ChipFind - документация

Электронный компонент: TA1304N

Скачать:  PDF   ZIP
TA1304F/N
2001-02-16 1/31
TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC
TA1304F,TA1304N
TV-SOUND PROCESSOR

FEATURES
Sound processor
l 2 ch inputs (L-ch, R-ch)
l 3 ch outputs (L-ch, R-ch, W-ch)
l Volume, balance, treble, bass and woofer level control
l Built-in woofer low-pass filter
l Input matrix circuit
l ALS (Automatic Level Suppressor) circuit
I / O port circuit
l 2 ch input ports
l 2 ch output ports
Weight:
SSOP24-P-300-1.00: 0.33 g (Typ.)
SDIP24-P-300-1.78: 1.22 g (Typ.)
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general
can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the
buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and
to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or
damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the
most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling
Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal
equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are
neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or
failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy
control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control
instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document
shall be made at the customer's own risk.
The products described in this document are subject to the foreign exchange and foreign trade laws.
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by
TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its
use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or
others.
The information contained herein is subject to change without notice.
000707EBA1
TA1304F/N
2001-02-16 2/31
BLOCK DIAGRAM
TA1304F/N
2001-02-16 3/31
TERMINAL FUNCTION
PIN
No.
NAME FUNCTION
INTERFACE
CIRCUIT
1
2
Port 1
Port 2
These are logical input terminals.
Threshold voltage is 2.3 V.
The input level of these terminals are
read by MCU through I
2
C bus lines.
3 Port
3
A open collector type output
controlled by MPU through I
2
C bus
lines.
Maximum sink current is 1 mA.
4 Port
4
A emitter follower type output
controlled by MPU through I
2
C bus
lines.
This terminal can 3 level output, 0 V,
2.5 V and 5 V.
Maximum souce current is 2 mA,
and maximum sink current is
250 A.
5
Offset
cancelling filter
DC offset cancelling filter for Woofer
channel.
Connect a capacitor (10 F)
between this terminal and GND.
6
8
L-ch input
R-ch input
Audio input terminals.
TA1304F/N
2001-02-16 4/31
PIN
No.
NAME FUNCTION
INTERFACE
CIRCUIT
7 GND
GND
terminal.
9 Bias
filter
Filter for noise rejection of the bias.
Connect a capacitor (4.7 F)
between this terminal and GND.
10
15
Bass LPF (R)
Bass LPF (L)
LPFs for bass control circuits.
Connect capacitors (0.027 F)
between each terminals and GND.
11
14
Treble HPF (R)
Treble HPF (L)
HPFs for bass control circuits.
Connect capacitors (8200 pF)
between each terminals and GND.
13
12
16
W-ch output
R-ch output
L-ch output
Audio output terminals.
Bass boost function, addition woofer
channel signal to main channel
signals, is available.
Using ALS (Automatic Level
Suppressor), it can reduce distortion
in large signal input condition.
TA1304F/N
2001-02-16 5/31
PIN
No.
NAME FUNCTION
INTERFACE
CIRCUIT
17
18
19
Woofer LPF 1
Woofer LPF 2
Woofer LPF 3
LPF for woofer.
Connect a capacitor (0.033 F)
between terminal 17 and GND.
Connect a capacitor (0.047 F)
terminal 18 and GND.
Connect a capacitor (0.022 F)
terminal 19 and GND.
20 V
CC
V
CC
terminal.
Recommended operation voltage is
9 V 10%.
21 Volume
filter
Smoothing filter for volume control.
Connect a capacitor (0.01 F)
between this terminal and GND.
22 Woofer
level
filter
Smoothing filter for volume control.
Connect a capacitor (3.3 F)
between this terminal and GND.
This filter is also for ALS control.
23 SCL
SCL
terminal.
TA1304F/N
2001-02-16 6/31
PIN
No.
NAME FUNCTION
INTERFACE
CIRCUIT
24 SDA
SDA
terminal.
TA1304F/N
2001-02-16 7/31
I
2
C BUS CONTROL DATA TABLE
l Slave address : 80 (h) / Write mode
81 (h) / Read mode
l Write mode address map
SUB ADDRESS
MSB
b6
b5
b4
b3
b2
b1
LSB
DEFAULT DATA
00
Bass label (Effective data range : 0E (h) ~72 (h))
40 (h)
(Bass : Center)
01
Treble level (Effective data range : 0E (h) ~72 (h))
40 (h)
(Treble : Center)
02
Volume (Effective data range : 00 (h) ~72 (h))
00 (h)
(Volume : Min.)
03
TEST SW
"0" : Normal
"1" : Test
ALS SW
"0" : Off
"1" : On
ALS start point
"00" : 180 mV
"01" : 310 mV
"10" : 430 mV
"11" : 630 mV
Input att
"0" : 0 dB
"1" : -5 dB
Input matrix
"00" : Normal
"01" : R-ch
"10" : L-ch
"11" : Reverce
00 (h)
(TEST SW : Normal
ALS SW : Off
ALS strat point : 150 mV
input att : 0 dB
Input matrix : Normal)
04
Woofer level (Effective data range : 00 (h) ~72 (h))
00 (h)
(Woofer level : min.)
