1
6.3.1
Write Cycle Example
Start
Slave Address
R/W
A
Subaddress
A
Data
A
Stop
FUNCTION
DESCRIPTION
Start
Start condition as defined in I2C
Slave address
0110100 (CS1 = 0)
R/W
0 (write)
A
Acknowledgement as defined in I2C (slave)
Subaddress (treble control register)
0000 0101
Data (0 dB gain)
0111 0010
Stop
Stop condition as defined in I2C
NOTE: Table is for serial data (SDA); serial clock (SCL) is not shown but conditions apply as well.
Whenever writing to a subaddress, the correct number of data bytes must follow in order to complete the write cycle.
For example, if the volume control register with subaddress 04h is written to, six bytes of data must follow; otherwise,
the cycle is incomplete and errors occur.
63
6.3.2
TAS3002 I
2
C Readback Example
The TAS3002 saves in a stack or first-in first-out (FIFO) buffer the last 7 bytes that were sent to it. When an I
2
C read
command is sent to the device (LSB=high), it answers by popping the first byte off the stack. The TAS3002 then
expects either a Send Ack command or an I
2
C Stop command from the host. If a Send Ack command is sent from
the host then the TAS3002 pops another byte off the stack. If an I
2
C Stop is sent then the TAS3002 ends this
transaction. The proper sequence for reading is described as follows:
I2C Start
Send I2C address byte with read bit set to 1 (LSB set equal to 1)
Receive Byte 0
Send Ack
Receive Byte 1
Send Ack
Receive Byte 2
Send Ack
Receive Byte 3
Send Ack
Receive Byte 4
Send Ack
Receive Byte 5
Send Ack
Receive Byte 6 (if an ACK is sent after byte 6 it locks up the TAS3002)
I2C Stop
Where:
I
2
C Start is a valid I
2
C Start command.
Receive Byte is a valid I
2
C command which reads a byte from the TAS3002.
Send Ack is a a valid I
2
C command that informs the TAS3002 that a byte has been read.
I
2
C Stop is a valid I
2
C Stop command.
NOTES:
1. The TAS3002 will appear to be locked up, if a Send Ack is issued after the last byte read. It is required to send an I2C Stop command
after the last byte and not a Send Ack.
2. The I2C Start and I2C Stop commands are the same for both I2C read and I2C write.
6.3.3
I
2
C Wait States
The TAS3002 device performs interpolation algorithms for its volume and tone controls. If a volume or tone change
is sent to the part via I
2
C, the command sent after the volume or tone (bass and treble) change causes an I
2
C wait
state to occur. This wait state lasts from 41 ms to 231 ms, depending on the system clock rate, the command sent,
and, in the case of bass or treble, the amount of the change.
Secondly, if a long series of commands is sent to the TAS3002 device, it may occasionally create a short wait state
on the order of 150
s to 300
s while it loads and processes the commands.
When a sample rate of 32 kHz is used, longer wait states can occur, occasionally up to 15 ms.
The preferred way to take care of wait states is to use an I
2
C controller that recognizes wait states. During the wait
state period, it stops sending data over I
2
C. If this function is not available on the system controller, fixed delays can
be implemented in the system software to ensure that the controller is not trying to send more data while the TAS3002
device is busy. Sending I
2
C data while the TAS3002 device is busy causes errors and locks up the device, which must
then be reset.
64
Table 63 gives typical values of the wait states that can be expected with the various functions of the part:
Table 63. I
2
C Wait States
SYSTEM SAMPLING FREQUENCY
32 kHz
44.1 kHz
48 kHz
Comment
Volume
62 ms
49 ms
41 ms
Not dependent on size of change
Bass
231 ms
167 ms
153 ms
0 to 18 dB
Treble
231 ms
167 ms
153 ms
0 to 18 dB
DRC on
300
s
300
s
300
s
Mixer
None
None
None
Loudness
None
None
None
Equalization
15 ms
190
s
300
s
Can occur with each filter
6.4
SMBus Operation
The TAS3002 device supports a subset of the SMBus protocol. With proper programming techniques, it is possible
to use the SMBus to set up the TAS3002 device.
6.4.1
Block Write Protocol
The TAS3002 device supports the block write protocol that allows up to 32 bytes to be sent as a block. To send a
command using this format, the most significant bit (MSB) of the TAS3002 subaddress must be set high and the
subaddress (also with MSB set high) must be programmed into the SMBus command byte. This operation signals
the TAS3002 device that the next byte is the SMBus byte-count byte. The next byte after the byte count is then entered
into the device as the first byte of data.
SMBus
Command Byte
68h
8rh
xx
dd
dd
dd
TAS3002
Address
Subaddress
(r = subaddress)
Byte Count
(Don't Care)
Data
Data
Data
6.4.2
Write Byte Protocol
The TAS3002 device also supports the SMBus write byte protocol. Writing to the main control register (MCR), bass,
and treble registers requires using the byte write protocol. To send a command using this protocol, the most significant
bit (MSB) of the TAS3002 subaddress must be set high and the subaddress (also with MSB set high) must be
programmed into the SMBus command byte. The next byte after the command byte is then entered into the device
as the first byte of data.
SMBus
Command Byte
68h
8rh
dd
TAS3002
Address
Subaddress
(r = subaddress)
Data
65
6.4.3
Wait States
If separate I
2
C/SMBus commands are sent too frequently, the TAS3002 device can generate a bus wait state. This
happens when the device is busy while performing smoothing operations and changing volume, bass, and treble.
The wait occurs after the bus acknowledge on the first data byte and can exceed the maximum allowable time allowed
according to the SMBus specification (worst case 200 ms).
The following is a possible bus wait state scenario:
CODE
Start
68
84
06
01
00
00
01
00
00
Stop
ACTUAL
Start
68
84
06
01
Wait
00
00
01
00
00
Stop
If the master does not recognize bus waiting or if the master times out on a long wait, the master must not send consecutive I2C/SMBus commands
without a time interval of 200 ms between transactions.
6.4.4
TAS3002 SMBus Readback
The TAS3002 device supports a subset of SMBus readback. When an SMBus read command is sent to the device
(LSB = high), it answers with the subaddress and the last six bytes written.
SMBus
Command
Byte
Byte
Count
SENT
Start
69h
xxh
07h
Stop
RECEIVED
Start
07h
aah
ddh
ddh
ddh
ddh
ddh
ddh
Stop
Byte
Count
Where:
xxh
= Command byte. It is a don't care because the response contains only the subaddress and the
last six bytes of data written to the TAS3002 device.
aah
= The last subaddress accessed in the device
ddh
= Data bytes from the TAS3002 device
NOTE: Use read sequence defined in 6.3.2
66
71
7 Microcontroller Operation
The TAS3002 device contains an internal microcontroller programmed by Texas Instruments to perform
housekeeping and interface functions. Additionally, it handles I
2
C communication and general purpose input
functions.
7.1
General Description
The microcontroller uses a 256f
S
system clock and can access up to 8K bytes of memory. It interfaces with the digital
audio interface I
2
C master/slave for downloading data and coefficients. It also interfaces with two internal DSPs for
transferring coefficients and other information.
The TAS3002 coefficients are loaded through I
2
C in the master or slave mode. Standard audio processing functions
(volume, bass, and treble) can be controlled/activated through external switches connected to the six GPI terminals.
Upon reset, the internal microcontroller sets all coefficients and audio parameters to the default values. See
Section 7.2.2 for default values.
If the TAS3002 address is 68h (ADDR_SEL=0), it becomes the bus master device and attempts to load parameters
and coefficients from the external EEPROM. If no EEPROM is present, the TAS3002 device remains in its default
condition. If addresses other than 68h/69h are set, the TAS3002 device only operates as an I
2
C slave device.
If the microcontroller determines the TAS3002 device has an I
2
C address of 68h/69h and the EEPROM is present,
the microcontroller downloads coefficients from the EEPROM. Once the download is complete, it enables the serial
audio in the mode defined by an I
2
C write to the MCR to transfer data into and out of the device. Before reading the
EEPROM, the serial audio port defaults to I
2
S mode.
The TAS3002 device allows the user to update volume, bass, and treble dynamically by an I
2
C slave command or
by a simple GPI input. The GPI can select volume up and down, bass/treble up and down, or digital equalizations.
Up to five different equalizations (that is, flat, jazz, rock, voice, etc.) can be stored in the external EEPROM. Also,
DRCE, MCR1, MCR2, and loudness contour are enabled and disabled by I
2
C.
When the TAS3002 device operates in the I
2
C master mode, it echoes changes to all of its functions to other I
2
C
addresses that are defined in its external EEPROM. If no addresses are defined, it does not echo.
