ChipFind - документация

Электронный компонент: TB6066FNG

Скачать:  PDF   ZIP
TB6066FNG
2003-05-14
1
TOSHIBA BiCMOS Linear Integrated Circuit Silicon Monolithic
TB6066FNG
Shock Sensor IC

TB6066FNG detects an existence of external shock through the
shock sensor and output Low-level signal at 7 pin.
It has so excellent characteristic in S/N ratio that user can use
Analog signal for mechanical control systems, like servo control.
Features
TB6066FNG operates from 2.7 to 5.5 V DC single power
supply voltage.
Signal from the shock sensor is amplified according to setting
gain, and is detected through the internal window
comparator.
Input terminal of sensor signal is designed high impedance.
Differential input impedance = 100 M (typ.)
Three Operatinal-Amplifier is built in for design flexibility. (*Note 1)
Sensitivity of shock detection can be adjusted by external devices.
Small package: SSOP16-P-225-0.65B (0.65 mm pitch)
Excellent S/N ratio: Improved 10dB compared with our TA6038FN/FNG
*Note 1: LPF (low pass filter) circuitry is not bulit in. User needs to make some filter with one
operational-amplifier to cancel the signal of resonant frequency of piezo sensor
Block Diagram
Weight: 0.07 g (typ.)
C
1
50 M
15
16
1
50 M
2
1 V
Diff Amp
5
3
0.63 V
Guard
C
2
14
C
3
R1
R2
4
5
1.2 V
13
12
OP2 AMP
OP3 AMP
6
OP1 AMP
11
10
Comparator
7
9 V
CC
8 GND
"L" output when shock
detected.
C
4
TB6066FNG
2003-05-14
2
Pin Function
Pin No.
Pin Name
Function
1
SIA
Connection terminal of shock sensor
2
SOA
Amp (A) output terminal
3
VR
Guard terminal. Reference voltage to protect (1, 16 pin)
4
A3I
OP-AMP (3) input terminal
5
A3O
OP-AMP (3) output terminal
6
CMI
Comparator Input terminal
7
CMO
Comparator Output terminal (output
= "L" when shock is detected.)
8 GND
Ground
terminal
9 V
CC
Power supply voltage
10
A1O
OP-AMP (1) output terminal
11
A1I
OP-AMP (1) input terminal
12
A2O
OP-AMP (2) output terminal
13
A2I
OP-AMP (2) input terminal
14
DO
Differential-Amp output terminal
15
SOB
Amp (B) output terminal
16
SIB
Connection terminal of shock sensor
Pin Connection
(top view)
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
SIA
SOA
VR
A3I
A3O
CMI
CMO
GND
SIB
SOB
DO
A2I
A2O
A1I
A1O
V
CC
TB6066FNG
2003-05-14
3
Maximum Ratings
(Ta
= 25C)
Characteristics Symbol
Rating
Unit
Power supply voltage
V
CC
6 V
Input voltage
V
IN
-0.3 to V
CC
+ 0.3
V
Power dissipation
P
D
300
mW
Storage temperature
T
stg
-55 to 150
C
Recommend Operating Condition
Characteristics Symbol
Rating
Unit
Power supply voltage
V
CC
2.7
to
5.5 V
Operating temperature
T
opr
-25 to 85
C