05
Balance (Effective data range : 00 (h) ~7F (h))
40 (h)
(Balance : Center)
06
Port 4
"00" : 0.0 V
"01" : 2.5 V
"10" : 0.0 V
"11" : 5.0 V
Port 3
"0" : On
"1" : Off
20 (h)
(Port3 : On
Port4 : 0.0 V)
07
Bass boost
SW
"0" : On
"1" : Off
Woofer LPF fo
"00" : 100 Hz
"01" : 125 Hz
"10" : 170 Hz
"11" : 210 Hz
Woofer LPF
defeat
"0" : Off
"1" : On
Mute 2

"0" : Off
"1" : On
Mute 1
"0" : Off
"1" : On
10 (h)
(Bass boost SW : Off
Woofer LPF fo : 125 Hz
Mute 1 : Off
Mute 2 : Off)
The bits shown gray area must be "0".
TA1304F/N
2001-02-16 8/31
l Read mode address map
MSB b6 b5 b4 b3 b2 b1 LSB
P.O.R
1
1
1
1
1
Port 2
Port 1
No function bits (shown gray area) are always "1".

P.O.R (Power on reset)
"0" : After read access
"1" : Power on reset
Port1,
2
"0" : "High"
"1" : "Low"

Purchase of TOSHIBA I
2
C components conveys a license under the Philips I
2
C Patent Rights to use these
components in an I
2
C system, provided that the system conforms to the I
2
C Standard Specification as define
by Philips.
TA1304F/N
2001-02-16 9/31
EXPLANATION OF THE FUNCTIONS.
(Note : (h) means hexadecimal data, (b) means binary data)
l Bass level (Sub address 00 (h))
Bass level control. Cross-over frequency is 1 kHz.
Effective control data range is 0E (h) ~72 (h) (100steps). Set this data to 0E (h), bass level goes to minimum
level, and set this data to 72 (h), bass level goes to maximum level. Set this data to 40 (h), bass level goes to
center level.
Switch on default data is 40 (h).
Control range is 12 dB (typ.).
l Treble level (Sub address 01 (h))
Treble level control. Cross-over frequency is 1 kHz.
Effective control data range is 0E (h) ~72 (h) (100steps). Set this data to 0E (h), treble level goes to minimum
level, and set this data to 72 (h), treble level goes to maximum level. Set this data to 40 (h), treble level goes
to center level.
Switch on default data is 40 (h).
Control range is 12 dB (typ.).
l Volume control (Sub address 02 (h))
Volume control of L-ch, R-ch, and W-ch outputs.
Effective control data range is 00 (h) ~72 (h)
Switch on default data is 00 (h).
l Woofer level control (Sub address 04 (h))
Volume control of only W-ch output.
Effective control data range is 00 (h) ~72 (h)
Switch on default data is 00 (h).
l Balance control (Sub address 05 (h))
Balance control. Set this data to 40 (h), balance goes to center.
Effective control data range is 00 (h) ~7F (h).
Switch on default data is 40 (h).
l Input matrix control (Sub address 03 (h) / b1~b0)
Output signal selection control.
Set these bits to 00 (b), output mode goes to normal mode (input signal of terminal 6 is outputted to terminal
16, and input signal of terminal 8 is outputted to terminal 13). Set these bits to 01 (b) output mode goes to
R-ch mode (input signal of terminal 8 is outputted to terminal 13 and terminal 16). Set these bits to 10 (b)
output mode goes to L-ch mode (input signal of terminal 6 is outputted to terminal 13 and terminal 16). Set
these bits to 11 (b), output mode goes to reverce mode (input signal of terminal 6 is outputted to terminal 13,
and input signal of terminal 8 is outputted to terminal 16).
Switch on default data is 00 (b).
TA1304F/N
2001-02-16 10/31
l Input attenuation control (Sub address 03 (h) / b2)
When this function is active, Input signals are -5 dB attenuated at input stage of L-ch and R-ch. W-ch signal
isn't attenuated. So, W-ch output level is up to 8 dB from L-ch and R-ch outputs relatively.
Set the bit to 0 (b), attenuation is inactive, set the bit to 1 (b), attenuation is active.
Switch on default data is 0 (b).
l ALS switch (Sub address 03 (h) / b6), ALS start point (Sub address 03 (h) / b5~b4)
When bass boost function (addition woofer ch signal to main ch signals) is active, output signals are distort
when the signals are over the dynamic range of the circuits. ALS (Automatic Level Suppressor) suppresses
W-ch signal level under ALS strat point, reduces the distortion in large signals input condition.
Set the bit (Sub address 03 (h) / b6) to 0 (b), ALS is inactive. Set the bit to 1 (b), ALS is active.
Switch on default data is 0 (b).
The bits of 03 (h) / b5~b4 set ALS start point. Set the bits to 00 (b), ALS start point is 180 mV
rms
. Set the
bits to 01 (b), ALS start point is 310 mV
rms
. Set the bits to 10 (b), ALS start point is 430 mV
rms
. And set the
bits to 11 (b), ALS start point is 630 mV
rms
.
Switch on default data is 00 (b).
l Test switch (Sub address 03 (h) / b7)
This bit is for IC testing. So this bit must be set to 0 (b).