7.2
Power-Up/Power-Down Reset
7.2.1
Power-Up Sequence
An active low on terminal 6 (RESET) while MCLK is running resets the internal microcontroller and DSPs. RESET
synchronizes internally and can be asserted asynchronously or with the simple RC circuit in Figure 71. On reset,
SCL and SDA go to a high-impedance state. If the I
2
C address is set to 68h, approximately 400
s after RESET
returns to a 1, the device sends a one-byte query via I
2
C to look for an EEPROM. If an EEPROM is found, the TAS3002
becomes an I
2
C master; otherwise, it becomes an I
2
C slave. When using address 68h in the slave mode, an external
master must wait until after the EEPROM query or else bus contention and improper operation occur.
I
2
C address x6Ah does not query the bus for an EEPROM. The address for the EEPROM is A0h.
7.2.2
Reset
The TAS3002 device has an asynchronous reset terminal (RESET). This reset is synchronized with various clocks
used in this device to generate a synchronous internal reset. Upon reset, the TAS3002 device goes through the
following process:
Clears all the RAM memory content
72
Clears all the registers in the circuits
Purges the codec
Selects analog input A (RINA and LINA) and sets the input A active indicator (INPA) low
Initializes the equalization parameters to AllPass filters
Sets the digital audio interface to the I
2
S 18-bit mode
Sets the bass/treble to 0 dB
Sets the mixer gain to 0 dB SDIN1 and mutes both SDIN2 and analog-in
Sets the volume to 40 dB
Turns off all enhancement features (DRCE, etc.)
Reads the I
2
C address. If the address is 68h, the device reads its EEPROM. It is possible to load the
user-defined bass/treble data and break points (optional). If there is no data, the device loads default
bass/treble delta and break points from ROM.
If the address is 6Ah, the device puts the I
2
C interface in slave mode and waits for input.
7.2.3
Reset Circuit
Because the TAS3002 device has an internal power-on reset (POR), in many cases, additional components are not
needed to reset the device. It resets internally at approximately 80% of V
DD
.
In the case where the system power supplies are slow in reaching their final voltage or where there is a difference
in the time the system power supplies take to become stable, the TAS3002 reset can be delayed by a simple RC
circuit.
0.1
F
DVDD
6
TAS3002
RESET
10 k
DVSS
Figure 71. TAS3002 Reset Circuit
The reset delay for the above circuit can be calculated by the simple equation:
t
rd
= 0.8RC + 400
s
Where:
t
rd
= The delay before the TAS3002 device comes out of reset
C = Value of the capacitance from RESET (pin 6) to DV
SS
R = Value of the resistance from RESET (pin 6) to DV
DD
The circuit described in Figure 71 delays the start-up of the TAS3002 device approximately 1.2 ms.
When it is necessary to control the reset of the TAS3002 device with an external device, such as a microcontroller,
RESET (pin 6) can be treated as a logic signal. It then brings the device out of reset when the voltage on RESET
reaches V
DD
/2.
7.2.4
Fast Load Mode
While in fast load mode--FL bit (bit 7 of main control register 1) = 0--it is possible to update the parametric
equalization without any audio processing delay. The audio processor pauses while the RAM is updated in this mode.
73
Bass and treble cannot download in this mode. Mixer1 and Mixer2 registers can download in this mode or normal
mode (FL bit = 0).
Once the download is complete, the fast load bit must be cleared by writing a 0 into bit 7 of main control register 1
(MCR1). This puts the TAS3002 device into normal mode.
7.2.5
Codec Reset
During initialization, the output of the codec is disabled. Throughout reset and initialization, the output of the DAC is
muted to prevent extraneous noise being sent to the system output.
Data from the ADC and other internal processing is purged so that when reset/initialization is complete, only valid
inputs are sent to the system output.
7.3
Power-Down Mode
The TAS3002 device has an asynchronous power-down mode. In the power-down mode, the internal control
registers and equalization programming of the device are stored in the device.
To enter power-down mode:
1.
Assert the power-down control signal (1)
2.
Set the serial audio input clocks to 0
The TAS3002 device goes into power-down mode.
To exit the power-down mode:
1.
Assert RESET (logic 0)
2.
Restart the serial audio clocks
3.
Wait for a delay of 1.0 ms (to allow the PLL to lock)
4.
Negate the power-down control signal (logic 0)
5.
Negate RESET (logic 1)
The device then returns to the state it was in before power down (resumes normal operation).
74
7.3.1
Power-Down Timing Sequence
PWR_DN
Power-Down Mode
RESET
MCLK
SCLK
LRCLK
SDATA
1 ms
Normal Operation
Figure 72. Power-Down Timing Sequence
In power-down mode, the TAS3002 device typically consumes less than 1 mA.
7.4
Test Mode
Terminal 9 (TEST) is tied low in normal operation. This function is reserved for factory test and must not be asserted.
7.5
Internal Interface
Figure 73 shows the flow chart of the interface between the microcontroller and its peripheral blocks.
7.6
GPI Terminal Programming
During initialization, the microcontroller fetches a control byte from its EEPROM or receives a command from I
2
C.
7.6.1
GPI Interface
The six GPI terminals are programmed to operate as indicated in Table 71.
75
Table 71. GPI Terminal Programming
GPI5
GPI4
GPI3
GPI2
GPI1
GPI0
VOL_UP, +1 dB
x
VOL_DN, 1 dB
x
BASS_UP, +1 dB
x
BASS_DN, 1 dB
x
TREB_UP, +1 dB
x
TREB_DN, 1 dB
x
Shift 1
x
x
Mute
x
EQ1
x
EQ2
x
EQ3
x
EQ4
x
EQ5
x
Shift 2
x
x
NOTE: x = Logic low
Initially (after reset), the TAS3002 GPI is set to control volume, bass, and treble. Simultaneously setting GPI bits 1
and 5 low for 1 second changes the function of the GPI terminals to control mute and equalization.
To return to volume, bass, and treble control, simultaneously set GPI terminals 2 and 3 low for 1 second.
When a GPI terminal is activated, the TAS3002 device echoes its function over I
2
C to a TAS3001 device mapped
to address 6Ah. Therefore, a system with two audio equalization chips can be implemented without the need for a
microcontroller.
7.6.2
GPI Architecture
The GPI provides simple but flexible input port to activate the input parameters. Each terminal input is an active logic
low.
76
Start
Power Up
Initialize Default
EEPROM
Restore Volume
and MCR
Slave Write
Initialize TAS3002
TAS3001
GPI
Power Down
Load Parameters
and Coefficients
to DSP
Volume/Bass/Treble Up/Down
Echo to TAS3001
Switch BQ Set
Save Volume, Mute
Save PWR_DN
Stop PLL
Stop
DRC_OFF
DRC
Figure 73. Internal Interface Flow Chart
77
7.7
External EEPROM Memory Maps
Table 72 through Table 75 show the 512-byte and 2048-byte EEPROM memory maps.
Table 72. 512-Byte EEPROM Memory Map 2.0 Channels
ADDRESS
BYTE NUMBER
FUNCTION
000h
1
Signature (2Ah)
001h
1
ID byte = 0000 0000
002h
1
MCR
003h00Bh
9
Mixer left gain
00Ch014h
9
Mixer right gain
015h01Ah
2
DRC (ratio, threshold, energy
, attack
, decay
)
01Bh
1
Bass
01Ch
1
Treble
01Dh022h
6
Volume
031h03Fh
15
Biquad 0
040h04Eh
15
Biquad 1
04Fh05Dh
15
Biquad 2
05Eh06Ch
15
Biquad 3
Left channel
06Dh07Bh
15
Biquad 4
Left channel
07Ch08Ah
15
Biquad 5
08Bh099h
15
Biquad 6
09Ah
1
0 dB/bass
09Bh
1
0 dB/treble
09Ch0A1h
6
Bass break
0A2h0A7h
6
Treble break
0A8h110h
105
Bass delta
111h179h
105
Treble delta
17Ah17Fh
6
Bass set point
180h185h
6
Treble set point
186h194h
15
Biquad 0
195h1A3h
15
Biquad 1
1A4h1B2h
15
Biquad 2
1B3h1C1h
15
Biquad 3
Right channel
1C2h1D0h
15
Biquad 4
Right channel
1D1h1DFh
15
Biquad 5
1E0h1EEh
15
Biquad 6
NOTE: Bytes are in the same order as they appear in the I2C register map. The EEPROM address is A0h.