Note: The IC may be destroyed due to short circuit between adjacent pins, incorrect orientation of device's mounting,
connecting positive and negative power supply pins wrong way round, air contamination fault, or fault by
improper grounding.
TB6066FNG
2003-05-14
4
Electrical Characteristics (1) --- Guaranteed data
(unless otherwise specified, V
CC
= 3.3 V, Ta = 25C)
Characteristics Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
Supply voltage
V
CC
2.7 3.3 5.5 V
V
CC
= 3.3 V
3.5 5
Supply current
I
CC
1
V
CC
= 5.0 V
3.6 5
mA
(DIFF-AMP)
Characteristics Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
Gain GvBuf
2
13.6
14
14.4
dB
Output DC voltage
VoBuf
3
Connect C
= 1000 pF between
1 pin and 2 pin,
15 pin and 16 pin,
0.7 1 1.3 V
Output source current
IB
so
4
Voh
= V
CC
- 1 V
0.6
1.9
mA
Output sink current
IB
si
5
Vol
= 0.3 V
70
150
A
(OP-AMP1)
Characteristics Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
Input voltage 1
Vin1
6
1.135 1.2 1.265 V
Input current
Iin
7
40 100 nA
Output voltage range (Low side)
Vol
0.3
V
Output voltage range (High side)
Voh
V
CC
- 1
V
Output source current
IA
so
8
Voh
= V
CC
- 1 V
200
800
A
Output sink current
IA
si
9
Vol
= 0.3 V
100
200
A
(OP-AMP2)
Characteristics Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
Input voltage range (Low side)
Vil
0
V
Input voltage range (High side)
Vih
V
CC
- 1
V
Input current
Iin
10
Input voltage 1.0 V
-100
100 nA
Output voltage range (Low side)
Vol
0.3
V
Output voltage range (High side)
Voh
V
CC
- 1
V
Output source current
IA
so
11
Voh
= V
CC
- 1 V
200
800
A
Output sink current
IA
si
12
Vol
= 0.3 V
100
200
A
TB6066FNG
2003-05-14
5
(OP-AMP3)
Characteristics Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
Input voltage 1
Vin1
13
1.135 1.2 1.265 V
Input current
Iin
14
40 100 nA
Output voltage range (Low side)
Vol
0.3
V
Output voltage range (High side)
Voh
V
CC
- 1
V
Output source current
IA
so
15
Voh
= V
CC
- 1 V
200
800
A
Output sink current
IA
si
16
Vol
= 0.3 V
100
200
A
(Window-Comparator)
Characteristics Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
Output pull-up resistance
RW
u
17
21 27 33 k
Output sink current
IW
si
18
Vol
= 0.3 V
1.0
3.0
mA
(Guard Terminal)
Characteristics Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
Reference Voltage
V
ref
0.50 0.63 0.80 V
Note: This terminal should be used to make guard ring for (1, 16 pin). Please don't use for any other usage.
TB6066FNG
2003-05-14
6
Electrical Characteristics (2) --- Reference data for application (Note)
(DIFF-AMP)
Characteristics Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
Input impedance
Zin
30
100
M
(OP-AMP1/2/3)
Characteristics Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
Cut-off frequency
fT
500
kHz
Openloop gain
Gvo
80
90
dB
Offset voltage (OP-AMP1/3)
Voff
-5
0 5 mV
Offset voltage (OP-AMP2)
Voff
-15 0 15 mV
(Window-Comparator)
Characteristics Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
Trip voltage 1
Vtrp1
Vin1
0.37
Vin1
0.4
Vin1
0.43
V
Note: Toshiba can not test these tables of characteristics for all samples. Therefore Toshiba does not guarantee the
data. Please use the data as reference data for customer's application.

TB6066FNG
2003-05-14
7
Application Note
Figure 1 shows the configuration of G-Force sensor amplifier.
The shock sensor is connected between the pins 1 and 16.

< How to output 0 or 1 from the pin 7 to detect whether there is a shock or not. >
Using a sensor with the sensitivity Qs (pC/G) to detect the shock g (G).

a. Setting gain: C1
= C2 (pF), R1 (k), R2 (k)
(V)
0.4
R1
R2
5
2
C1
g
Qs
=
R1
R2
0.04
g
Qs
C2
C1
=
=
(pF)
425
10
100
0.04
5
0.34
C2
C1
=
=
=

b. Setting the frequency (Hz) of HPF: Setting C3 (
F), R1 (k)
103
C3
R1
2
1
(Hz)
fc
=
F)
(
0.8
103
20
10
2
1
C3
=
=

c. Setting the frequency (kHz) of LPF: Setting C4 (pF), R2 (k
)
106
C4
R2
2
1
(kHz)
fc
=
(pF)
318
106
5
100
2
1
C4
=
=

< How to output the voltage according to the shock through the pin 5. >
Using a sensor with the sensitivity Qs (pC/G), and assuming the shock sensitivity of the system is
Vsystem (mV/G).

