Features

- Low Insertion Loss : 0.8dB @2.50GHz

$$
1.0 \mathrm{~dB} @ 5.85 \mathrm{GHz}
$$

- Isolation: 29.5dB @2.50GHz $20.5 \mathrm{~dB} @ 5.85 \mathrm{GHz}$
- Low DC Power Consumption
- Miniature QFN12L (3x3 mm) Plastic Package
- PHEMT process

Description

The HWS383 is a GaAs PHEMT MMIC DPDT switch operating at DC-6GHz in a low cost miniature QFN12L ($3 \times 3 \mathrm{~mm}$) plastic package. The HWS383 features low insertion loss and high isolation with very low DC power consumption. This switch can be used in IEEE 802.11a/b/g WLAN systems for combination of transmit/receive and antenna diversity functions.

QFN12L (3 x 3 mm)

Electrical Specifications at $25^{\circ} \mathrm{C}$ with $0,+3 \mathrm{~V}$ Control Voltages

Parameter	Test Conditions	Min.	Typ.	Max.	Unit
Insertion Loss	$\begin{aligned} & 0.10-6.00 \mathrm{GHz} \\ & 2.40-2.50 \mathrm{GHz} \\ & 5.15-5.85 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & \hline 1.0 \\ & 0.8 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	dB dB dB
Isolation	$\begin{aligned} & \hline 0.10-6.00 \mathrm{GHz} \\ & 2.40-2.50 \mathrm{GHz} \\ & 5.15-5.85 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 27.0 \\ & 18.0 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 29.5 \\ & 20.5 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Return Loss	$\begin{aligned} & 0.10-6.00 \mathrm{GHz} \\ & 2.40-2.50 \mathrm{GHz} \\ & 5.15-5.85 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 15 \\ & 20 \\ & 18 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Input Power for One dB Compression	$2.00-6.00 \mathrm{GHz}$ @0/+3.0V		33		dBm
Input Third Order Intermodulation Intercept Point	20dBm Per Tone@2.50GHZ 22dBm Per Tone@5.85GHZ		$\begin{aligned} & 52 \\ & 52 \end{aligned}$		dBm dBm
Control Current			5	200	$\mu \mathrm{A}$

Note: All measurements made in a 50Ω system with $0 /+3.0 \mathrm{~V}$ control voltages, unless otherwise specified.

Typical Performance Data with 8pF Capacitors @ $+25^{\circ} \mathrm{C}$

Insertion Loss vs Frequency

Isolation vs Frequency

Return Loss vs Frequency

Absolute Maximum Ratings

Parameter	Absolute Maximum
RF Input Power	$+34 \mathrm{dBm} @+3 \mathrm{~V}$
Control Voltage	+6 V
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Pin Out (Top View)

DC blocking capacitors $C_{B}=8 p F$ are required on all RF ports.
TX and RX paths can be used interchangeably.
Exposed pad in the bottom must be connected to ground by via holes.
Logic Table for Switch On-Path

State	VC1	VC2	ANT1	ANT2
1	0	1	TX	RX
2	1	0	RX	TX

'1' = +3V to +5 V
' 0 ' $=0 \mathrm{~V}$ to +0.2 V

