ChipFind - документация

Электронный компонент: 6N137-X007

Скачать:  PDF   ZIP

Document Outline

6N137 / VO2601 / 11 / VO2630 / 31 / VO4661
Document Number 84732
Rev. 1.0, 07-Jun-05
Vishay Semiconductors
www.vishay.com
1
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
NC
A
C
NC
VCC
VE
VO
GND
A1
C1
C2
A2
VCC
VO1
VO2
GND
Single channel
Dual channel
6N137, VO2601, VO2611
VO2630, VO2631, VO4661
18921_5
High Speed Optocoupler, 10 Mbd
Features
Choice of CMR performance of 10 kV/
s,
5 kV/
s, and 100 V/s
High speed: 10 Mbd typical
+ 5 V CMOS compatibility
Guaranteed AC and DC performance over tem-
perature: - 40 to + 100 C Temp. Range
Pure tin leads
Meets IEC60068-2-42 (SO
2
) and
IEC60068-2-43 (H
2
S) requirements
Low input current capability: 5 mA
Lead (Pb)-free component
Component in accordance to RoHS 2002/95/EC
and WEEE 2002/96/EC
Agency Approvals
UL1577, File No. E52744 System Code H or J,
Double Protection
CUL - File No. E52744, equivalent to CSA bulletin
5A
DIN EN 60747-5-2 (VDE0884)
Reinforced insulation rating per IEC60950
2.10.5.1
VDE available with Option 1
Applications
Microprocessor System Interface
PLC, ATE input/output isolation
Computer peripheral interface
Digital Fieldbus Isolation: CC-Link, DeviceNet,
Profibus, SDS
High speed A/D and D/A conversion
AC Plasma Display Panel Level Shifting
Multiplexed Data Transmission
Digital control power supply
Ground loop elimination
Description
The 6N137, VO2601 and VO2611 are single channel
10 Mbd optocouplers utilizing a high efficient input
LED coupled with an integrated optical photodiode IC
detector. The detector has an open drain NMOS-tran-
sistor output, providing less leakage compared to an
open collector Schottky clamped transistor output.
The VO2630, VO2631 and VO4661 are dual channel
10MBd optocouplers. For the single channel type, an
enable function on pin 7 allows the detector to be
strobed. The internal shield provides a guaranteed
common mode transient immunity of 5 kV/
s for the
VO2601 and VO2631 and 10 kV/
s for the VO2611
and VO4661. The use of a 0.1 F bypass capacitor
connected between pin 5 and 8 is recommended.
Order Information
Part
Remarks
6N137
100 V/
s, Single channel, DIP-8
6N137-X006
100 V/
s, Single channel, DIP-8 400 mil
6N137-X007
100 V/
s, Single channel, SMD-8
VO2601
5 kV/
s, Single channel, DIP-8
VO2601-X006
5 kV/
s, Single channel, DIP-8 400 mil
VO2601-X007
5 kV/
s, Single channel, SMD-8
VO2611
10 kV/
s, Single channel, DIP-8
VO2611-X006
10 kV/
s, Single channel, DIP-8 400 mil
VO2611-X007
10 kV/
s, Single channel, SMD-8
VO2630
100 V/
s, Dual channel, DIP-8
VO2630-X006
100 V/
s, Dual channel, DIP-8 400 mil
VO2630-X007
100 V/
s, Dual channel, SMD-8
VO2631
5 kV/
s, Dual channel, DIP-8
VO2631-X006
5 kV/
s, Dual channel, DIP-8 400 mil
VO2631-X007
5 kV/
s, Dual channel, SMD-8
VO4661
10 kV/
s, Dual channel, DIP-8
VO4661-X006
10 kV/
s, Dual channel, DIP-8 400 mil
VO4661-X007
10 kV/
s, Dual channel, SMD-8
e3
www.vishay.com
2
Document Number 84732
Rev. 1.0, 07-Jun-05
6N137 / VO2601 / 11 / VO2630 / 31 / VO4661
Vishay Semiconductors
Truth Table (Positive Logic)
Absolute Maximum Ratings
T
amb
= 25 C, unless otherwise specified
Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is
not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
Maximum Rating for extended periods of the time can adversely affect reliability.