Switch on default data is 0 (b).
l Port 3 control (Sub address 06 (h) / b3), Port 4 control (Sub address 06 (h) / b5~b4)
The IC, e.g. sound demltiplexer, which isn't avarailable I
2
C Bus, can be controlled by I
2
C Bus through
TA1304F.
Port 3 is open-collector type output. Set the bit to 0 (b), port3 is on. Set the bit to 1 (b), port3 is off.
Switch on default data 0 (b).
Port 4 is emitter-follower type output. It can output 3 levels. Set the bits to 00 (b) or 10 (b), port 4 outputs 0
V. Set to 01 (b), port 4 outputs 2.5 V. Set to 11 (b), port 4 outputs 5 V.
Switch on default data is 00 (h).
l Mute 1 (Sub address 07 (h) / b0), Mute 2 (Sub address 07 (h) / b1)
When Mute 1 is active, all outputs are muted. Set the bit to 0 (b), Mute 1 is inactive. Set the bit to 1 (b),
Mute 1 is active.
Switch on default data is 0 (b).
When Mute 2 is active, only W-ch output is muted. Set the bit to 0 (b), Mute 2 is inactive. Set the bit to 1 (b),
Mute 2 is active.
Switch on default data is 0 (b).
TA1304F/N
2001-02-16 11/31
l Woofer LPF fo (Sub address 07 (h) / b5~b4)
These bits set cut off frequency (fo) of the low pass filter for W-ch.
Set the bits to 00 (b), fo is 100 Hz (-3 dB point). Set the bits to 01 (b), fo is 125 Hz. Set the bits to 10 (b), fo is
170 Hz. Set the bits to 11 (b), fo is 210 Hz.
Switch on default data is 01 (h).
l Woofer LPF defeat (Sub address 07 (h) / b3)
Set the bit to 1 (b), Woofer LPF is defeated.
This function is for IC testing. so, this bit must be set to 0 (b).
Switch on default data is 0 (b).
l Bass boost switch (Sub address 07 (h) / b7)
Bass boost function is adding W-ch signal to main channel signals. It can boost low frequency signal without
woofer output.
Set the bit to 0 (b), Bass boost is inactive. Set the bit to 1 (b), bass boost is active.
Switch on default data is 0 (b).
TA1304F/N
2001-02-16 12/31
MAXIMUM RATINGS
(Ta = 25C)
CHARACTERISTIC SYMBOL RATING UNIT
Supply Voltage
V
CC
12 V
Power Dissipation
P
D
TA1304F: 833 (Note 1)
TA1304N: 1400 (Note 2)
mW
Operating Temperature
T
opr
-20~75 C
Storage Temperature
T
stg
-55~150 C
Maximum Input Voltage
V
MAX
V
CC
+ 0.3
V
Minimum Input voltage
V
MIN
GND
- 0.3
V
Note 1: This value is on contion that the IC is mounted on PCB (50 mm 50 mm). When using the device at Ta =
25C, decrease the power dissipation by 6.7 mW for each increase of 1C.
Note 2: When using the device at Ta = 25C, decrease the power dissipation by 11.2 mW for each increase of 1C.
COMMENDED SUPPLY VOLTAGE
PIN
No.
PIN NAME
MIN
TYP.
MAX
UNIT
20 V
CC
8.1
9.0
9.9
V
ELECTRICAL CHARACTERISTICS
DC current characteristics
(V
CC
= 9.0 V, Ta = 25C)
PIN
No.
PIN NAME
SYMBOL
MIN
TYP.
MAX
UNIT
20 V
CC
I
CC
22
34
45
mA
DC voltage characteristics
(V
CC
= 9.0 V, Ta = 25C)
PIN
No.
SYMBOL
TEST
CIR-
CUIT
TEST CONDITION
MIN
TYP.
MAX
UNIT
3 V
3
0.5
4 V
4
0.5
5 V
5
4.0 4.5 5.0
6 V
6
4.0 4.5 5.0
8 V
8
4.0 4.5 5.0
9 V
9
5.2 5.7 6.2
10 V
10
4.0 4.5 5.0
11 V
11
4.0 4.5 5.0
12 V
12
4.0 4.5 5.0
13 V
13
4.0 4.5 5.0
14 V
14
4.0 4.5 5.0
15 V
15
4.0 4.5 5.0
16 V
16
4.0 4.5 5.0
17 V
17
4.6 5.1 5.6
18 V
18
4.6 5.1 5.6
19 V
19
4.6 5.1 5.6
21 V
21
0.0
22 V
22
In power on defalt
0.5 1.5 2.0
V
TA1304F/N
2001-02-16 13/31
AC CHARACTERISTICS
(V
CC
= 9.0 V, Ta = 25C)
CHARACTERISTIC SYMBOL
TEST
CIR-
CUIT
TEST CONDITION
MIN
TYP.