78
Table 73. 512-Byte EEPROM Memory Map 2.1 Channels (with TAS3001)
ADDRESS
BYTE NUMBER
FUNCTION
000h
1
Signature (2Ah)
001h
1
ID byte = 0000 0011
TAS3002
002h
1
MCR
003h00Bh
9
Mixer left gain
00Ch014h
9
Mixer right gain
015h01Ah
6
DRC (ratio, threshold, energy
, attack
, decay
)
01Bh
1
Bass
01Ch
1
Treble
01Dh022h
6
Volume
031h03Fh
15
Biquad 0
040h04Eh
15
Biquad 1
04Fh05Dh
15
Biquad 2
TAS3002
05Eh06Ch
15
Biquad 3
TAS3002
right and left
06Dh07Bh
15
Biquad 4
right and left
channel
07Ch08Ah
15
Biquad 5
08Bh099h
15
Biquad 6
09Ah
1
0 dB/bass
09Bh
1
0 dB/treble
09Ch0A1h
6
Bass break
0A2h0A7h
6
Treble break
0A8h110h
105
Bass delta
111h179h
105
Treble delta
17Ah17Fh
6
Bass set point
180h185h
6
Treble set point
186h194h
15
Biquad 0
195h1A3h
15
Biquad 1
1A4h1B2h
15
Biquad 2
TAS3001
1B3h1C1h
15
Biquad 3
TAS3001
right and left
1C2h1D0h
15
Biquad 4
right and left
channel
1D1h1DFh
15
Biquad 5
1E0h1EEh
15
Biquad 6
TAS3001
1EFh
1
MCR
1F0h1F2h
3
SDIN1 gain
1F3h1F5h
3
SDIN2 gain
1F6h1F7h
2
DRC (ratio, threshold, energy
, attack
, decay
)
1F8h
1
Bass
1F9h
1
Treble
1FAh1FFh
6
Volume
NOTE: In this mode, the TAS3002 and the TAS3001 devices both use the same equalization coefficients for their right and left channels.
Bytes are in the same order as they appear in the I2C register map. The EEPROM address is A0h.
79
Table 74. 2048-Byte EEPROM Memory Map--2.0 Speakers With Multiple Equalizations
TAS3002 ADDRESS
LEFT BIQUAD
NUMBER
OF BYTES
FUNCTION
CATEGORY
TAS3002 ADDRESS
RIGHT BIQUAD
TAS3001
000h
1
Signature (2Ah)
001h
1
1
0
0
0
0
0
1
0
002h
1
MCR
1EFh
003h00Bh
9/3
Mixer left gain
1F0h1F2h
00Ch014h
9/3
Mixer right gain
1F3h1F5h
015h019h
6/2
DRC (ratio, threshold, energy
, attack
, decay
)
1F6h1F7h
01Ah
1
Bass
1F8h
01Bh
1
Treble
1F9h
01Ch021h
6
Volume
1FAh1FFh
031h03Fh
15
Biquad 0
3A4h3B2h
186h194h
040h04Eh
15
Biquad 1
3B3h3C1h
195h1A3h
04Fh05Dh
15
Biquad 2
3C2h3D0h
1A4h1B2h
05Eh06Ch
15
Biquad 3
Set 0
3D1h3DFh
1B3h1C1h
06Dh07Bh
15
Biquad 4
Set 0
3E0h3EEh
1C2h1D0h
07Ch08Ah
15
Biquad 5
3EFh3FDh
1D1h1DFh
08Bh099h
15
Biquad 6
3FEh40Ch
1E0h1EEh
09Ah185h
236
Bass treble table
200h20Eh
15
Biquad 0
40Dh41Bh
5B1h5BFh
20Fh21Dh
15
Biquad 1
41Ch42Ah
5C0h5CEh
21Eh22Ch
15
Biquad 2
42Bh439h
5CFh5DDh
22Dh23Bh
15
Biquad 3
Set 1
43Ah448h
5DEh5ECh
23Ch24Ah
15
Biquad 4
Set 1
449h457h
5EDh5FBh
24Bh259h
15
Biquad 5
458h466h
5FCh60Ah
25Ah268h
15
Biquad 6
467h475h
60Bh619h
269h277h
15
Biquad 0
476h484h
61Ah628h
278h286h
15
Biquad 1
485h493h
629h637h
287h295h
15
Biquad 2
494h4A2h
638h646h
296h2A4h
15
Biquad 3
Set 2
4A3h4B1h
647h655h
2A5h2B3h
15
Biquad 4
Set 2
4B2h4C0h
656h664h
2B4h2C2h
15
Biquad 5
4C1h4CFh
665h673h
2C3h2D1h
15
Biquad 6
4D0h4DEh
674h682h
2D2h2E0h
15
Biquad 0
4DFh4EDh
683h691h
2E1h2EFh
15
Biquad 1
4EEh4FCh
692h6A0h
2F0h2FEh
15
Biquad 2
4FDh50Bh
6A1h6AFh
2FFh30Dh
15
Biquad 3
Set 3
50Ch51Ah
6B0h6BEh
30Eh31Ch
15
Biquad 4
Set 3
51Bh529h
6BFh6CDh
31Dh32Bh
15
Biquad 5
52Ah538h
6CEh6DCh
32Ch33Ah
15
Biquad 6
539h547h
6DDh6EBh
33Bh349h
15
Biquad 0
548h556h
6ECh6FAh
34Ah358h
15
Biquad 1
557h565h
6FBh709h
359h367h
15
Biquad 2
566h574h
70Ah718h
368h376h
15
Biquad 3
Set 4
575h583h
719h727h
377h385h
15
Biquad 4
Set 4
584h592h
728h736h
386h394h
15
Biquad 5
593h5A1h
737h745h
395h3A3h
15
Biquad 6
5A2h5B0h
746h754h
NOTE: Bytes are in the same order as they appear in the I2C register map. The EEPROM address is A0h.
710
Table 75. 2048-Byte EEPROM Memory Map--2.1 Speakers With Multiple Equalizations
TAS3002 ADDRESS
NUMBER
OF BYTES
FUNCTION
CATEGORY
TAS3001 ADDRESS
LEFT CHANNEL
TAS3001 ADDRESS
RIGHT CHANNEL
000h
1
Signature (2Ah)
001h
1
1
0
0
0
0
0
0
1
002h
1
MCR
1EFh
003h00Bh
9/3
Mixer left gain
1F0h1F2h
00Ch014h
9/3
Mixer right gain
1F3h1F5h
015h019h
6/2
DRC (ratio, threshold, energy
, attack
, decay
)
1F6h1F7h
01Ah
1
Bass
1F8h
01Bh
1
Treble
1F9h
01Ch021h
6
Volume
1FAh1FFh
031h03Fh
15
Biquad 0
186h194h
3A4h3B2h
040h04Eh
15
Biquad 1
195h1A3h
3B3h3C1h
04Fh05Dh
15
Biquad 2
1A4h1B2h
3C2h3D0h
05Eh06Ch
15
Biquad 3
Set 0
1B3h1C1h
3D1h3DFh
06Dh07Bh
15
Biquad 4
Set 0
1C2h1D0h
3E0h3EEh
07Ch08Ah
15
Biquad 5
1D1h1DFh
3EFh3FDh
08Bh099h
15
Biquad 6
1E0h1EEh
3FEh40Ch
09Ah185h
236
Bass treble table
200h20Eh
15
Biquad 0
5B1h5BFh
40Dh41Bh
20Fh21Dh
15
Biquad 1
5C0h5CEh
41Ch42Ah
21Eh22Ch
15
Biquad 2
5CFh5DDh
42Bh439h
22Dh23Bh
15
Biquad 3
Set 1
5DEh5ECh
43Ah448h
23Ch24Ah
15
Biquad 4
Set 1
5EDh5FBh
449h457h
24Bh259h
15
Biquad 5
5FCh60Ah
458h466h
25Ah268h
15
Biquad 6
60Bh619h
467h475h
269h277h
15
Biquad 0
61Ah628h
476h484h
278h286h
15
Biquad 1
629h637h
485h493h
287h295h
15
Biquad 2
638h646h
494h4A2h
296h2A4h
15
Biquad 3
Set 2
647h655h
4A3h4B1h
2A5h2B3h
15
Biquad 4
Set 2
656h664h
4B2h4C0h
2B4h2C2h
15
Biquad 5
665h673h
4C1h4CFh
2C3h2D1h
15
Biquad 6
674h682h
4D0h4DEh
2D2h2E0h
15
Biquad 0
683h691h
4DFh4EDh
2E1h2EFh
15
Biquad 1
692h6A0h
4EEh4FCh
2F0h2FEh
15
Biquad 2
6A1h6AFh
4FDh50Bh
2FFh30Dh
15
Biquad 3
Set 3
6B0h6BEh
50Ch51Ah
30Eh31Ch
15
Biquad 4
Set 3
6BFh6CDh
51Bh529h
31Dh32Bh
15
Biquad 5
6CEh6DCh
52Ah538h
32Ch33Ah
15
Biquad 6
6DDh6EBh
539h547h
33Bh349h
15
Biquad 0
6ECh6FAh
548h556h
34Ah358h
15
Biquad 1
6FBh709h
557h565h
359h367h
15
Biquad 2
70Ah718h
566h574h
368h376h
15
Biquad 3
Set 4
719h727h
575h583h
377h385h
15
Biquad 4
Set 4
728h736h
584h592h
386h394h
15
Biquad 5
737h745h
593h5A1h
395h3A3h
15
Biquad 6
746h754h
5A2h5B0h
NOTE: Bytes are in the same order as they appear in the I2C register map. The EEPROM address is A0h.