Input
1)
Package: Single DIP-8
2)
Package: Dual DIP-8
Output
1)
Package: Single DIP-8
2)
Package: Dual DIP-8
Coupler
1)
Package: DIP-8 through hole
2)
Package: DIP-8 SMD
LED
ENABLE
OUTPUT
ON
H
L
OFF
H
H
ON
L
H
OFF
L
H
ON
NC
L
OFF
NC
H
Parameter
Test condition
Symbol
Value
Unit
Average forward current
1)
I
F
20
mA
Average forward current
2)
I
F
15
mA
Reverse input voltage
V
R
5
V
Enable input voltage
1)
V
E
V
CC
+ 0.5 V
V
Enable input current
1)
I
E
5
mA
Surge current
t = 100
s
I
FSM
200
mA
Parameter
Test condition
Symbol
Value
Unit
Supply voltage
1 minute max.
V
CC
7
V
Output current
I
O
50
mA
Output voltage
V
O
7
V
Output power dissipation
1)
P
O
85
mW
Output power dissipation
2)
P
O
60
mW
Parameter
Test condition
Symbol
Value
Unit
Storage temperature
T
stg
- 55 to + 150
C
Operating temperature
T
amb
- 40 to + 100
C
Lead solder temperature
1)
for 10 sec.
260
C
Solder reflow temperature
2)
for 1 minute
260
C
Isolation test voltage
t = 1.0 sec.
V
ISO
5300
V
RMS
6N137 / VO2601 / 11 / VO2630 / 31 / VO4661
Document Number 84732
Rev. 1.0, 07-Jun-05
Vishay Semiconductors
www.vishay.com
3
Recommended Operating Conditions
Electrical Characteristics
T
amb
= 25 C, unless otherwise specified
Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering
evaluation. Typical values are for information only and are not part of the testing requirements.
Input
Output
Parameter
Test condition
Symbol
Min
Typ.
Max
Unit
Operating temperature
T
amb
- 40
100
C
Supply voltage
V
CC
4.5
5.5
V
Input current low level
I
FL
0
250
A
Input current high level
I
FH
5
15
mA
Logic high enable voltage
V
EH
2.0
V
CC
V
Logic low enable voltage
V
EL
0.0
0.8
V
Output pull up resistor
R
L
330
4 K
Fanout
R
L
= 1 k
N
5
-
Parameter
Test condition
Symbol
Min
Typ.
Max
Unit
Input forward voltage
I
F
= 10 mA
V
F
1.1
1.4
1.7
V
Reverse current
V
R
= 5.0 V
I
R
0.01
10
A
Input capacitance
f = 1 MHz, V
F
= 0 V
C
I
55
pF
Parameter
Test condition
Symbol
Min
Typ.
Max
Unit
High level supply
current (single
channel)
V
E
= 0.5 V, I
F
= 0 mA
I
CCH
4.1
7.0
mA
V
E
= V
CC
, I
F
= 0 mA
I
CCH
3.3
6.0
mA
High level supply
current (dual
channel)
I
F
= 0 mA
I
CCH
6.9
12.0
mA
Low level supply
current (single
channel)
V
E
= 0.5 V, I
F
= 10 mA,
I
CCL
4.0
7.0
mA
V
E
= V
CC
, I
F
= 10 mA
I
CCL
3.3
6.0
mA
Low level supply
current (dual
channel)
I
F
= 10 mA
I
CCL
6.5
12.0
mA
High level output
current
V
E
= 2.0 V, V
O
= 5.5 V, I
F
= 250
A
I
OH
0.002
1
A
Low level output
voltage
V
E
= 2.0 V, I
F
= 5 mA,
I
OL
(sinking) = 13 mA
V
OL
0.2
0.6
V
Input treshold
current
V
E
= 2.0 V, V
O
= 5.5 V,
I
OL
(sinking) = 13 mA
I
TH
2.4
5.0
mA
High level enable
current
V
E
= 2.0 V
I
EH
- 0.6
- 1.6
mA
Low level enable
current
V
E
= 0.5 V
I
EL
- 0.8
- 1.6
mA
High level enable
voltage
V
EH
2.0
V
Low level enable
voltage
V
EL
0.8
V
www.vishay.com
4
Document Number 84732
Rev. 1.0, 07-Jun-05
6N137 / VO2601 / 11 / VO2630 / 31 / VO4661
Vishay Semiconductors
Switching Characteristics
Over Recommended Temperature (T
a
= - 40 to + 100 C), V
CC
= 5 V, I
F
= 7.5 mA unless otherwise specified.