MAX
UNIT
Go L
Go R
0.0 2.0 4.0
GoAtt L
GoAtt R
-7.0
-5.0
-3.0
GoBst L
GoBst R
11.0
13.0 15.0
Gain
Go W
(Note 1)
16.0
19.0 22.0
dB
THD L
THD R
0.03
THD
THD W
(Note 2)
0.2
1.0 %
SN L
SN R
70
S / N
SN W
(Note 3)
68
dB
V
NO
L
V
NO
R
Residual Noise
V
NO
W
(Note 4)
50
V
rms
Go100 L
Frequency Response (100 Hz)
Go100 R
(Note 5)
-2.0
0.0 2.0 dB
Go10k L
Frequency Response (10 kHz)
Go10k R
(Note 6)
-2.0
0.0 2.0 dB
G
LPF
100
4.0
6.0
8.0
G
LPF
125
5.5
7.5
9.5
G
LPF
170
4.0
6.0
8.0
LPF Frequency Response
G
LPF
210
(Note 7)
1.0 8.0 15.0
dB
Balance Center
G
LR
(Note
8) -2.0
0.0 2.0
G
BLMIN
L
Balance Minimum
G
BLMIN
R
(Note 9)
-60
dB
G
BSMAX
L
Bass Maximum
G
BSMAX
R
(Note 10)
10
12
14
dB
G
BSMIN
L
Bass Minimum
G
BSMIN
R
(Note 11)
-14
-12
-10 dB
G
TRMAX
L
Treble Maximum
G
TRMAX
R
(Note 12)
10
12
14
dB
G
TRMIN
L
Treble Minimum
G
TRMIN
R
(Note 13)
-14
-12
-10 dB
G
VLCNT
L
G
VLCNT
R
Volume Center
G
VLCNT
W
(Note 14)
-17
-15
-12 dB
G
VLMIN
L
G
VLMIN
R
Volume Minimum
G
VLMIN
W
(Note 15)
-65 dB
Woofer Level Center
G
WLCNT
(Note
16) -9.5
-7.5
-5.5 dB
TA1304F/N
2001-02-16 14/31
CHARACTERISTIC SYMBOL
TEST
CIR-
CUIT
TEST CONDITION
MIN
TYP.
MAX
UNIT
ALS Start Point 0
v
ALS
0
142
180
226
ALS Start Point 1
v
ALS
1
246
310
391
ALS Start Point 2
v
ALS
2
341
430
541
ALS Start Point 3
v
ALS
3
(Note 17)
500
630 794
mVrms
CT
L-R
Cross Talk
CT
R-L
(Note 18)
-75 dB
RR1 L
RR1 R
Ripple Rejection (Volume Minimum)
RR1 W
(Note 19)
-30 dB
RR2 L
RR2 R
-30
Ripple Rejection (Volume Maximum)
RR2 W
(Note 20)
-25
dB
v
DOUT
L
v
DOUT
R
Output Dynamic Range
v
DOUT
W
(Note 21)
6.0
6.7
V
p-p
v
DIN
L
v
DIN
R
5.5 7.0
Input Dynamic Range
v
DIN
W
(Note 22)
3.0 4.2
V
p-p
VL
VR
DC Offset
VW
(Note 23)
350 mV
G
MUT
L
G
MUT
R
Mute Redsisual Level
G
MUT
W
(Note 24 )
-70 dB
V
INL
1
Port 1, 2 Low-Level Voltage
V
INL
2
(Note 25)
1.0
V
V
INH
1
Port 1, 2 High-Level Voltage
V
INH
2
(Note 26)
3.5 V
Port 3 Low-Level Voltage
V
3LOW
(Note
27)
0.5 V
Port 4 Low-Level Voltage
V
4LOW
0.5 V
Port 4 Medium-Level Voltage
V
4MID
2.0
2.5
3.0
V
Port 4 High-level Voltage
V
4HI
(Note 28)
4.5 5.0 5.5 V
TA1304F/N
2001-02-16 15/31
TEST CONDITION
BUS DATA (HEXADECIMAL)
NOTE
INPUT
POINT
MEAS.
POINT
00 01 02 03
04
05
06
07
SW
1
TEST METHOD
1 TP6
TP8
TP12
TP13
TP16
40 40 72 00
/
04
72
40
*
10
/
90
(a)
l Set data of sub address 03 (h) to 00
(h) and set data of sub address 07 (h)
to 10 (h).
l Input signal (1 kHz, 500 mV
rms
, sine
wave) to TP6 and TP8.
l Measure amplitude of TP13 and
TP16 (v13
1
mV
rms
, v16
1
mV
rms
).
l Go R dB = 20 og (v13
1
/ 500)
Go L dB = 20 og (v16
1
/ 500)
l Set data of sub address 03 (h) to 04
(h).
l Measure amplitude of TP13 and
TP16 (v13
2
mV
rms
, v16
2
mV
rms
).
l GoAtt R dB = 20 og (v13
2
/ 13
1
)
GoAtt L dB = 20 og (v16
2
/ 16
1
)
l Set data of sub address 03 (h) to 00
(h) and set data of sub address 07 (h)
to 10 (h).
l Input signal (80 Hz, 125 mV
rms
, sine
wave) to TP6 and TP8
l Measure amplitude of TP13 and
TP16 (v13
3
mV
rms
, v16
3
mV
rms
).
l Set data of sub address 07 (h) to 90
(h).
l Measure amplitude of TP13 and
TP16 (v13
4
mV
rms
, v16
4
mV
rms
).
l GoBst R dB = 20 og (v13
4
/ 13
3
)
GoBst L dB = 20 og (v16
4
/ 16
3
)
l Measure amplitude of TP12 (v12
mV
rms
).
l Go W dB = 20 og (v12 / 125)
2
00
*
10
l Input signal (1 kHz, 500 mV
rms
, sine
wave) to TP6 and TP8
l Measure THD of TP13 and TP16
(THD R %, THD L %).
l Input signal (80 Hz, 125 mV
rms
, sine
wave) to TP6 and TP8.
l Measure THD of TP12 (THD W %)
*: Don't
care
TA1304F/N
2001-02-16 16/31
BUS DATA (HEXADECIMAL)
NOTE
INPUT
POINT
MEAS.