a. Setting gain: C1
= C2 (pF), R1 (k), R2 (k)
(mV/G)
103
Vsystem
R1
R2
5
2
C1
Qs
=
(pF)
10
R1
R2
Vsystem
Qs
C2
C1
4
=
=
(pF)
170
10
10
100
200
0.34
C2
C1
=
=
=
4
Example: Detecting 5 (G)-shock using a sensor
with Qs
= 0.34 (pC/G), R1 = 10 (k), R2 = 100 (k).
Example: Setting the frequency to 20 Hz with
R1
= 10 (k).
Example: Designing the system with 200 (mV/G)
by using a sensor that Qs
= 0.34 (pC/G),
R1
= 10 (k), R2 = 100 (k).
Example: Setting the frequency to 5 kHz with
R2
= 100 (k).
Figure 1 The Configuration of G-Force Sensor Amplifier
15
16
Shock
sensor
14
4
0.8 V
1.6 V
1
2
C
1
C
2
50 M
50 M
1.2 V
7
5
Qs (pC/G)
R
1
C
3
C
4
R
2
5
6
TB6066FNG
2003-05-14
8
Equivalent Circuit
V
CC
10
0
DO
14
V
CC
10
0
A1O
10
V
CC
1
00
A2O
12
V
CC
1
00
A3O
5
0.8 V
27 k
CMI
6
1.6 V
CMO
7
TB6066FNG
2003-05-14
9
Test Circuit
(1) Supply
current:
I
CC

(2) DIFF-AMP
Gain:
GvBuf
Gain
= (M2-M1)/(0.63-0.47)
Step 1
Step 2

(3) DIFF-AMP
Output DC voltage: VoBuf
1
SIA
2
SOA
3
VR
4
5
6
7
8
A3I
A3O
CMI
CMO
GND
SIB
SOB
DO
A2I
A2O
A1I
A1O
VCC
16
15
14
13
12
11
10
9
5 k
2 M
2 M
5 k
3.
3 V
A
1
SIA
2
SOA
3
VR
4
5
6
7
8
A3I
A3O
CMI
CMO
GND
SIB
SOB
DO
A2I
A2O
A1I
A1O
VCC
16
15
14
13
12
11
10
9
5 k
2 M
2 M
0.
6
3
V
2 M
V
M1
2 M
0.
6
3
V
3.
3
V
1
SIA
2
SOA
3
VR
4
5
6
7
8
A3I
A3O
CMI
CMO
GND
SIB
SOB
DO
A2I
A2O
A1I
A1O
VCC
16
15
14
13
12
11
10
9
5 k
1000 pF
V
1000 pF
3.3 V
1
SIA
2
SOA
3
VR
4
5
6
7
8
A3I
A3O
CMI
CMO
GND
SIB
SOB
DO
A2I
A2O
A1I
A1O
VCC
16
15
14
13
12
11
10
9
5 k
2 M
2 M
0.
6
3
V
2 M
V
M2
2 M
0.
4
7
V
3.
3
V
TB6066FNG
2003-05-14
10
(4) DIFF-AMP
(5) DIFF-AMP
Output
source
current:
IBso
Output
sink
current:
IBsi

(6) OP-AMP1
(7) OP-AMP1
Input voltage 1: Vin1
Input
current:
Iin

(8) OP-AMP1
(9) OP-AMP1
Output
source
current:
IAso
Output
sink
current:
IAsi
1
SIA
2
SOA
3
VR
4
5
6
7
8
A3I
A3O
CMI
CMO
GND
SIB
SOB
DO
A2I
A2O
A1I
A1O
VCC
16
15
14
13
12
11
10
9
5 k
2 M
2 M
2 M
A
2.
3
V
3.
3
V
1
SIA
2
SOA
3
VR
4
5
6
7
8
A3I
A3O
CMI
CMO
GND
SIB
SOB
DO
A2I
A2O
A1I
A1O
VCC
16
15
14
13
12
11
10
9
5 k
2 M
2 M
2 M
A
0.
3
V
3.
3
V
1
SIA
2
SOA
3
VR
4
5
6
7
8
A3I
A3O
CMI
CMO
GND
SIB
SOB
DO
A2I
A2O
A1I
A1O
VCC
16
15
14
13
12
11
10
9
5 k
5 k
V
3.3
V
1
SIA
2
SOA
3
VR
4
5
6
7
8
A3I
A3O
CMI
CMO
GND
SIB
SOB
DO
A2I
A2O
A1I
A1O
VCC
16
15
14
13
12
11
10
9
5 k
A
0.
6
V
3.3
V
Spec (Iin)
= I
M
/2
I
M
1
SIA
2
SOA
3
VR
4
5
6
7
8
A3I
A3O
CMI
CMO
GND
SIB
SOB
DO
A2I
A2O
A1I
A1O
VCC
16
15
14
13
12
11
10
9
5 k
1.0
V
3.3
V
A
2.3
V
1
SIA
2
SOA
3
VR
4
5
6
7
8
A3I
A3O
CMI
CMO
GND
SIB
SOB
DO
A2I
A2O
A1I
A1O
VCC
16
15
14
13
12
11
10
9
5 k
1.4
V
3.3
V
A
0.3
V
TB6066FNG
2003-05-14
11
(10) OP-AMP2
Input
current:
Iin