81
8 Electrical Characteristics
8.1
Absolute Maximum Ratings Over Operating Temperature Ranges
Supply voltage range:
AV
DD
0.3 V to 3.6 V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DV
DD
0.3 V to 3.6 V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Analog input voltage range:
0.3 to AV
DD
+ 0.3 V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital input voltage range:
0.3 to DV
DD
+ 0.3 V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature, T
A
0
C to 70
C
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, T
stg
65
C to 150
C
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Case temperature for 10 seconds
+122
C
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature from case for 10 seconds
+97.8
C
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrostatic discharge (see Note 1)
2000 V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied.
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: Human body model per Method 3015.2 of MIL-STD-833B.
8.2
Recommended Operating Conditions
T
A
= 25
C, AV
DD
= 3.3 V, DV
DD
= 3.3 V
Voltages at analog inputs and outputs and at AV
DD
are with respect to ground.
MIN
NOM
MAX
UNIT
Supply voltage, AVDD
3.0
3.3
3.6
V
Supply voltage, DVDD
3.0
3.3
3.6
V
Supply current analog
Operating
34
mA
Supply current, analog
Power down (see Note 2)
88
A
Supply current digital
Operating
47
mA
Supply current, digital
Power down (see Note 2)
942
A
Power dissipation
Operating
267
mW
Power dissipation
Power down (see Note 2)
3.5
mW
NOTE 2: If the clocks are turned off.
8.3
Static Digital Specifications
T
A
= 25
C, AV
DD
= 3.3 V, DV
DD
= 3.3 V
PARAMETER
TEST CONDITIONS
MIN
MAX
UNIT
VIH
High-level input voltage
2.0
3.6
V
VIL
Low-level input voltage
0.3
0.8
V
VOH
High-level output voltage
IO = 1 mA
2.4
V
VOL
Low-level output voltage
IO = +4 mA
0.4
V
Input leakage current
10
10
A
Output load capacitance
50
pF
82
8.4
ADC Digital Filter
T
A
= 25
C, AV
DD
= 3.3 V, DV
DD
= 3.3 V, f
S
= 48 kHz, 20-bit I
2
S mode
All terms characterized by frequency are scaled with the chosen sampling frequency, f
S
. See Figure 81 through
Figure 84 for performance curves of the ADC digital filter.
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
ADC decimation filter (LPF)
Pass band
0.0
20.0
kHz
(
)
Pass band ripple
0.01
dB
Stop band
24.1
kHz
Stop band attenuation
80
dB
Group delay
720
s
ADC high-pass filter (HPF)
Pass band (3 dB)
0.87
Hz
g
(
)
Deviation from linear phase
20 Hz to 20 kHz
1.23
degrees
150
200
Amplitude
dB
50
0
50
100
f Frequency Hz
0
2 fs
4 fs
6 fs
8 fs
10 fs
12 fs
Figure 81. ADC Digital Filter Characteristics
60
100
Amplitude
dB
40
20
0
80
0
f Frequency Hz
0.2 fs
0.4 fs
0.6 fs
0.8 fs
1 fs
Figure 82. ADC Digital Filter Stop-Band Characteristics
83
0.002
0.002
Amplitude
dB
0.004
0.006
0.008
0
0
f Frequency Hz
0.1 fs
0.2 fs
0.3 fs
0.4 fs
0.5 fs
Figure 83. ADC Digital Filter Pass-Band Characteristics
0.4
1
Amplitude
dB
0.2
0
0.2
0.6
0.8
0
f Frequency Hz
1 fs
2 fs
3 fs
4 fs
Figure 84. ADC High-Pass Filter Characteristics
8.5
Analog-to-Digital Converter
T
A
= 25
C, AV
DD
= 3.3 V, DV
DD
= 3.3 V, f
S
= 48 kHz, 20-bit I
2
S mode
All terms characterized by frequency are scaled with the chosen sampling frequency, f
S
.
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
SNR (EIAJ)
A weighted
93
dB
Dynamic range
60 dB, 1 kHz
88
dB
Signal to (noise + distortion) ratio
1 dB, 1 kHz, 20 Hz to 20 kHz
82
dB
Power supply rejection ratio
1 kHz (see Note 3)
50
dB
Idle channel tone rejection
+110
dB
Intermodulation distortion
80
dB
ADC crosstalk
93
dB
Overall ADC frequency response
20 Hz to 20 kHz
0.1
dB
Gain error
5%
Gain matching
0.02
dB
NOTE 3: Measured with a 50-mV peak sine curve.
84
8.6
Input Multiplexer
T
A
= 25
C, AV
DD
= 3.3 V, DV
DD
= 3.3 V, f
S
= 48 kHz, 20-bit I
2
S mode
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
Input impedance
20
k
Crosstalk
85
dB
Full-scale input voltage range
1.7
VPP
8.7
DAC Interpolation Filter
T
A
= 25
C, AV
DD
= 3.3 V, DV
DD
= 3.3 V, f
S
= 48 kHz, 20-bit I
2
S mode
All terms characterized by frequency are scaled with the normal mode sampling frequency, f
S
. See Figure 85 and
Figure 86 for performance curves of the DAC digital filter.
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
Pass band
0.0
20.0
kHz
Pass-band ripple
0.005
dB
Stop band
24.1
kHz
Stop-band attenuation
28.8 kHz to 3 MHz
75
dB
Group delay
700
s
60
100
Amplitude
dB
40
20
f Frequency Hz
0
80
R
0
fs/2
1 fs
2 fs
3 fs
4 fs
5 fs
Figure 85. DAC Filter Overall Frequency Characteristics
0.1
0
Amplitude
dB
0.05
0.1
0.05
0
f Frequency Hz
0.1 fs
0.2 fs
0.3 fs
0.4 fs
0.5 fs
Figure 86. DAC Digital Filter Pass-Band Ripple Characteristics
85
8.8
Digital-to-Analog Converter
T
A
= 25
C, AV
DD
= 3.3 V, DV
DD
= 3.3 V, f
S
= 48 kHz, input = 0 dB-f
S
sine wave at 1 kHz
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
SNR (EIAJ)
A weighted
94
99
dB
Dynamic range
60 dB, 1 kHz
92
96
dB
Signal to (noise + distortion) ratio
0 dB, 1 kHz, 20 Hz to 20 kHz
83
dB
Power supply rejection ratio
1 kHz
50
dB
Idle channel tone rejection
+118
dB
Intermodulation distortion
75
dB
Frequency response
0.5
+0.5
dB
Deviation from linear phase
1.4
degree
DAC crosstalk
96
dB
Jitter tolerance
150
ps
Full scale, single-ended, output voltage range
1.9
VPP
DC offset
7.0
7.0
mV
8.9
DAC Output Performance Data
T
A
= 25
C, AV
DD
= 3.3 V, DV
DD
= 3.3 V
The output load resistance is connected through a dc blocking capacitor.
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
Output load resistance
10
k
Output load capacitance
25
pF
VCOM internal resistance (see Note 4)
1
k
VCOM output CLOAD
10
100
F
VRFILT internal resistance (see Note 5)
1
k
NOTES:
4. VCOM may vary during power down.
5. VRFILT must never be used as a voltage reference.
86
8.10 I
2
C Serial Port Timing Characteristics
MIN
MAX
UNIT
f(SCL)
SCL clock frequency
0
100
kHz
t(buf)
Bus free time between start and stop
4.7
s
t(low)
Low period of SCL clock
4.7
s
t(high)
High period of SCL clock
4.0
s
th(sta)
Hold time repeated start
4.0
s
tsu(sta) Setup time repeated start
4.7
20
s
th(dat)
Data hold time (See Note 6)
0
s
tsu(dat) Data setup time
250
ns
tr
Rise time for SDA and SCL
1000
ns
tf
Fall time for SDA and SCL
300
ns
tsu(sto) Setup time for stop condition
4.0
s
C(b)
Capacitive load for each bus line
400
pF
NOTE 6: A device must internally provide a hold time of at least 300 ns for the SDA signal to bridge the undefined region of the falling edge of
SCL.
SDA
P
S
Valid
Change
of Data
Allowed
P
SCL
t(buf)
th(sta)
tr
th(dat)
tf
th(sta)
tsu(dat)
tsu(sta)
tsu(sto)
Data
Line
Stable
NOTE: t(low) is measured from the end of tf to the beginning of tr.
t(high) is measured from the end of tr to the beginning of tf.
Figure 87. I
2
C Bus Timing
91
9 System Diagrams
Figure 91 and Figure 92 show the TAS3002 stereo and 2.1-channel applications, respectively.
TAS3002
Master
RESET
Analog In
+3.3 VDD
Analog Out
SPDIF
or
USB
I2S
EEPROM
I2C
Clock Select Logic
B-T-V-EQ Switches
NOTE: Items such as the PLL network and power supplies are omitted for clarity.
Figure 91. Stereo Application
92
L+R Mix
Echoes
Switches
on GPIO
TAS3002
Master
RESET
Analog In
+3.3 VDD
Analog Out
(To Satellite Amplifiers)
SPDIF
or
USB
I2S
EEPROM
I2C
Clock Select Logic
B-T-V-EQ-Sub Vol
I2C
TAS3001
Address = 6Ah
I2S_OUT
Slave
Analog Out
SDOUT2
I2S PCM1744
NOTE: Items such as the PLL network and power supplies are omitted for clarity.