POINT
00 01 02 03
04
05
06
07
SW
1
TEST METHOD
3 TP6
TP8
TP12
TP13
TP16
40 40 72 00
72
40
*
10
(a)
l Input signal (1 kHz, 500 mV
rms
, sine
wave) to TP6 and TP8
l Measure amplitude of TP13 and
TP16 (v13s mV
rms
, v16s mV
rms
).
l Connect TP6 and TP8 to GND.
l Measure amplitude of TP13 and
TP16 (v13n mV
rms
, v16n mV
rms
).
l SN R dB = 20 og (v13
s
/ v13
n
)
SN L dB = 20 og (v16
s
/ v16
n
)
l Input signal (80 Hz, 125 mV
rms
, sine
wave) to TP6 and TP8.
l Measure amplitude of TP12 (v12
s
mV
rms
).
l Connect TP6 and TP8 to GND.
l Measure amplitude of TP12 (v
12n
mV
rms
).
l SN W dB = 20 og (v12
s
/ v12
n
)
4
00
00
*
l Connect TP6 and TP8 to GND.
l Measure amplitude of TP12, TP13
and TP16 (v
NO
W V
rms
, v
NO
R
V
rms
, v
NO
L V
rms
).
5 TP6
TP8
TP12
TP13
72
72
*
l Input signal (1 kHz, 500 mV
rms
, sine
wave) to TP6 and TP8.
l Measure amplitude of TP13 and
TP16 (v13
o
mV
rms
, v16
o
mV
rms
).
l Input signal (100 Hz, 500 mV
rms,
sine
wave) to TP6 and TP8
l Measure amplitude of TP13 and
TP16(v13 mV
rms
, v16 mV
rms
).
l Go100 R dB = 20 og (v13 / v13
o
)
Go100 L dB = 20 og (v16 / v16
o
)
6
*
l Input signal (1 kHz, 500 mV
rms
, sine
wave) to TP6 and TP8.
l Measure amplitude of TP13 and
TP16 (v13
o
mV
rms
, v16
o
mV
rms
).
l Input signal (10 kHz, 500 mV
rms
, sine
wave) to TP6 and TP8.
l Measure amplitude of TP13 and
TP16 (v13 mV
rms
, v16 mV
rms
).
l Go10k R dB = 20 og (v13 / v13
o
)
Go10k L dB = 20 og (v16 / v16
o
)
*: Don't
care
TA1304F/N
2001-02-16 17/31
BUS DATA (HEXADECIMAL)
NOTE
INPUT
POINT
MEAS.
POINT 00
01 02 03 04
05
06
07
SW
1
TEST METHOD
7 TP6
TP8
TP12 40
40 72 00 72
40
* 00
/
10
/
20
/
30
/
14
(a)
l Input signal (300 Hz, 125 mV
rms
, sine
wave) to TP6 and TP8.
l Set data of sub address 07 (h) to
00 (h).
l Measure amplitude of TP12
(v12
0
mV
rms
).
l Set data of sub address 07 (h) to 10 (h)
l Measure amplitude of TP12
(v12
1
mV
rms
).
l Set data of sub address 07 (h) to 20 (h)
l Measure amplitude of TP12
(v12
2
mV
rms
).
l Set data of sub address 07 (h) to
30 (h).
l Measure amplitude of TP12
(v12
3
mV
rms
).
l Set data of sub address 07 (h) to
14 (h).
l Measure amplitude of TP12
(v12
x
mV
rms
).
l G
LPF
80 dB = 20 og (v12
0
/ v12
1
)
G
LPF
100 dB = 20 og (v12
1
/ v12
2
)
G
LPF
130 dB = 20 og (v12
2
/ v12
3
)
G
LPF
160 dB = 20 og (v12
3
/ v12
x
)
8
TP13
TP16
* 10
l Input signal (1 kHz, 500 mV
rms
, sine
wave) to TP6 and TP8.
l Measure amplitude of TP13 and TP16
(v13 mV
rms
, v16 mV
rms
).
l G
LR
dB = 20 og (v16 / v13)
*: Don't
care
TA1304F/N
2001-02-16 18/31
BUS DATA (HEXADECIMAL)
NOTE
INPUT
POINT
MEAS.