All Typicals at T
a
= 25 C, V
CC
= 5 V.
*
75 ns applies to the 6N137 only, a JEDEC registered specification
Parameter
Test condition
Symbol
Min
Typ.
Max
Unit
Propagation delay time to high
output level
R
L
= 350
, C
L
= 15 pF
t
PLH
20
48
75
*
ns
t
PLH
100
ns
Propagation delay time to low
output level
R
L
= 350
, C
L
= 15 pF
t
PHL
25
50
75
*
ns
t
PHL
100
ns
Pulse width distortion
R
L
= 350
, C
L
= 15 pF
| t
PHL
- t
PLH
|
2.9
35
ns
Propagation delay skew
R
L
= 350
, C
L
= 15 pF
t
PSK
8
40
ns
Output rise time (10 - 90 %)
R
L
= 350
, C
L
= 15 pF
t
r
23
ns
Output fall time (90 - 10 %)
R
L
= 350
, C
L
= 15 pF
t
f
7
ns
Propagation delay time of
enable from V
EH
to V
EL
R
L
= 350
, C
L
= 15 pF,
V
EL
= 0 V, V
EH
= 3 V
t
ELH
12
ns
Propagation delay time of
enable from V
EL
to V
EH
R
L
= 350
, C
L
= 15 pF,
V
EL
= 0 V, V
EH
= 3 V
t
EHL
11
ns
Figure 1. Single Channel Test Circuit for t
PLH
, t
PHL
, t
r
and t
f
1
2
3
4
8
7
6
5
18964-2
The Probe and Jig Capacitances are included in C
Input IF
Output VO
IF
0 mA
VOL
1.5 V
tPHL
tPL H
VOH
C = 15 pF
GND
0.1
F
Bypass
VCC
VOUT
VCC
IF
R
RL
Input IF
Monitoring
Node
Output VO
Monitoring
Node
L
Single Channel
Pulse Gen.
Z = 50
t = t = 5 ns
o
f
r
M
L
= 7.5 mA
IF = 3.75 mA
VE
Figure 2. Dual Channel Test Circuit for t
PLH
, t
PHL
, t
r
and t
f
1
2
3
4
8
7
6
5
GND
VCC
Pulse Gen.
Z = 50
t = t = 5 ns
o
f
r
Input
Monitoring
Node
Dual Channel
Output V
Monitoring
Node
O
IF
RM
RL
CL= 15 pF
0.1
F
Bypass
18963-2
VCC
6N137 / VO2601 / 11 / VO2630 / 31 / VO4661
Document Number 84732
Rev. 1.0, 07-Jun-05
Vishay Semiconductors
www.vishay.com
5
Common Mode Transient Immunity
1)
For 6N137 and VO2630
2)
For VO2601 and VO2631
3)
For VO2611 and VO4661
Figure 3. Single Channel Test Circuit for t
EHL
and t
ELH
Parameter
Test condition
Symbol
Min
Typ.