Figure 92. TAS3002 Device, 2.1 Channels
101
10 Mechanical Information
The TAS3002 device is packaged in a 48-terminal PFB package. The following illustration shows the mechanical
dimensions for the PFB package.
PFB (S-PQFP-G48)
PLASTIC QUAD FLATPACK
4073176/B 10/96
Gage Plane
0,13 NOM
0,25
0,45
0,75
Seating Plane
0,05 MIN
0,17
0,27
24
25
13
12
SQ
36
37
7,20
6,80
48
1
5,50 TYP
SQ
8,80
9,20
1,05
0,95
1,20 MAX
0,08
0,50
M
0,08
0
7
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-026
102
A1
Appendix A
Software Interface
A.1 I
2
C Register Map
Table A1 is a listing of all the registers used by the I
2
C interface.
Table A1. I
2
C Register Map
REGISTER
ADDRESS
NUMBER OF
BYTES
BYTE DESCRIPTION
Reserved
00h
Main control 1
01h
1
MCR1(70)
DRC
02h
5
Ratio(70), Threshold(70), Energy(70), Attack(70), Decay(70)
Reserved
03h
Volume
04h
6
VL(2316), VL(158), VL(70)
VR(2316), VR(158), VR(70)
Treble
05h
1
T(70)
Bass
06h
1
B(70)
Mixer left gain
07h
9
S1L(2316), S1L(158), S1L(70)
S2L(2316), S2L(158), S2L(70)
AIL(2316), AIL(158), AIL(70)
Mixer right gain
08h
9
S1R(2316), S1R(158), S1R(70)
S2R(2316), S2R(158), S2R(70)
AIR(2316), AIR(158), AIR(70)
Reserved
09h
Left biquad 0
0Ah
15
B0(2316), B0(158), B0(70)
B1(2316), B1(158), B1(70)
B2(2316), B2(158), B2(70)
A1(2316), A1(158), A1(70)
A2(2316), A2(158), A2(70)
Left biquad 1
0Bh
15
B0(2316), B0(158), B0(70)
B1(2316), B1(158), B1(70)
B2(2316), B2(158), B2(70)
A1(2316), A1(158), A1(70)
A2(2316), A2(158), A2(70)
Left biquad 2
0Ch
15
B0(2316), B0(158), B0(70)
B1(2316), B1(158), B1(70)
B2(2316), B2(158), B2(70)
A1(2316), A1(158), A1(70)
A2(2316), A2(158), A2(70)
Left biquad 3
0Dh
15
B0(2316), B0(158), B0(70)
B1(2316), B1(158), B1(70)
B2(2316), B2(158), B2(70)
A1(2316), A1(158), A1(70)
A2(2316), A2(158), A2(70)
Left biquad 4
0Eh
15
B0(2316), B0(158), B0(70)
B1(2316), B1(158), B1(70)
B2(2316), B2(158), B2(70)
A1(2316), A1(158), A1(70)
A2(2316), A2(158), A2(70)
A2
Table A1. I
2
C Register Map (Continued)
REGISTER
ADDRESS
NUMBER OF
BYTES
BYTE DESCRIPTION
Left biquad 5
0Fh
15
B0(2316), B0(158), B0(70)
B1(2316), B1(158), B1(70)
B2(2316), B2(158), B2(70)
A1(2316), A1(158), A1(70)
A2(2316), A2(158), A2(70)
Left biquad 6
10h
15
B0(2316), B0(158), B0(70)
B1(2316), B1(158), B1(70)
B2(2316), B2(158), B2(70)
A1(2316), A1(158), A1(70)
A2(2316), A2(158), A2(70)
Reserved
11h
Reserved
12h
Right biquad 0
13h
15
B0(2316), B0(158), B0(70)
B1(2316), B1(158), B1(70)
B2(2316), B2(158), B2(70)
A1(2316), A1(158), A1(70)
A2(2316), A2(158), A2(70)
Right biquad 1
14h
15
B0(2316), B0(158), B0(70)
B1(2316), B1(158), B1(70)
B2(2316), B2(158), B2(70)
A1(2316), A1(158), A1(70)
A2(2316), A2(158), A2(70)
Right biquad 2
15h
15
B0(2316), B0(158), B0(70)
B1(2316), B1(158), B1(70)
B2(2316), B2(158), B2(70)
A1(2316), A1(158), A1(70)
A2(2316), A2(158), A2(70)
Right biquad 3
16h
15
B0(2316), B0(158), B0(70)
B1(2316), B1(158), B1(70)
B2(2316), B2(158), B2(70)
A1(2316), A1(158), A1(70)
A2(2316), A2(158), A2(70)
Right biquad 4
17h
15
B0(2316), B0(158), B0(70)
B1(2316), B1(158), B1(70)
B2(2316), B2(158), B2(70)
A1(2316), A1(158), A1(70)
A2(2316), A2(158), A2(70)
Right biquad 5
18h
15
B0(2316), B0(158), B0(70)
B1(2316), B1(158), B1(70)
B2(2316), B2(158), B2(70)
A1(2316), A1(158), A1(70)
A2(2316), A2(158), A2(70)
Right biquad 6
19h
15
B0(2316), B0(158), B0(70)
B1(2316), B1(158), B1(70)
B2(2316), B2(158), B2(70)
A1(2316), A1(158), A1(70)
A2(2316), A2(158), A2(70)
Reserved
20h
Left loudness
biquad
21h
15
B0(2316), B0(158), B0(70)
B1(2316), B1(158), B1(70)
B2(2316), B2(158), B2(70)
A1(2316), A1(158), A1(70)
A2(2316), A2(158), A2(70)
A3
Table A1. I
2
C Register Map (Continued)
REGISTER
ADDRESS
NUMBER OF
BYTES
BYTE DESCRIPTION
Right loudness
biquad
22h
15
B0(2316), B0(158), B0(70)
B1(2316), B1(158), B1(70)
B2(2316), B2(158), B2(70)
A1(2316), A1(158), A1(70)
A2(2316), A2(158), A2(70)
Left loudness
biquad gain
23h
3
LBG(2316), LBG(158), LBG(70)
Right loudness
biquad gain
24h
3
RBG(2316), RBG(158), RBG(70)
Reserved
25h28h
Reserved
Test
29h
10
Reserved
Reserved
30h to 3Fh
Analog control
40h
1
Anal_ctrl(70)
Test
41h
1
Test
42h
1
Main control 2
43h
1
MCR2(70)
Reserved
44hFFh
A.2 Main Control Register Map
A.2.1
Main Control Register 1
MCR1 01h
C(7)
C(6)
C(5)
C(4)
C(3)
C(2)
C(1)
C(0)
FL
SC
E1
E0
F1
F0
W1
W0
1
x
x
x
x
x
x
x
Table A2 lists the bit fields making up main control register 1 and defines the function associated with each bit field.
Table A2. Main Control Register 1 Description
REGISTER
DESCRIPTOR
FUNCTION
VALUE
DESCRIPTION
C(7)
FL
Fast load
0
Normal operation mode
( )
1
Fast load mode
C(6)
SC
SCLK frequency
0
SCLK = 32fS
( )
q
y
1
SCLK = 64fS
C(54)
E(10)
Serial port mode
00
Left justified
(
)
(
)
01
Right justified
10
I2S
11
Reserved
C(32)
XX
Reserved
0011
Reserved
C(10)
W(10)
Serial port word
00
16-bit
(
)
(
)
length
01
18-bit
10
20-bit
11
24-bit
A4
A.2.2
Main Control Register 2
MCR2 43h
C2(7)
C2(6)
C2(5)
C2(4)
C2(3)
C2(2)
C2(1)
C2(0)
DL
XX
XX
XX
XX
XX
AP
XX
1
0
0
0
0
0
1
0
Table A3 lists the bit fields making up main control register 2 and defines the function associated with each bit field.
Table A3. Main Control Register 2 Description
REGISTER
DESCRIPTOR
FUNCTION
VALUE
DESCRIPTION
C2(7)
DL
Bass and treble
0
Normal operation mode
( )
load
1
Downloaded values
C2(6)
XX
Reserved
0
( )
1
C2(5)
XX
Reserved
0
( )
1
C2(4)
XX
Reserved
0
( )
1
C2(3)
XX
Reserved
0
( )
1
C2(2)
XX
Reserved
0
( )
1
C2(1)
AP
AllPass mode
0
Normal operation
( )
1
Sets equalization filters to all pass
C2(0)
XX
Reserved
0
( )
1
A.2.3
Analog Control Register
ANA 40h
A(7)
A(6)
A(5)
A(4)
A(3)
A(2)
A(1)
A(0)
XX
XX
XX
XX
DM1
DM0
INP
APD
0
0
0
0
1
1
1
1
A5
Table A4 lists the bit fields making up the analog control register and defines the function associated with each bit
field.