POINT
00 01 02 03
04
05
06
07
SW
1
TEST METHOD
9 TP6
TP8
TP13
TP16
40 40 72 00
72
0E
/
72
*
10
(a)
l Input signal (1 kHz, 500 mV
rms
, sine
wave) to TP6 and TP8.
l Set data of sub address 05 (h) to
0E (h).
l measure amplitude of TP13 and
TP16 (v13
R
mV
rms
, v16
R
mV
rms
).
l Set data of sub address 05 (h) to
72 (h).
l Measure amplitude of TP13 and
TP16 (v13
L
mV
rms
, v16
L
mV
rms
).
l G
BLMIN
R dB = 20 og (v13
R
/ v16
R
)
G
BLMIN N
L dB = 20 og (v16
L
/ v13
L
)
10
40
/
72
40
*
l Input signal (100 Hz, 250 mV
rms
,
sine wave) to TP6 and TP8.
l Set data of sub address 00 (h) to
40 (h).
l Measure amplitude of TP13 and
TP16 (v13
o
mV
rms
, v16
o
mV
rms
).
l Set data of sub address 00 (h) to
72 (h).
l Measure amplitude of TP13 and
TP16 (v13
B
mV
rms
, v16
B
mV
rms
).
l G
BSMAX
R dB = 20 og (v13
B
/ v13
o
)
G
BSMAX
L dB = 20 og (v16
B
/ v16
o
)
11
40
/
0E
*
l Input signal (100 Hz, 250 mV
rms
,
sine wave) to TP6 and TP8.
l Set data of sub address 00 (h) to
40 (h).
l Measure amplitude of TP13 and
TP16 (v13
o
mV
rms
, v16
o
mV
rms
).
l Set data of sub address 00 (h) to
0E (h).
l Measure amplitude of TP13 and
TP16 (v13
B
mV
rms
, v16
B
mV
rms
).
l G
BSMIN
R dB = 20 og (v13
B
/ v13
o
)
G
BSMIN
L dB = 20 og (v16
B
/ v16
o
)
*: Don't
care
TA1304F/N
2001-02-16 19/31
BUS DATA (HEXADECIMAL)
NOTE
INPUT
POINT
MEAS.
POINT
00 01 02 03
04
05
06
07
SW
1
TEST METHOD
12 TP6
TP8
TP13
TP16
40 40
/
27
72 00
72
40
*
10
(a)
l Input signal (10 kHz, 250 mV
rms
,
sine wave) to TP6 and TP8.
l Set data of sub address 01 (h) to
40 (h).
l Measure amplitude of TP13 and
TP16 (v13
o
mV
rms
, v16
o
mV
rms
).
l Set data of sub address 01 (h) to
72 (h).
l Measure amplitude of TP13 and
TP16 (v13
T
mV
rms
, v16
T
mV
rms
).
l G
TRMAX
R dB = 20 og (v13
T
/ v13
o
)
G
TRMAX
L dB = 20 og (v16
T
/ v16
o
)
13
40
/
0E
*
l Input signal (10 kHz, 250 mV
rms
,
sine wave) to TP6 and TP8.
l Set data of sub address 01 (h) to
40 (h).
l Measure amplitude of TP13 and
TP16 (v13
o
mV
rms
, v16
o
mV
rms
).
l Set data of sub address 01 (h) to
0E (h).
l Measure amplitude of TP13 and
TP16 (v13
T
mV
rms
, v16
T
mV
rms
).
l G
TRMIN
R dB = 20 og (v13
T
/ v13
o
)
G
TRMIN
L dB = 20 og (v16
T
/ v16
o
)
*: Don't
care
TA1304F/N
2001-02-16 20/31
BUS DATA (HEXADECIMAL)
NOTE
INPUT
POINT
MEAS.
POINT
00 01 02 03
04
05
06
07
SW
1
TEST METHOD
14 TP6
TP8
TP12
TP13
TP16
40 40 72
/
40
00
72
40
*
10
(a)
l Input signal (1 kHz, 500 mV
rms
, sine
wave) to TP6 and TP8.
l Set data of sub address 02 (h) to
72 (h).
l Measure amplitude of TP13 and
TP16 (v13
o
mV
rms
, v16
o
mV
rms
).
l Set data of sub address 02 (h) to
40 (h).
l measure amplitude of TP13 and
TP16 (v13
C
mV
rms
, v16
C
mV
rms
).
l G
VLCNT
R dB = 20 og (v13
C
/ v13
o
)
G
VLCNT
L dB = 20 og (v16
C
/ v16
o
)
l Input signal (80 Hz, 125 mV
rms
, sine
wave) to TP6 and TP8
l Set data of sub address 02 (h) to
72 (h).
l Measure amplitude of TP12 (v12
o
mV
rms
).
l Set data of sub address 02 (h) to
40 (h).
l Measure amplitude of TP12 (v12
C
mV
rms
).
l G
VLCNT
W dB
= 20 og (v12C / v12o)
*: Don't
care
TA1304F/N
2001-02-16 21/31
BUS DATA (HEXADECIMAL)
NOTE
INPUT
POINT
MEAS.
