SN54ALVTH16244, SN74ALVTH16244 2.5-V/3.3-V 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS SCES070G - JUNE 1996 - REVISED MAY 1999 - **Members of the Texas Instruments** Widebus™ Family - State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V **Operation and Low Static-Power** Dissipation - 5-V I/O Compatible - High Drive Capability (-32 mA/64 mA) - Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V_{CC}) - **Support Unregulated Battery Operation** Down to 2.3 V - Typical V_{OI P} (Output Ground Bounce) $< 0.8 \text{ V at V}_{CC} = 3.3 \text{ V}, T_A = 25^{\circ}\text{C}$ - **Auto3-State Eliminates Bus Current Loading When Voltage at the Output** Exceeds V_{CC} - Ioff and Power-Up 3-State Support Hot Insertion - Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown - Latch-Up Performance Exceeds 250 mA Per **JESD 17** - **ESD Protection Exceeds 2000 V Per** MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0) - Package Options Include Plastic 300-mil Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), Thin Very Small-Outline (DGV) Packages, and 380-mil Fine-Pitch Ceramic Flat (WD) Package NOTE: For tape and reel order entry: The DGGR package is abbreviated to GR, and the DGVR package is abbreviated to VR. #### description The 'ALVTH16244 devices are 16-bit buffers/line drivers designed for 2.5-V or 3.3-V V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment. These devices can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus is a trademark of Texas Instruments Incorporated SN54ALVTH16244 . . . WD PACKAGE SN74ALVTH16244 . . . DGG, DGV, OR DL PACKAGE (TOP VIEW) | _ | \Box | | L | |----------|--------|----|-------------------| | 10E | 1 | 48 | 20E | | 1Y1 L | 2 | 47 | [] 1A1 | | 1Y2 🛚 | 3 | 46 | 1A2 | | GND [| 4 | 45 | GND | | 1Y3 [| 5 | 44 | 1A3 | | 1Y4 🛚 | 6 | 43 |] 1A4 | | v_{cc} | 7 | 42 | □ v _{cc} | | 2Y1 | 8 | 41 | 2A1 | | 2Y2 🛚 | 9 | 40 | 2A2 | | GND [| 10 | 39 | GND | | 2Y3 🛚 | 11 | 38 | E -/ 10 | | 2Y4 🛚 | 12 | 37 | 2A4 | | 3Y1 🛚 | 13 | 36 | 3A1 | | 3Y2 🛚 | 14 | 35 | 3A2 | | GND [| 15 | 34 | GND | | 3Y3 🛚 | 16 | 33 | 3A3 | | 3Y4 [| 17 | 32 | 3A4 | | v_{cc} | 18 | 31 | □ v _{cc} | | 4Y1 🛚 | 19 | 30 | 4A1 | | 4Y2 | 20 | 29 | 4A2 | | GND | 21 | 28 | GND | | 4Y3 [| 22 | 27 | 4A3 | | 4Y4 [| 23 | 26 | 4A4 | | 40E | 24 | 25 | 3 <u>OE</u> | | | | | ı | #### description (continued) When V_{CC} is between 0 and 1.2 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.2 V, the output-enable (\overline{OE}) input should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. These devices are fully specified for hot-insertion applications using $I_{\rm off}$ and power-up 3-state. The $I_{\rm off}$ circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The SN54ALVTH16244 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ALVTH16244 is characterized for operation from –40°C to 85°C. ### FUNCTION TABLE (each buffer) | INP | JTS | OUTPUT | |-----|-----|--------| | ŌĒ | Α | Y | | L | Н | Н | | L | L | L | | Н | Χ | Z | ### logic diagram (positive logic) ### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage range, V _{CC} | | |--|---| | Input voltage range, V _I (see Note 1) | 0.5 V to 7 V | | Voltage range applied to any output in the high-impedance | | | or power-off state, V _O (see Note 1) | 0.5 V to 7 V | | Voltage range applied to any output in the high state, V _O (see Note 1) | \dots -0.5 V to V _{CC} to 7V | | Output current in the low state, I _O : SN54ALVTH16244 | 96 mA | | SN74ALVTH16244 | 128 mA | | Output current in the high state, I _O : SN54ALVTH16244 | –48 mA | | SN74ALVTH16244 | | | Input clamp current, I_{IK} ($V_I < 0$) | | | Output clamp current, I _{OK} (V _O < 0) | | | Package thermal impedance, θ _{JA} (see Note 2): DGG package | 89°C/W | | DGV package | 93°C/W | | DL package | 94°C/W | | Storage temperature range, T _{stg} | –65°C to 150°C | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. 