Table A4. Analog Control Register Description
REGISTER
DESCRIPTOR
FUNCTION
VALUE
DESCRIPTION
A(7)
XX
Reserved
0
Normal operation
( )
1
A(6)
XX
Reserved
0
Normal operation
( )
1
A(5)
XX
Reserved
0
( )
1
A(4)
XX
Reserved
0
( )
1
A(32)
DM(10)
De-emphasis
00
De-emphasis off, normal operation
(
)
(
)
control
01
De-emphasis for fS = 48 kHz
10
De-emphasis for fS = 44.1 kHz
11
Reserved
A(1)
INP
Analog input
0
A inputs selected
( )
g
select
1
B inputs selected
A(0)
APD
Analog power
1
Powers down analog section
( )
g
down
0
Normal operation
A6
A.3 Volume Gain Command
Device ID
Subaddress
VL(2316)
VL(158)
VL(70)
VR(2316)
VR(158)
VR(70)
For example, if left volume = 6 dB and right volume = 6 dB, then the command is:
68
04
01
FE
CA
00
80
4E
Table A5 lists the possible gains for the volume gain command in 0.5 dB increments from 18 to 70 dB, with the
corresponding hexadecimal value for each gain.
Table A5. Volume Versus Gain Values
GAIN (dB)
VOLUME
V(2316),
V(158),
V(70)
GAIN (dB)
VOLUME
V(2316),
V(158),
V(70)
GAIN (dB)
VOLUME
V(2316),
V(158),
V(70)
GAIN (dB)
VOLUME
V(2316),
V(158),
V(70)
GAIN (dB)
VOLUME
V(2316),
V(158),
V(70)
18.0
07, F1, 7B
3.0
01, 69, 9C
12.0
00, 40, 4E
27.0
00, 0B, 6F
42.0
00, 02, 09
17.5
07, 7F, BB
2.5
01, 55, 62
12.5
00, 3C, B5
27.5
00, 0A, CC
42.5
00, 01, EB
17.0
07, 14, 57
2.0
01, 42, 49
13.0
00, 39, 50
28.0
00, 0A, 31
43.0
00, 01, D0
16.5
06, AE, F6
1.5
01, 30, 42
13.5
00, 36, 1B
28.5
00, 09, 9F
43.5
00, 01, B6
16.0
06, 4F, 40
1.0
01, 1F, 3D
14.0
00, 33, 14
29.0
00, 09, 15
44.0
00, 01, 9E
15.5
05, F4, E5
0.5
01, 0F, 2B
14.5
00, 30, 39
29.5
00, 08, 93
44.5
00, 01, 86
15.0
05, 9F, 98
0.0
01, 00, 00
15.0
00, 2D, 86
30.0
00, 08, 18
45.0
00, 01, 71
14.5
05, 4F, 10
0.5
00, F1, AE
15.5
00, 2A, FA
30.5
00, 07, A5
45.5
00, 01, 5C
14.0
05, 03, 0A
1.0
00, E4, 29
16.0
00, 28, 93
31.0
00, 07, 37
46.0
00, 01, 48
13.5
04, BB, 44
1.5
00, D7, 66
16.5
00, 26, 4E
31.5
00, 06, D0
46.5
00, 01, 36
13.0
04, 77, 83
2.0
00, CB, 59
17.0
00, 24, 29
32.0
00, 06, 6E
47.0
00, 01, 25
12.5
04, 37, 8B
2.5
00, BF, F9
17.5
00, 22, 23
32.5
00, 06, 12
47.5
00, 01, 14
12.0
03, FB, 28
3.0
00, B5, 3C
18.0
00, 20, 3A
33.0
00, 05, BB
48.0
00, 01, 05
11.5
03, C2, 25
3.5
00, AB, 19
18.5
00, 1E, 6D
33.5
00, 05, 69
48.5
00, 00, F6
11.0
03, 8C, 53
4.0
00, A1, 86
19.0
00, 1C, B9
34.0
00, 05, 1C
49.0
00, 00, E9
10.5
03, 59, 83
4.5
00, 98, 7D
19.5
00, 1B, 1E
34.5
00, 04, D2
49.5
00, 00, DC
10.0
03, 29, 8B
5.0
00, 8F, F6
20.0
00, 19, 9A
35.0
00, 04, 8D
50.0
00, 00, CF
9.5
02, FC, 42
5.5
00, 87, E8
20.5
00, 18, 2B
35.5
00, 04, 4C
50.5
00, 00, C4
9.0
02, D1, 82
6.0
00, 80, 4E
21.0
00, 16, D1
36.0
00, 04, 0F
51.0
00, 00, B9
8.5
02, A9, 25
6.5
00, 79, 20
21.5
00, 15, 8A
36.5
00, 03, D5
51.5
00, 00, AE
8.0
02, 83, 0B
7.0
00, 72, 5A
22.0
00, 14, 56
37.0
00, 03, 9E
52.0
00, 00, A5
7.5
02, 5F, 12
7.5
00, 6B, F4
22.5
00, 13, 33
37.5
00, 03, 6A
52.5
00, 00, 9B
7.0
02, 3D, 1D
8.0
00, 65, EA
23.0
00, 12, 20
38.0
00, 03, 39
53.0
00, 00, 93
6.5
02, 1D, 0E
8.5
00, 60, 37
23.5
00, 11, 1C
38.5
00, 03, 0B
53.5
00, 00, 8B
6.0
01, FE, CA
9.0
00, 5A, D5
24.0
00, 10, 27
39.0
00, 02, DF
54.0
00, 00, 83
5.5
01, E2, 37
9.5
00, 55, C0
24.5
00, 0F, 40
39.5
00, 02, B6
54.5
00, 00, 7B
5.0
01, C7, 3D
10.0
00, 50, F4
25.0
00, 0E, 65
40.0
00, 02, 8F
55.0
00, 00, 75
4.5
01, AD, C6
10.5
00, 4C, 6D
25.5
00, 0D, 97
40.5
00, 02, 6B
55.5
00, 00, 6E
4.0
01, 95, BC
11.0
00, 48, 27
26.0
00, 0C, D5
41.0
00, 02, 48
56.0
00, 00, 68
3.5
01, 7F, 09
11.5
00, 44, 1D
26.5
00, 0C, 1D
41.5
00, 02, 27
56.5
00, 00, 62
A7
Table A5. Volume Versus Gain Values (Continued)
GAIN (dB)
VOLUME
V(2316),
V(158),
V(70)
GAIN (dB)
VOLUME
V(2316),
V(158),
V(70)
GAIN (dB)
VOLUME
V(2316),
V(158),
V(70)
GAIN (dB)
VOLUME
V(2316),
V(158),
V(70)
GAIN (dB)
VOLUME
V(2316),
V(158),
V(70)
57.0
00, 00, 5D
60.0
00, 00, 42
63.0
00, 00, 2E
66.0
00, 00, 21
69.0
00, 00, 17
57.5
00, 00, 57
60.5
00, 00, 3E
63.5
00, 00, 2C
66.5
00, 00, 1F
69.5
00, 00, 16
58.0
00, 00, 53
61.0
00, 00, 3A
64.0
00, 00, 29
67.0
00, 00, 1D
70.0
00, 00, 15
58.5
00, 00, 4E
61.5
00, 00, 37
64.5
00, 00, 27
67.5
00, 00, 1C
mute
00, 00, 00
59.0
00, 00, 4A
62.0
00, 00, 34
65.0
00, 00, 25
68.0
00, 00, 1A
59.5
00, 00, 45
62.5
00, 00, 31
65.5
00, 00, 23
68.5
00, 00, 19
A.4 Treble Control Register Command
Both left and right channels are given the same treble gain setting.
Device ID
Subaddress
T(70)
For example, if treble gain = 5 dB, then the command is:
68
05
65
Table A6 lists the possible gain adjustments in 0.5 dB increments across the range of treble control, 18 to 18 dB,
with the corresponding hexadecimal value for each gain adjustment.
Table A6. Treble Control Register
GAIN (dB)
T(70)
(hex)
GAIN (dB)
T(70)
(hex)
GAIN (dB)
T(70)
(hex)
GAIN (dB)
T(70)
(hex)
GAIN (dB)
T(70)
(hex)
18.0
01h
10.5
4Ah
3.0
6Bh
4.5
7Bh
12.0
8Ah
17.5
01h
10.0
4Dh
2.5
6Ch
5.0
7Ch
12.5
8Bh
17.0
04h
9.5
51h
2.0
6Dh
5.5
7Dh
13.0
8Ch
16.5
08h
9.0
53h
1.5
3Fh
6.0
7Eh
13.5
8Dh
16.0
13h
8.5
56h
1.0
70h
6.5
7Fh
14.0
8Eh
15.5
1Ah
8.0
59h
0.5
71h
7.0
80h
14.5
8Fh
15.0
20h
7.5
5Bh
0.0
72h
7.5
81h
15.0
90h
14.5
26h
7.0
5Dh
0.5
73h
8.0
82h
15.5
91h
14.0
2Ch
6.5
60h
1.0
74h
8.5
83h
16.0
92h
13.5
31h
6.0
62h
1.5
75h
9.0
84h
16.5
93h
13.0
36h
5.5
63h
2.0
76h
9.5
85h
17.0
94h
12.5
3Bh
5.0
65h
2.5
77h
10.0
86h
17.5
95h
12.0
3Fh
4.5
67h
3.0
78h
10.5
87h
18.0
96h
11.5
43h
4.0
68h
3.5
79h
11.0
88h
11.0
47h
3.5
69h
4.0
7Ah
11.5
89h
A8
A.5 Bass Control Register Command
Both left and right channels are given the same bass gain setting.