(11) OP-AMP2
(12) OP-AMP2
Output
source
current:
IAso
Output
sink
current:
IAsi

(13) OP-AMP3
(14) OP-AMP3
Input voltage 1: Vin1
Input
current:
Iin

1
SIA
2
SOA
3
VR
4
5
6
7
8
A3I
A3O
CMI
CMO
GND
SIB
SOB
DO
A2I
A2O
A1I
A1O
VCC
16
15
14
13
12
11
10
9
5 k
A
1.0
V
3.
3
V
Spec (Iin)
= I
M
I
M
1
SIA
2
SOA
3
VR
4
5
6
7
8
A3I
A3O
CMI
CMO
GND
SIB
SOB
DO
A2I
A2O
A1I
A1O
VCC
16
15
14
13
12
11
10
9
5 k
3.
3 V
3.3
V
A
2.
3 V
1
SIA
2
SOA
3
VR
4
5
6
7
8
A3I
A3O
CMI
CMO
GND
SIB
SOB
DO
A2I
A2O
A1I
A1O
VCC
16
15
14
13
12
11
10
9
5 k
3.3
V
V
1
SIA
2
SOA
3
VR
4
5
6
7
8
A3I
A3O
CMI
CMO
GND
SIB
SOB
DO
A2I
A2O
A1I
A1O
VCC
16
15
14
13
12
11
10
9
5 k
0 V
3.3
V
A
0.
3 V
1
SIA
2
SOA
3
VR
4
5
6
7
8
A3I
A3O
CMI
CMO
GND
SIB
SOB
DO
A2I
A2O
A1I
A1O
VCC
16
15
14
13
12
11
10
9
3.3
V
Spec (Iin)
= I
M
/2
I
M
A
0.
6
V
TB6066FNG
2003-05-14
12
(15) OP-AMP3
(16) OP-AMP3
Output
source
current:
IAso
Output
sink
current:
IAsi

(17) Window comparator
(18) Window comparator
Output
pull-up
resistance:
RWu
Output
sink
current:
Iwsi
1
SIA
2
SOA
3
VR
4
5
6
7
8
A3I
A3O
CMI
CMO
GND
SIB
SOB
DO
A2I
A2O
A1I
A1O
VCC
16
15
14
13
12
11
10
9
3.
3
V
A
2.3
V
1.0
V
1
SIA
2
SOA
3
VR
4
5
6
7
8
A3I
A3O
CMI
CMO
GND
SIB
SOB
DO
A2I
A2O
A1I
A1O
VCC
16
15
14
13
12
11
10
9
3.
3
V
A
0.3
V
1.4
V
1
SIA
2
SOA
3
VR
4
5
6
7
8
A3I
A3O
CMI
CMO
GND
SIB
SOB
DO
A2I
A2O
A1I
A1O
VCC
16
15
14
13
12
11
10
9
3.3
V
A
M3
1.
2
V
RWu
= 3.3/M3
1
SIA
2
SOA
3
VR
4
5
6
7
8
A3I
A3O
CMI
CMO
GND
SIB
SOB
DO
A2I
A2O
A1I
A1O
VCC
16
15
14
13
12
11
10
9
3.3
V
A
0.
7
V
0.
3
V
TB6066FNG
2003-05-14
13
Package Dimensions

Weight: 0.07 g (typ.)
TB6066FNG
2003-05-14
14
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and
conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability
Handbook" etc..
The TOSHIBA products listed in this document are intended for usage in general electronics applications
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or
bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this
document shall be made at the customer's own risk.
The information contained herein is presented only as a guide for the applications of our products. No
responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
rights of the third parties which may result from its use. No license is granted by implication or otherwise under
any intellectual property or other rights of TOSHIBA CORPORATION or others.
The information contained herein is subject to change without notice.
000707EAA
RESTRICTIONS ON PRODUCT USE