2. The package thermal impedance is calculated in accordance with JESD 51. ### recommended operating conditions, V_{CC} = 2.5 V \pm 0.2 V (see Note 3) | | | | SN54ALV7 | ГН16244 | SN74ALVT | SN74ALVTH16244 | | |---------------------|---|-----------------|----------|---------|----------|----------------|------| | | | | MIN | MAX | MIN | MAX | UNIT | | V _{CC} | Supply voltage | | 2.3 | 2.7 | 2.3 | 2.7 | V | | VIH | High-level input voltage | | | 2 | 1.7 | | V | | V _{IL} | Low-level input voltage | | | 0.7 | | 0.7 | V | | VI | Input voltage | | | 5.5 | 0 | 5.5 | V | | IOH | High-level output current | | | -6 | | -8 | mA | | lo | Low-level output current | | 2 | 6 | | 8 | mA | | lor | Low-level output current; current duty cycle ≤ 50%; f ≥ | 1 kHz | 70, | 18 | | 24 | IIIA | | Δt/Δν | Input transition rise or fall rate | Outputs enabled | Q | 10 | | 10 | ns/V | | Δt/ΔV _{CC} | Power-up ramp rate | | 200 | | 200 | | μs/V | | T _A | Operating free-air temperature | | -55 | 125 | -40 | 85 | °C | NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. ### SN54ALVTH16244, SN74ALVTH16244 2.5-V/3.3-V 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS SCES070G - JUNE 1996 - REVISED MAY 1999 ### recommended operating conditions, $V_{\mbox{\footnotesize{CC}}}$ = 3.3 V \pm 0.3 V (see Note 3) | | | | SN54ALV | ГН16244 | SN74ALVT | UNIT | | |-----------------|---|-------|---------|---------|----------|------|------| | | | | MIN | MAX | MIN | MAX | UNIT | | V _{CC} | Supply voltage | | 3 | 3.6 | 3 | 3.6 | V | | VIH | High-level input voltage | | | 3 | 2 | | V | | V _{IL} | Low-level input voltage | | | 8.0 | | 0.8 | V | | VI | Input voltage | | | 5.5 | 0 | 5.5 | V | | Іон | High-level output current | | | -24 | | -32 | mA | | lou | Low-level output current | | 20 | 24 | | 32 | mA | | lor | Low-level output current; current duty cycle ≤ 50%; f ≥ | 1 kHz | 70, | 48 | | 64 | IIIA | | Δt/Δν | Input transition rise or fall rate Outputs enabled | | Q | 10 | | 10 | ns/V | | Δt/ΔVCC | Power-up ramp rate | | 200 | | 200 | | μs/V | | TA | Operating free-air temperature | | -55 | 125 | -40 | 85 | °C | NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. # electrical characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) | PARAMETER | | TEST OF | NUNTIONS | SN54 | ALVTH1 | 6244 | SN74 | ALVTH1 | 6244 | UNIT | | |-----------------------|-------------------|--|--|--------------------|------------------|------------|--------------------|------------------|------------|------|--| | PAI | RAMETER | lESI CC | ONDITIONS | MIN | TYP [†] | MAX | MIN | TYP [†] | MAX | UNII | | | VIK | | $V_{CC} = 2.3 \text{ V},$ | I _I = -18 mA | | | -1.2 | | | -1.2 | V | | | | | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$ | I _{OH} = -100 μA | V _{CC} -0 | .2 | | V _{CC} -0 | .2 | | | | | VOH | | V _{CC} = 2.3 V | $I_{OH} = -6 \text{ mA}$ | 1.8 | | | | | | V | | | | | VCC = 2.3 V | $I_{OH} = -8 \text{ mA}$ | | | | 1.8 | | | | | | | | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$ | $I_{OL} = 100 \mu A$ | | | 0.2 | | | 0.2 | | | | | | | I _{OL} = 6 mA | | | 0.4 | | | | | | | VOL | | V _{CC} = 2.3 V | $I_{OL} = 8 \text{ mA}$ | | | | | | 0.4 | V | | | | | V(C) = 2.3 V | $I_{OL} = 18 \text{ mA}$ | | | 0.5 | | | | | | | | | | $I_{OL} = 24 \text{ mA}$ | | | | | | 0.5 | | | | | Control inputs | $V_{CC} = 2.7 \text{ V},$ | $V_I = V_{CC}$ or GND | | | ±1 | | | ±1 | | | | 1. | Control inputs | $V_{CC} = 0 \text{ or } 2.7 \text{ V},$ | V _I = 5.5 V | | | \$ 10 | | | 10 | μΑ | | | Η | Data inputs | V _{CC} = 2.7 V | $\Lambda^{I} = \Lambda^{CC}$ | | , Š | 1 | | | 1 | μΑ | | | | Data inputs | VCC = 2.7 V | V _I = 0 | | 72 | - 5 | | | – 5 | | | | l _{off} | | $V_{CC} = 0$, | V_I or $V_O = 0$ to 4.5 V | | 1 | | | | ±100 | μΑ | | | | | V _{CC} = 2.3 V | V _I = 0.7 V | | 115 | | | 115 | | | | | I _I (hold) | Data inputs | | V _I = 1.7 V | | -10 | | | -10 | | μΑ | | | , , | | $V_{CC} = 2.7 V^{\ddagger}$, | $V_{ } = 0 \text{ to } 2.7 \text{ V}$ | Q | | ±300 | | | ±300 | | | | I _{EX} § | | $V_{CC} = 2.3 \text{ V},$ | $V_0 = 5.5 \text{ V}$ | | | 125 | | | 125 | μΑ | | | IOZ(PU | _{/PD)} ¶ | $V_{CC} \le 1.2 \text{ V}, V_{O} = \underline{0.5} \text{ V}$
$V_{I} = \text{GND or } V_{CC}, \overline{\text{OE}} =$ | to V _{CC} ,
don't care | | | ±100 | | | ±100 | μΑ | | | lozh | | V _{CC} = 2.7 V | V _O = 2.3 V,
V _I = 0.7 V or 1.7 V | | | 5 | | | 5 | μΑ | | | lozL | | V _{CC} = 2.7 V | V _O = 0.5 V,
V _I = 0.7 V or 1.7 V | | | - 5 | | | - 5 | μΑ | | | | | V _{CC} = 2.7 V, | Outputs high | | 0.04 | 0.1 | | 0.04 | 0.1 | | | | ICC | | $I_{\Omega} = 0$, | Outputs low | | 2.3 | 4.5 | | 2.3 | 4.5 | mA | | | | | $V_I = V_{CC}$ or GND | Outputs disabled | | 0.04 | 0.1 | | 0.04 | 0.1 | | | | Ci | | V _{CC} = 2.5 V, | V _I = 2.5 V or 0 | | 3 | | | 3 | | pF | | | Со | | V _{CC} = 2.5 V, | V _O = 2.5 V or 0 | | 6 | | | 6 | | pF | | | | | | | | | | | | | | | $[\]uparrow$ All typical values are at V_{CC} = 2.5 V, T_A = 25°C. [‡] This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another. $[\]S$ Current into an output in the high state when $V_O > V_{CC}$ $[\]P$ High-impedance state during power up/power down ### SN54ALVTH16244, SN74ALVTH16244 2.5-V/3.3-V 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS SCES070G - JUNE 1996 - REVISED MAY 1999 ### electrical characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) | D4 | DAMETER | TEST CONDITIONS | | SN54 | ALVTH1 | 6244 | SN74 | ALVTH1 | 6244 | LINIT | | |-----------------------|-----------------------|---|--|---------------------|------------------|------------|--------------------|--------|------------|-------|--| | PA | RAMETER | l lesi c | CONDITIONS | MIN | TYP [†] | MAX | | | MAX | UNIT | | | VIK | | V _{CC} = 3 V, | I _I = -18 mA | | | -1.2 | | | -1.2 | V | | | | | $V_{CC} = 3 \text{ V to } 3.6 \text{ V},$ | I _{OH} = -100 μA | V _{CC} -0. | 2 | | V _{CC} -0 | .2 | | | | | VOH | V _{CC} = 3 V | $I_{OH} = -24 \text{ mA}$ | 2 | | | | | | V | | | | | | ACC = 2 A | $I_{OH} = -32 \text{ mA}$ | | | | 2 | | | | | | | | $V_{CC} = 3 \text{ V to } 3.6 \text{ V},$ | $I_{OL} = 100 \mu A$ | | | 0.2 | | | 0.2 | | | | | | | I _{OL} = 16 mA | | | | | | 0.4 | | | | \/o: | | | $I_{OL} = 24 \text{ mA}$ | | | 0.5 | | | | V | | | VOL | | VCC = 3 V | $I_{OL} = 32 \text{ mA}$ | | | | | | 0.5 | V | | | | | | $I_{OL} = 48 \text{ mA}$ | | | 0.55 | | | | | | | | _ | | $I_{OL} = 64 \text{ mA}$ | | | | | | 0.55 | | | | | Control inputs | $V_{CC} = 3.6 \text{ V},$ | $V_I = V_{CC}$ or GND | | | ±1 | | | ±1 | | | | | Control inputs | $V_{CC} = 0 \text{ or } 3.6 \text{ V},$ | V _I = 5.5 V | | | 10 | | | 10 | | | | IJ | | | V _I = 5.5 V | | | 20 | | | 20 | μΑ | | | | Data inputs | V _{CC} = 3.6 V | $V_I = V_{CC}$ | | | 1 | | | 1 | | | | | | | V _I = 0 | | FIL | - 5 | | | – 5 | | | | l _{off} | | $V_{CC} = 0$, | V_I or $V_O = 0$ to 4.5 V | | D. C. | | | | ±100 | μΑ | | | | | VCC = 3 V | V _I = 0.8 V | 75 | Ċ, | | 75 | | | μΑ | | | I _I (hold) | Data inputs | | V _I = 2 V | -75 | 70. | | -75 | | | | | | , , | | $V_{CC} = 3.6 V^{\ddagger}$, | $V_{I} = 0 \text{ to } 3.6 \text{ V}$ | S. C. | | ±500 | | | ±500 | | | | I _{EX} § | | V _{CC} = 3 V, | V _O = 5.5 V | | | 125 | | | 125 | μΑ | | | I _{OZ(PU} | /PD) [¶] | $V_{CC} \le 1.2 \text{ V}, V_{O} = \frac{0.5}{\text{OE}}$ | V to V _{CC} ,