Device ID
Subaddress
B(70)
For example, if bass gain = 5 dB, then the command is:
68
06
2B
Table A7 lists the possible gain adjustments in 0.5 dB increments across the range of bass control, 18 to 18 dB,
with the corresponding hexadecimal value for each gain adjustment.
Table A7. Bass Control Register
GAIN (dB)
B(70)
(hex)
GAIN (dB)
B(70)
(hex)
GAIN (dB)
B(70)
(hex)
GAIN (dB)
B(70)
(hex)
GAIN (dB)
B(70)
(hex)
18.0
01h
10.5
4Ch
3.0
6Ah
4.5
7Bh
12.0
8Ah
17.5
0Ah
10.0
4Fh
2.5
6Bh
5.0
7Ch
12.5
8Bh
17.0
11h
9.5
52h
2.0
6Dh
5.5
7Dh
13.0
8Ch
16.5
18h
9.0
55h
1.5
6Eh
6.0
7Eh
13.5
8Dh
16.0
1Eh
8.5
58h
1.0
6Fh
6.5
7Fh
14.0
8Eh
15.5
24h
8.0
5Bh
0.5
71h
7.0
80h
14.5
8Fh
15.0
29h
7.5
5Dh
0.0
72h
7.5
81h
15.0
90h
14.5
2Eh
7.0
5Fh
0.5
73h
8.0
82h
15.5
91h
14.0
33h
6.5
61h
1.0
74h
8.5
83h
16.0
92h
13.5
37h
6.0
62h
1.5
75h
9.0
84h
16.5
93h
13.0
3Bh
5.5
63h
2.0
76h
9.5
85h
17.0
94h
12.5
3Fh
5.0
65h
2.5
77h
10.0
86h
17.5
95h
12.0
43h
4.5
66h
3.0
78h
10.5
87h
18.0
96h
11.5
46h
4.0
67h
3.5
79h
11.0
88h
11.0
49h
3.5
69h
4.0
7Ah
11.5
89h
A.6 I
2
C Mixer Register Command
Device ID
Subaddress
Mixer1
Mixer2
ADC Mixer
For example, if SDIN1 Mix = +6dB, SDIN2 Mix = 0dB, and ADC Mix = Mute, then the command is:
Left
68
07
1F EC 98
10 00 00
00 00 00
Right
68
08
1F EC 98
10 00 00
00 00 00
Even if only one of the mixers needs to be changed, the whole command must be sent.
Table A8 lists the possible gain settings for the I
2
C mixer input channels in 0.5 dB increments from 18 to 70 dB,
with the corresponding hexadecimal value for each gain.
A9
Table A8. Mixer1, Mixer2 and ADC Mixer Gain Values
GAIN (dB)
GAIN
S(2316),
S(158),
S(70)
GAIN (dB)
GAIN
S(2316),
S(158),
S(70)
GAIN (dB)
GAIN
S(2316),
S(158),
S(70)
GAIN (dB)
GAIN
S(2316),
S(158),
S(70)
GAIN (dB)
GAIN
S(2316),
S(158),
S(70)
18.0
7F, 17, AF
0.0
10, 00, 00
18.0
02, 03, A7
36.0
00, 40, EA
54.0
00, 08, 2C
17.5
77, FB, AA
0.5
0F, 1A, DF
18.5
01, E6, CF
36.5
00, 3D, 49
54.5
00, 07, B7
17.0
71, 45, 75
1.0
0E, 42, 90
19.0
01, CB, 94
37.0
00, 39, DB
55.0
00, 07, 48
16.5
6A, EF, 5D
1.5
0D, 76, 5A
19.5
01, B1, DE
37.5
00, 36, 9E
55.5
00, 06, E0
16.0
64, F4, 03
2.0
0C, B5, 91
20.0
01, 99, 99
38.0
00, 33, 90
56.0
00, 06, 7D
15.5
5F, 4E, 52
2.5
0B, FF, 91
20.5
01, 82, AF
38.5
00, 30, AE
56.5
00, 06, 20
15.0
59, F9, 80
3.0
0B, 53, BE
21.0
01, 6D, 0E
39.0
00, 2D, F5
57.0
00, 05, C9
14.5
54, F1, 06
3.5
0A, B1, 89
21.5
01, 58, A2
39.5
00, 2B, 63
57.5
00, 05, 76
14.0
50, 30, A1
4.0
0A, 18, 66
22.0
01, 45, 5B
40.0
00, 28, F5
58.0
00, 05, 28
13.5
4B, B4, 46
4.5
09, 87, D5
22.5
01, 33, 28
40.5
00, 26, AB
58.5
00, 04, DE
13.0
47, 78, 28
5.0
08, FF, 59
23.0
01, 21, F9
41.0
00, 24, 81
59.0
00, 04, 98
12.5
43, 78, B0
5.5
08, 7E, 80
23.5
01, 11, C0
41.5
00, 22, 76
59.5
00, 04, 56
12.0
3F, B2, 78
6.0
08, 04, DC
24.0
01, 02, 70
42.0
00, 20, 89
60.0
00, 04, 18
11.5
3C, 22, 4C
6.5
07, 92, 07
24.5
00, F3, FB
42.5
00, 1E, B7
60.5
00, 03, DD
11.0
38, C5, 28
7.0
07, 25, 9D
25.0
00, E6, 55
43.0
00, 1C, FF
61.0
00, 03, A6
10.5
35, 98, 2F
7.5
06, BF, 44
25.5
00, D9, 73
43.5
00, 1B, 60
61.5
00, 03, 72
10.0
32, 98, B0
8.0
06, 5E, A5
26.0
00, CD, 49
44.0
00, 19, D8
62.0
00, 03, 40
9.5
2F, C4, 20
8.5
06, 03, 6E
26.5
00, C1, CD
44.5
00, 18, 65
62.5
00, 03, 12
9.0
2D, 18, 18
9.0
05, AD, 50
27.0
00, B6, F6
45.0
00, 17, 08
63.0
00, 02, E6
8.5
2A, 92, 54
9.5
05, 5C, 04
27.5
00, AC, BA
45.5
00, 15, BE
63.5
00, 02, BC
8.0
28, 30, AF
10.0
05, 0F, 44
28.0
00, A3, 10
46.0
00, 14, 87
64.0
00, 02, 95
7.5
25, F1, 25
10.5
04, C6, D0
28.5
00, 99, F1
46.5
00, 13, 61
64.5
00, 02, 70
7.0
23, D1, CD
11.0
04, 82, 68
29.0
00, 91, 54
47.0
00, 12, 4B
65.0
00, 02, 4D
6.5
21, D0, D9
11.5
04, 41, D5
29.5
00, 89, 33
47.5
00, 11, 45
65.5
00, 02, 2C
6.0
1F, EC, 98
12.0
04, 04, DE
30.0
00, 81, 86
48.0
00, 10, 4E
66.0
00, 02, 0D
5.5
1E, 23, 6D
12.5
03, CB, 50
30.5
00, 7A, 48
48.5
00, 0F, 64
66.5
00, 01, F0
5.0
1C, 73, D5
13.0
03, 94, FA
31.0
00, 73, 70
49.0
00, 0E, 88
67.0
00, 01, D4
4.5
1A, DC, 61
13.5
03, 61, AF
31.5
00, 6C, FB
49.5
00, 0D, B8
67.5
00, 01, BA
4.0
19, 5B, B8
14.0
03, 31, 42
32.0
00, 66, E3
50.0
00, 0C, F3
68.0
00, 01, A1
3.5
17, F0, 94
14.5
03, 03, 8A
32.5
00, 61, 21
50.5
00, 0C, 3A
68.5
00, 01, 8A
3.0
16, 99, C0
15.0
02, D8, 62
33.0
00, 5B, B2
51.0
00, 0B, 8B
69.0
00, 01, 74
2.5
15, 56, 1A
15.5
02, AF, A3
33.5
00, 56, 91
51.5
00, 0A, E5
69.5
00, 01, 5F
2.0
14, 24, 8E
16.0
02, 89, 2C
34.0
00, 51, B9
52.0
00, 0A, 49
70.0
00, 01, 4B
1.5
13, 04, 1A
16.5
02, 64, DB
34.5
00, 4D, 27
52.5
00, 09, B6
Mute
00, 00, 00
1.0
11, F3, C9
17.0
02, 42, 93
35.0
00, 48, D6
53.0
00, 09, 2B
0.5
10, F2, B4
17.5
02, 22, 35
35.5
00, 44, C3
53.5
00, 08, A8
A10
A.7 Programming Instruction for the Loudness Contour
Device ID
Subaddress
B0(230)
B1(230)
B2(230)
A1(230)
A2(230)
For example:
Left Loudness Biquad
68
21
001A82
000000
FFE57E
E03550
0FCABB
Right Loudness Biquad
68
22
001A82
000000
FFE57E
E03550
0FCABB
Left Loudness Biquad Gain
Sub
G(230)
68
23
04C6D0
Right Loudness Biquad Gain
68
24
04C6D0
A.8 Examples of Dynamic Range Compression/Expansion (DRCE)
Table A9. Example of a DRCE I
2
C Instruction With DRCE On
BYTE
NUMBER
INSTRUCTION
(HEX)
INSTRUCTION DEFINITION
TABLE
1
68
TAS3002 device identification
2
02
DRC subaddress
3
68
Above-threshold ratio of 5.33:1 with DRCE on
See Table A11 and Table A12
4
22
Below-threshold ratio of 1.33:1
See Table A13 and Table A14
5
9F
Threshold of 30 dB
See Table A15
6
B0
Integration interval for energy level detection of 212 ms
See Table A16
7
60
Attack time constant 6.7 ms
8
A0
Decay time constant 106 ms
A.8.1
DRCE On/Off
The DRCE default mode in the TAS3002 device is off.