Max
Unit
Common mode
transient immunity
(high)
|V
CM
| = 10 V, V
CC
= 5 V, I
F
= 0 mA,
V
O(min)
= 2 V, R
L
= 350
, T
amb
= 25 C
1)
| CM
H
|
100
V/
s
|V
CM
| = 50 V, V
CC
= 5 V, I
F
= 0 mA,
V
O(min)
= 2 V, R
L
= 350
, T
amb
= 25 C
2)
| CM
H
|
5000
10000
V/
s
|V
CM
| = 1 kV, V
CC
= 5 V, I
F
= 0 mA,
V
O(min)
= 2 V, R
L
= 350
, T
amb
= 25 C
3)
| CM
H
|
10000
15000
V/
s
|V
CM
| = 10 V, V
CC
= 5 V, I
F
= 7.5 mA,
V
O(max)
= 0.8 V, R
L
= 350
, T
amb
= 25 C
1)
| CM
L
|
100
V/
s
|V
CM
| = 50 V, V
CC
= 5 V, I
F
= 7.5 mA,
V
O(max)
= 0.8 V, R
L
= 350
, T
amb
= 25 C
2)
| CM
L
|
5000
10000
V/
s
|V
CM
| = 1 kV, V
CC
= 5 V, I
F
= 7.5 mA,
V
O(max)
= 0.8 V, R
L
= 350
, T
amb
= 25 C
3)
| CM
L
|
10000
15000
V/
s
1
2
3
4
8
7
6
5
18975-2
The Probe and Jig Capacitances are included in C
Input VE
Output VO
tEHL
tELH
C = 15 pF
GND
0.1
F
Bypass
VCC
VOUT
VCC
IF
RL
Output VO
Monitoring
Node
L
Single Channel
Pulse Gen.
Z = 50
t = t = 5 ns
o
f
r
L
7.5 mA
Input V
Monitoring Node
E
3 V
1.5 V
1.5 V
VE
Figure 4. Single Channel Test Circuit for Common Mode Transient Immunity
VCM(PEAK)
Switch AT A: I
0 mA
F
Switch AT A:
7.5 mA
F
VO(min.
VO(max.)
0 V
5 V
V
VCM
VO
VO 0.5
CMH
CML
1
2
3
4
8
7
6
5
18976-2
GND
0.1
F
Bypass
VCC
VOUT
VCC
RL
Output VO
Monitoring
Node
+
-
VCM
Single Channel
B
A
VFF
IF
Pulse Generator
Z = 50
O
VE
)
=
I =
www.vishay.com
6
Document Number 84732
Rev. 1.0, 07-Jun-05
6N137 / VO2601 / 11 / VO2630 / 31 / VO4661
Vishay Semiconductors
Safety and Insulation Ratings
As per IEC60747-5-2, 7.4.3.8.1, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with
the safety ratings shall be ensured by means of protective circuits.
Figure 5. Dual Channel Test Circuit for Common Mode Transient Immunity
Parameter
Test condition
Symbol
Min
Typ.
Max
Unit
Climatic Classification (according to
IEC 68 part 1)
55/110/21
Comparative Tracking Index
CTI
175
399
V
IOTM
8000
V
V
IORM
630
V
P
SO
500
mW
I
SI
300
mA
T
SI
175
C
Creepage
standard DIP-8
7
mm
Clearance
standard DIP-8
7
mm
Creepage
400mil DIP-8
8
mm
Clearance
400mil DIP-8
8
mm
Insulation thickness, reinforced rated per IEC60950 2.10.5.1
0.2
mm
1
2
3
4
8
7
6
5
18977-1
GND
0.1
F
Bypass
VCC
RL
+ 5 V
Output VO
Monitoring
Node
+
-
VCM
B
A
VFF
IF
Pulse Generator
Z = 50
O
Dual Channel
6N137 / VO2601 / 11 / VO2630 / 31 / VO4661
Document Number 84732
Rev. 1.0, 07-Jun-05
Vishay Semiconductors
www.vishay.com
7
Typical Characteristics (Tamb = 25
C unless otherwise specified)
Figure 6. Forward Voltage vs. Ambient Temperature
Figure 7. Forward Voltage vs. Forward Current
Figure 8. Reverse Current vs. Ambient Temperature
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
40
20
0
20
40
60
80
100
T
amb
Ambient Temperature (
C )
17610
I
F
= 50 mA
I
F
= 10 mA
I
F
= 20 mA
I
F
= 1 mA
V Forward V
oltage ( V )
F
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
0
5
10 15 20 25 30 35 40 45 50
I
F
Forward Current ( mA )
17611
V For
w
ard V
oltage ( V
)
F
0
1
2
3
4
5
6
7
40
20
0
20
40
60
80
100
I Re
v
erse C
u
rrent ( nA
)
R
T
amb
Ambient Temperature ( C )