POINT
00 01 02 03
04
05
06
07
SW
1
TEST METHOD
15 TP6
TP8
TP12
TP13
TP16
40 40 72
/
0E
00
72
40
*
10
(a)
l Input signal (1 kHz, 500 mV
rms
, sine
wave) to TP6 and TP8.
l Set data of sub address 02 (h) to
72 (h).
l Measure amplitude of TP13 and
TP16 (v13
o
mV
rms
, v16
o
mV
rms
).
l Set data of sub address 02 (h) to
0E (h).
l measure amplitude of TP13 and
TP16 (v13
MIN
mV
rms
,
v16
MIN
mV
rms
).
l G
VLMIN
R dB
= 20 og (v13
MIN
/ v13
o
)
G
VLMIN
L dB
= 20 og (v16
MIN
/ v16
o
)
l Input signal (80 Hz, 125 mV
rms
, sine
wave) to TP6 and TP8
l Set data of sub address 02 (h) to
72 (h).
l Measure amplitude of TP12 (v12
o
mV
rms
).
l Set data of sub address 02 (h) to
0E (h).
l measure amplitude of TP12
(v12
MIN
mV
rms
).
l G
VLMIN
W dB
= 20 og (v12
MIN
/ v12
o
)
16
TP12
72
72
/
40
*
l Input signal (80 Hz, 125 mV
rms
, sine
wave) to TP6 and TP8
l Set data of sub address 04 (h) to
72 (h)
l Measure amplitude of TP12
(v12
o
mV
rms
).
l Set data of sub address 04 (h) to
40 (h).
l Measure amplitude of TP12
(v12
C
mV
rms
).
l G
WLCNT
dB = 20 og (v12
C
/ v12
o
)
*: Don't
care
TA1304F/N
2001-02-16 22/31
BUS DATA (HEXADECIMAL)
NOTE
INPUT
POINT
MEAS.
POINT
00 01 02 03
04
05
06
07
SW
1
TEST METHOD
17 TP6
TP8
TP12 40 40 72 40
/
50
/
60
/
70
72
40
* 10
(a)
l Input signal (80 Hz, 500 mV
rms
,
sine wave) to TP6 and TP8
l Set data of sub address 03 (h) to
C0 (h).
l Measure amplitude of TP12
(V
ALS
0 V
p-p
).
l Set data of sub address 03 (h) to
D0 (h).
l Measure amplitude of TP12
(V
ALS
1 V
p-p
).
l Set data of sub address 03 (h) to
E0 (h).
l Measure amplitude of TP12
(V
ALS
2 V
p-p
).
l Set data of sub address 03 (h) to
F0 (h).
l Measure amplitude of TP12
(VALS 3 V
p-p
).
18
TP13
TP16
00
*
l Connect TP8 to GND.
l Input signal (1 kHz, 500 mV
rms
,
sine wave) to TP6.
l Measure 1 kHz spectrum of
TP16 output (vTP16 dBV).
l Measure 1 kHz spectrum of
TP13 output (vTP13 dBV).
l CT
L-R
dB = vTP16 - vTP13
l Connect TP6 to GND.
l Input signal (1 kHz, 500 mV
rms
,
sine wave) to TP8.
l Measure 1 kHz spectrum of
TP13 output (vTP13 dBV).
l Measure 1 kHz spectrum of
TP16 output (vTP16 dBV).
l CT
R-L
dB = vTP13 - vTP16
19
TP12
TP13
TP16
00 00
* (b)
l Apply 9.0 V DC and sine wave
(60 Hz, 500 mV
rms
) to V
CC
terminal.
l Measure amplitude of TP12,
TP13 and TP16 (vTP12 mV
rms
,
vTP13 mV
rms
, vTP16 mV
rms
).
l RR1 W dB = 20 og (vTP12 / 500)
RR1 R dB = 20 og (vTP13 / 500)
RR1 L dB = 20 og (vTP16 / 500)
*: Don't
care
TA1304F/N
2001-02-16 23/31
BUS DATA (HEXADECIMAL)
NOTE
INPUT
POINT
MEAS.
POINT
00 01 02 03
04
05
06
07
SW
1
TEST METHOD
20
TP12
TP13
TP16
40 40 72 00
72
40
* 10
(b)
l Apply 9.0 V DC and sine wave
(60 Hz, 500 mV
rms
) to V
CC
terminal.
l Measure amplitude of TP12,
TP13 and TP16 (vTP12 mV
rms
,
vTP13 mV
rms
, vTP16 mV
rms
).
l RR1 W dB = 20 og (vTP12 / 500)
RR1 R dB = 20 og (vTP13 / 500)
RR1 L dB = 20 og (vTP16 / 500)
21 TP6
TP8
TP12
TP13
TP16
72 72
* (a)
l Input signal (100 Hz, sine wave)
to TP6 and TP8.
l Increase amplitude of the input
signal, and measure THD of
TP13 and TP16.
l Measure amplitude of TP13 and
TP16 when THD of the output is
1% (v
DOUT
R1 V
p-p
, v
OUT
L1
V
p-p
).
l Input signal (10 kHz, sine wave)
to TP6 and TP8.
l Increase amplitude of the input
signal, and measure THD of
TP13 and TP16.
l Measure amplitude of TP13 and
TP16 when THD of the output is
1% (v
DOUT
R2 V
p-p
, v
DOUT
L2
V
p-p
).
l Smaller value v
DOUT
R1 or
v
DOUT
R2 is v
DOUT
R. Smaller
value v
DOUT
L1 or v
DOUT
L2 is
v
DOUT
L.
l Input signal (80 Hz, sine wave) to
TP6 and TP8.
l Increase amplitude of the input
signal, and measure THD of
TP12.
l Measure amplitude of TP12
when THD of the output is 1%
(v
DOUT
W V
p-p
).