The DRCE turns on if all eight bytes in Table A9 are transmitted and the LSB of the above-threshold ratio byte is
0.
The DRCE turns off if all eight bytes in Table A10 are transmitted and the LSB of the above-threshold ratio byte is
1. Table A10 is identical to Table A9 except for this third byte.
Table A10. Example of a DRCE I
2
C Instruction With DRCE Off
BYTE
NUMBER
INSTRUCTION
(HEX)
INSTRUCTION DEFINITION
TABLE
1
68
TAS3002 device identification
2
02
DRC subaddress
3
69
Above threshold ratio of 5.33:1 with DRCE off
See Table A11 and Table A12
4
22
Below threshold ratio of 1.33:1
See Table A13 and Table A14
5
9F
Threshold of 30 dB
See Table A15
6
B0
Integration interval for energy level detection of 212 ms
See Table A16
7
60
Attack time constant 6.7 ms
8
A0
Decay time constant 106 ms
A11
A.8.2
Above-Threshold Ratios
The above threshold ratios are applied when the energy level of the incoming signal is detected anywhere between
the threshold (from Table A15) and 0 dB. See Figure A1.
0 dB
Output (dB)
89.625 dB
Threshold
0 dB
Compression
Input (dB)
89.625 dB
Ratio = 1:1
Expansion
Below Threshold
Above Threshold
Figure A1. TAS3002 DRCE Characteristics in the dB Domain
Table A11. Above-Threshold Ratios for Compression
HEXADECIMAL VALUE
RATIO (IN:OUT)
02
1.00 : 1
08
1.07 : 1
10
1.14 : 1
18
1.23 : 1
20
1.33 : 1
28
1.45 : 1
30
1.60 : 1
38
1.78 : 1
40
2.00 : 1
48
2.29 : 1
50
2.67 : 1
58
3.20 : 1
60
4.00 : 1
68
5.33 : 1
70
8.00 : 1
78
16.0 : 1
A12
Table A12. Above-Threshold Ratios for Expansion
HEXADECIMAL VALUE
RATIO (IN:OUT)
02
1 : 1.00
0A
1 : 1.06
12
1 : 1.13
1A
1 : 1.19
22
1 : 1.25
2A
1 : 1.31
32
1 : 1.38
3A
1 : 1.44
42
1 : 1.50
A.8.3
Below-Threshold Ratios
The below-threshold ratios are applied when the energy level of the incoming signal is detected as being anywhere
between the threshold (from Table A15) and 89.625 dB. See Figure A1.
Table A13. Below-Threshold Ratios for Expansion
HEXADECIMAL VALUE
RATIO (IN:OUT)
02
1 : 1.00
08
1 : 1.06
10
1 : 1.13
18
1 : 1.19
20
1 : 1.25
28
1 : 1.31
30
1 : 1.38
38
1 : 1.44
40
1 : 1.50
48
1 : 1.56
50
1 : 1.63
58
1 : 1.69
60
1 : 1.75
68
1 : 1.81
70
1 : 1.88
78
1 : 1.94
80
1 : 2.00
Table A14. Below-Threshold Ratios for Compression
HEXADECIMAL VALUE
RATIO (IN:OUT)
02
1.00 : 1
0A
1.07 : 1
12
1.14 : 1
1A
1.23 : 1
22
1.33 : 1
2A
1.45 : 1
32
1.60 : 1
3A
1.78 : 1
42
2.00 : 1
A13
A.8.4
Threshold
Table A15 lists a range of threshold values from 0 dB to 89.625 dB in 0.75-dB decrements.
NOTE: The TAS3002 device is capable of 0.375-dB increments. The associated hexadecimal
value can be determined by interpolating between the existing hexadecimal values in
Table A15.
Table A15. Threshold Values
HEX
VALUE
dB
HEX
VALUE
dB
HEX
VALUE
dB
HEX
VALUE
dB
HEX
VALUE
dB
EF
0
BD
18.75
8B
37.50
59
56.25
27
75.00
ED
0.75
BB
19.50
89
38.25
57
57.00
25
75.75
EB
1.50
B9
20.25
87
39.00
55
57.75
23
76.50
E9
2.25
B7
21.00
85
39.75
53
58.50
21
77.25
E7
3.00
B5
21.75
83
40.50
51
59.25
1F
78.00
E5
3.75
B3
22.50
81
41.25
4F
60.00
1D
78.75
E3
4.50
B1
23.25
7F
42.00
4D
60.75
1B
79.50
E1
5.25
AF
24.00
7D
42.75
4B
61.50
19
80.25
DF
6.00
AD
24.75
7B
43.50
49
62.25
17
80.00
DD
6.75
AB
25.50
79
44.25
47
63.00
15
81.75
DB
7.50
A9
26.25
77
45.00
45
63.75
13
82.50
D9
8.25
A7
27.00
75
45.75
43
64.50
11
83.25
D7
9.00
A5
27.75
73
46.50
41
65.25
0F
84.00
D5
9.75
A3
28.50
71
47.25
3F
66.00
0D
84.75
D3
10.50
A1
29.25
6F
48.00
3D
66.75
0B
85.50
D1
11.25
9F
30.00
6D
48.75
3B
67.50
09
86.25
CF
12.00
9D
30.75
6B
49.50
39
68.25
07
87.00
CD
12.75
9B
31.50
69
50.25
37
69.00
05
87.75
CB
13.50
99
32.25
67
51.00
35
69.75
03
88.50
C9
14.25
97
33.00
65
51.75
33
70.50
01
89.25
C7
15.00
95
33.75
63
52.50
31
71.25
00
89.625
C5
15.75
93
34.50
61
53.25
2F
72.00
C3
16.50
91
35.25
5F
54.00
2D
72.75
C1
17.25
8F
36.00
5D
54.75
2B
73.50
BF
18.00
8D
36.75
5B
55.50
29
74.25
A.8.5
Time Constants
Use Table A16 to program the attack time, the decay time, and the integration interval for energy level detection.
Level detection is performed by using an alpha filter at the input of the DRCE, which functions as an energy-level
detection block for the DRCE. The time constant for level detection can be thought of as an integration interval. Use
a time constant from Table A16 as an integration interval for energy level detection.
Table A16 lists the time constants used for
integration interval for energy level detection, attack time constant, and
decay time constant. All values represent the time required to reach 63% of maximum value from zero.
A14
Table A16. Time Constants
HEXADECIMAL VALUE
TIME DELAY
40
1.7 ms
50
3.5 ms
60
6.7 ms
70
13 ms
80
26 ms
90
53 ms
A0
106 ms
B0
212 ms
C0
425 ms
D0
850 ms
E0
1.7 s
F0
2.4 s
A.8.6
DRCE Example With Threshold at 12 dB
From the DRCE example shown in Figure A2, the threshold is set at 12 dB. The input energy, E, has a value of
6 dB.
Output (dB) = [T(dB) + ( E(dB) T(dB) )
(1/CR)]
= [12 + (6 (12))
(1/3)] dB
= 12 + 2 = 10 dB
Where:
CR = Compression Ratio
T = Threshold (dB)
E = Energy estimate of current input
Note: Energy of sine wave is approximately 3 dB lower than peak.
0 dB
Output (dB)
Threshold = 12 dB
Threshold = 12 dB
0 dB
Final Output = 10 dB
Input (dB)
E = 6 dB
3:1 Above Threshold
Ratio for Compression
1:1 Below Threshold
Ratio for Compression
Figure A2. DRCE Example With Threshold at 12 dB