= don't care | | | ±100 | | | ±100 | μΑ | | | lozh | | V _{CC} = 3.6 V | V _O = 3 V,
V _I = 0.8 V or 2 V | | | 5 | | | 5 | μΑ | | | lozL | | V _{CC} = 3.6 V | V _O = 0.5 V,
V _I = 0.8 V or 2 V | | | - 5 | | | -5 | μΑ | | | | | V _{CC} = 3.6 V, | Outputs high | | 0.07 | 0.1 | | 0.07 | 0.1 | | | | I _{CC} | $I_{O} = 0$, | Outputs low | | 3.2 | 5 | | 3.2 | 5 | mA | | | | | | $V_I = V_{CC}$ or GND | Outputs disabled | | 0.07 | 0.1 | | 0.07 | 0.1 | | | | ΔI _{CC} # | | $V_{CC} = 3 \text{ V to } 3.6 \text{ V, On}$
Other inputs at V_{CC} or | | | | 0.4 | | | 0.4 | mA | | | Ci | | V _{CC} = 3.3 V, | V _I = 3.3 V or 0 | | 3 | | | 3 | | pF | | | Со | | V _{CC} = 3.3 V, | V _O = 3.3 V or 0 | | 6 | | | 6 | | pF | | [†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. [‡]This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another. $[\]S$ Current into an output in the high state when $V_O > V_{CC}$ [¶] High-impedance state during power up/power down [#] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND. ## switching characteristics over recommended operating free-air temperature range, C_L = 30 pF, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1) | PARAMETER | FROM | то | SN54ALV | ГН16244 | SN74ALVT | H16244 | UNIT | |------------------|---------|----------|---------|---------|----------|--------|------| | PARAMETER | (INPUT) | (OUTPUT) | MIN | MAX | MIN | MAX | ONIT | | t _{PLH} | ۸ | V | 1 | 3.1 | 1 | 3 | ns | | ^t PHL | А | ı | 1 | 3.6 | 1 | 3.5 | 115 | | ^t PZH | - | V | 1.1 | 6 | 1.1 | 5.9 | ns | | ^t PZL | OE | ı | 1.150 | 4.8 | 1.1 | 4.7 | 115 | | ^t PHZ | ŌĒ | V | 1.5 | 4.5 | 1.5 | 4.4 | ns | | t _{PLZ} | OE . | , | Q 1 | 3.5 | 1 | 3.4 | 115 | ## switching characteristics over recommended operating free-air temperature range, C_L = 50 pF, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2) | PARAMETER | FROM | то | SN54ALVT | H16244 | SN74ALVT | H16244 | UNIT | |------------------|---------|----------|----------|--------|----------|--------|------| | PARAMETER | (INPUT) | (OUTPUT) | MIN | MAX | MIN | MAX | UNIT | | t _{PLH} | А | V | 1 | 2.6 | 1 | 2.4 | ns | | ^t PHL | A | ı | 1 | 2.6 | 1 | 2.5 | 115 | | ^t PZH | - | V | 1,0 | 3.9 | 1 | 3.8 | ns | | t _{PZL} | OE | T | 5 | 3 | 1 | 2.9 | 115 | | ^t PHZ | ŌĒ | V | 1.5 | 4.3 | 1.5 | 4.2 | ns | | ^t PLZ | OE . | ı | 1.5 | 3.7 | 1.5 | 3.6 | 113 | ## PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.5 V \pm 0.2 V NOTES: A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 2$ ns. $t_f \leq 2$ ns. - D. The outputs are measured one at a time with one transition per measurement. Figure 1. Load Circuit and Voltage Waveforms ### PARAMETER MEASUREMENT INFORMATION $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ NOTES: A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \ \Omega$, $t_\Gamma \leq$ 2.5 ns, $t_f \leq$ 2.5 ns. - D. The outputs are measured one at a time with one transition per measurement. Figure 2. Load Circuit and Voltage Waveforms #### **IMPORTANT NOTICE** Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof. Copyright © 1999, Texas Instruments Incorporated