17613-1
Figure 9. Low Level Supply Current vs. Ambient Temperature
Figure 10. High Level Supply Current vs. Ambient Temperature
Figure 11. Input Threshold ON Current vs. Ambient Temperature
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
40
20
0
20
40
60
80
100
I Lo
w
Le
v
el S
u
pply C
u
rrent ( mA
)
CCl
T
amb
Ambient Temperature ( C )
17614
V
CC
= 5 V
I
F
= 10 mA
V
CC
= 7 V
I
F
= 10 mA
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
40
20
0
20
40
60
80
100
I High Le
v
el S
u
pply C
u
rrent ( mA
)
CCh
T
amb
Ambient Temperature ( C )
17615
V
CC
= 5 V
I
F
= 0.25 mA
V
CC
= 7 V
I
F
= 0.25 mA
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
40
20
0
20
40
60
80
100
I Inp
u
t Threshold
O
N
C
u
rrent (
A
)
th
T
amb
Ambient Temperature ( C )
17616
R
L
= 350
R
L
= 1 k
R
L
= 4 k
www.vishay.com
8
Document Number 84732
Rev. 1.0, 07-Jun-05
6N137 / VO2601 / 11 / VO2630 / 31 / VO4661
Vishay Semiconductors
Figure 12. Input Threshold OFF Current vs. Ambient Temperature
Figure 13. Low Level Output Voltage vs. Ambient Temperature
Figure 14. Low Level Output Current vs. Ambient Temperature
2.0
2.1
2.2
2.3
2.4
2.5
2.6
40
20
0
20
40
60
80
100
I Inp
u
t Threshold
OFF
C
u
rrent (
A
)
th
T
amb
Ambient Temperature ( C )
17617
R
L
= 350
R
L
= 1 k
R
L
= 4 k
0.00
0.05
0.10
0.15
0.20
0.25
0.30
40
20
0
20
40
60
80
100
V Lo
w
Le
v
el O
u
tp
u
t V
oltage ( V )
ol
T
amb
Ambient Temperature ( C )
17618
I
L
= 6 mA
I
L
= 10 mA
I
L
= 13 mA
I
L
= 16 mA
V
CC
= 5.5 V
I
F
= 5 mA
0
10
20
30
40
50
60
40
20
0
20
40
60
80
100
I Low Level Output Current ( mA
)
ol
T
amb
Ambient Temperature (
_C )
17619
I
F
= 5 mA
I
F
= 10 mA
Figure 15. High Level Output Current vs. Ambient Temperature
Figure 16. Output Voltage vs. Forward Input Current
Figure 17. Propagation Delay vs. Ambient Temperature
0
5
10
15
20
25
30
35
40
45
50
40
20
0
20
40
60
80
100
I High Le
v
el O
u
tp
u
t C
u
rrent ( nA
)
oh
T
amb
Ambient Temperature ( C )
17620
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
0
1
2
3
4
5
V Output V
oltage ( V )
o
I
F
Forward Input Current ( mA )
17621
R
L
= 350
W
R
L
= 1 k
W
R
L
= 4 k
W
0
20
40
60
80
100
120
40
20
0
20
40
60
80
100
T
amb
Ambient Temperature (
C )
17622
t Propagation Delay time ( ns ) P
t
PLH,
350
t
PHL,
350
t
PLH,
1 k
t
PHL,
1 k
t
PLH,
4 k
t
PHL,
4 k
6N137 / VO2601 / 11 / VO2630 / 31 / VO4661
Document Number 84732
Rev. 1.0, 07-Jun-05
Vishay Semiconductors
www.vishay.com
9
Figure 18. Propagation Delay vs. Forward Current
Figure 19. Pulse Width Distortion vs. Ambient Temperature
Figure 20. Pulse Width Distortion vs. Forward Current
0
20
40
60
80
100
120
5
7
9
11
13
15
I
F
Forward Current ( mA )
17623
t Propagation Delay time ( ns ) P
t
PLH,
350
t
PHL,
350
t
PLH,
1 k
t
PHL,
1 k
t
PLH,
4 k
t
PHL,
4 k
0
10
20
30
40
50
40
20
0
20
40
60
80
100
T
amb
Ambient Temperature (
C )
17624
P
W
D P
u
lse
W
idth Distortion ( ns
)
R
L
= 350
R
L
= 1 k
R
L
= 4 k
0
10
20
30
40
50
60
5
7
9
11
13
15
I
F
Forward Current ( mA )
17625
P
W
D P
u
lse
W
idth Distortion ( ns