*: Don't
care
TA1304F/N
2001-02-16 24/31
BUS DATA (HEXADECIMAL)
NOTE
INPUT
POINT
MEAS.
POINT
00 01 02 03 04
05
06
07
SW
1
TEST METHOD
22 TP6
TP8
TP12
TP13
TP16
40 40 40 00 40
40
* 10
(a)
l Input signal (1 kHz, sine wave)
to TP6 and TP8.
l Increase amplitude of the input
signal, and measure THD of
TP13 and TP16.
l Measure amplitude of TP13 and
TP16 when THD of the output is
1% (v
DIN
R V
p-p
, v
DIN
L V
p-p
).
l Input signal (80 Hz, sine wave)
to TP6 and TP8.
l Increase amplitude of the input
signal, and measure THD of
TP13 and TP16.
l Measure amplitude of TP13 and
TP16 when THD of the output is
1% (v
DIN
W V
p-p
).
23
72 00~03
72
* 00
/
01
/
02
l Connect TP6 and TP8 to GND.
l Change data of sub address 03
(h) to 00 (h) ~03 (h).
l Change data of sub address 07
(h) to 00 (h), 01 (h) and 02 (h).
l Measure DC off set of TP12,
TP13, TP16 (V R mV, V L
mV, V W mV).
*: Don't
care
TA1304F/N
2001-02-16 25/31
BUS DATA (HEXADECIMAL)
NOTE
INPUT
POINT
MEAS.
POINT
00 01 02 03
04
05
06
07
SW
1
TEST METHOD
24 TP6
TP8
TP12
TP13
TP16
40 40 72 00
72
40
*
00
/
01
/
02
(a)
l Input signal (1 kHz, 500 mV
rms
, sine
wave) to TP6 and TP8.
l Set data of sub address 07 (h) to
00 (h).
l Measure amplitude of TP13 and
TP16 (v13
o
mV
rms
. v16
o
mV
rms
).
l Set data of sub address 07 (h) to
01 (h).
l Measure amplitude of TP13 and
TP16 (v13
MUT
mV
rms
,
v16
MUT
mV
rms
).
l G
MUT
R dB = 20 og (v13
MUT
/ v13
o
)
G
MUT
L dB = 20 og (v16
MUT
/ v16
o
)
l Input signal (80 Hz, 125 mV
rms
, sine
wave) to TP6 and TP8.
l Set data of sub address 07 (h) to
00 (h).
l Measure amplitude of TP12 (v12
o
mV
rms
).
l Set data of sub address 07 (h) to
01 (h).
l Measure amplitude of TP12
(v12
MUT
mV
rms
).
l G
MUT
W dB = 20 og (v12
MUT
/ v12
o
)
25 TP1
TP2
*
*
*
*
*
*
*
l Apply 5 V to TP1 and TP2.
l Decrease voltage of TP1, and read
IC status by I
2
C Bus.
l Measure voltage of TP1 when IC
status is changed 00 (h) to 01 (h)
(V
INL
1 V).
l Apply 5 V to TP1 and TP2.
l Decrease voltage of TP2, and read
IC status by I
2
C Bus.
l Measure voltage of TP1 when IC
status is changed 00 (h) to 02 (h)
(V
INL
2 V).
*: Don't
care
TA1304F/N
2001-02-16 26/31
BUS DATA (HEXADECIMAL)
NOTE
INPUT
POINT
MEAS.
POINT
00 01 02 03
04
05
06
07
SW
1
TEST METHOD
26 TP1
TP2
* * * 00
* * * * (a)
l Apply 0 V to TP1 and apply 5 V
to TP2.
l Increase voltage of TP1, and
read IC status by I
2
C Bus.
l Measure voltage of TP1 when IC
status is changed 01 (h) to 00 (h)
(V
INH
1 V).
l Apply 5 V to TP1 and apply 0 V
to TP2.
l Increase voltage of TP1, and
read IC status by I
2
C Bus.
l Measure voltage of TP1 when IC
status is changed 02 (h) to 00 (h)
(V
INH
2 V).
27
TP3 * * * * * * 04
*
l Measure voltage of TP3
(V
3LOW
V).
28
TP4
*
*
*
00
*
*
00
/
10
/
30
*
l Set data of 06 (h) to 00 (h).
l Measure voltage of TP4
(V
4LOW
V).
l Set data of 06 (h) to 10 (h).
l Measure voltage of TP4
(V
4MID
V).
l Set data of 06 (h) to 30 (h).
l Measure voltage of TP4
(V
4HI
V).
*: Don't
care
TA1304F/N
2001-02-16 27/31
DC TEST CIRCUIT
TA1304F/N
2001-02-16 28/31
AC TEST CIRCUIT
TA1304F/N
2001-02-16 29/31
APPLICATION CIRCUIT
TA1304F/N
2001-02-16 30/31
PACKAGE DIMENSIONS
Weight: 0.33 g (Typ.)
TA1304F/N
2001-02-16 31/31
PACKAGE DIMENSIONS
Weight: 1.22 g (Typ.)