)
R
L
= 350
R
L
= 1 k
R
L
= 4 k
Figure 21. Rise and Fall Time vs. Ambient Temperature
Figure 22. Rise and Fall Time vs. Forward Current
Figure 23. Enable Propagation Delay vs. Ambient Temperature
0
50
100
150
200
250
300
40
20
0
20
40
60
80
100
T
amb
Ambient Temperature (
C )
17626
t Rise and Fall
T
ime ( ns )
t
r
, R
L
= 4 k
r,
f
t
r
, R
L
= 350
t
f
, R
L
= 350
t
f
, R
L
= 4 k
t
r
, R
L
= 1 k
t
f
, R
L
= 1 k
0
50
100
150
200
250
300
5
7
9
11
13
15
I
F
Forward Current ( mA )
17627
t Rise and Fall
T
ime ( ns )
t
r
, R
L
= 4 k
r,
f
t
r
, R
L
= 350
t
f
, R
L
= 350
t
f
, R
L
= 4 k
t
r
, R
L
= 1 k
t
f
, R
L
= 1 k
0
10
20
30
40
50
60
40
20
0
20
40
60
80
100
T
amb
Ambient Temperature (
C )
17628
t Ena
b
le Propagation Delay ( ns )
t
eLH
= 4 k
e
t
eLH
= 350
t
eHL
= 350
t
eHL
= 4 k
t
eLH
= 1 k
t
eHL
= 1 k
www.vishay.com
10
Document Number 84732
Rev. 1.0, 07-Jun-05
6N137 / VO2601 / 11 / VO2630 / 31 / VO4661
Vishay Semiconductors
Package Dimensions in Inches (mm)
i178006
pin one ID
.255 (6.48)
.268 (6.81)
.379 (9.63)
.390 (9.91)
.030 (0.76)
.045 (1.14)
4 typ.
.100 (2.54) typ.
10
39
.300 (7.62)
typ.
.018 (.46)
.022 (.56)
.008 (.20)
.012 (.30)
.110 (2.79)
.130 (3.30)
.130 (3.30)
.150 (3.81)
.020 (.51 )
.035 (.89 )
.230(5.84)
.250(6.35)
4
3
2
1
.031 (0.79)
.050 (1.27)
5
6
7
8
ISO Method A
.014 (0.35)
.010 (0.25)
.400 (10.16)
.430 (10.92)
.307 (7.8)
.291 (7.4)
.407 (10.36)
.391 (9.96)
Option 6
.315 (8.0)
MIN.
.300 (7.62)
TYP.
.180 (4.6)
.160 (4.1)
.331 (8.4)
MIN.
.406 (10.3)
MAX.
.028 (0.7)
MIN.
Option 7
18450-1
6N137 / VO2601 / 11 / VO2630 / 31 / VO4661
Document Number 84732
Rev. 1.0, 07-Jun-05
Vishay Semiconductors
www.vishay.com
11
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating
systems with respect to their impact on the health and safety of our employees and the public, as well as
their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are
known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs
and forbid their use within the next ten years. Various national and international initiatives are pressing for an
earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use
of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments
respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Legal Disclaimer Notice
Vishay
Document Number: 91000
www.vishay.com
Revision: 08-Apr-05
1
Notice
Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc.,
or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.
Information contained herein is intended to provide a product description only. No license, express or implied, by
estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's
terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express
or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness
for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications.
Customers using or selling these products for use in such applications do so at their own risk and agree to fully
indemnify Vishay for any damages resulting from such improper use or sale.